Download citation
Download citation
link to html
Single crystals of sodium tetra­calcium trivanadium dodeca­oxide were prepared by melting a powder sample of NaCa4(VO4)3 at 1673 K, followed by slow cooling to room temperature. The compound crystallizes in the Pnma space group and is isostructural with the mineral silicocarnotite, Ca5(PO4)2SiO4. The structure is composed of isolated VO4 tetra­hedra linked by sodium and calcium cations disordered over eight- and seven-coordinated sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105018214/bc1070sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105018214/bc1070Isup2.hkl
Contains datablock I

Comment top

Many different structures have been observed for orthovanadates with the AB4(VO4)3 stoichiometry (A = Li, Na, K and Rb, and B = Ca, Mg and Cd). In the ACd4(VO4)3 series, three different structural types are observed. The structure of LiCd4(VO4)3 (Gaudin et al., 2004) is a modulated variant of the Na2CrO4 type (Nimmo, 1981), NaCd4(VO4)3 crystallizes with the maricite structure (Abrahams et al., 1983), and KCd4(VO4)3 (Eddahby et al., 1997) and RbCd4(VO4)3 (Mueller-Buschbaum & Mertens, 1997) adopt the scheelite structure. With increasing size of the A cation, its coordination number increases from 4 to 6 with associated structural changes. Moreover, disorder is often observed between the A and B cations. In the incommensurate structure of LiCd4(VO4)3, or (Li1/3Cd1/31/3)CdVO4 (□ = vacancy), the Li/Cd disorder induces strong steric strains in the tetrahedral sites and a strong modulation of their occupancies (Gaudin et al., 2004, 2005). In NaCd4(VO4)3, or (Na1/3Cd1/31/3)CdVO4, an Na/Ca/vacancy disorder is observed in strongly distorted tetrahedral sites derived from an octahedral site (Le Page & Donnay, 1977). In KCd4(VO4)3 (Eddahby et al., 1997) and RbCd4(VO4)3 (Mueller-Buschbaum & Mertens, 1997), all sites are fully occupied but a small Cd/alkali mixing is observed in some sites. In the AMg4(VO4)3 series, only LiMg4(VO4)3 (Tyutyunnik et al., 2004) and NaMg4(VO4)3 (Murashova et al., 1988) have been observed, and both crystallize with the same structure, different from that of the Cd analogues. No A/Mg disorder is observed in these structures; the Mg atoms occupy octahedral sites and the alkali cations occupy sites with eightfold coordination. For the ACa4(VO4)3 series, only NaCa4(VO4)3 has been reported (Krasnenko et al., 1987) but without detailed structural data. Its structure has now been determined and is described here. NaCa4(VO4)3 is isostructural with the mineral siliocarnotite, Ca5(PO4)2SiO4 (Dickens et al., 1971), and is the first example of an orthovanadate adopting this structure type.

The NaCa4(VO4)3 structure (Fig. 1) is very similar to those of Ca3Y2(SiO4)3 (Yamane et al., 1997) and NaCd4(PO4)3 (Ben Amara et al., 1982), with a silicocarnotite-type structure. The structure can be described as a three-dimensional network of isolated VO4 tetrahedra linked by calcium and sodium cations. The Ca and Na cations are randomly distributed over three distinct crystallographic positions, Ca1/Na1, Ca2/Na2 and Ca3/Na3, coordinated to seven, eight and seven O atoms, respectively.

The VO4 tetrahedra are almost regular with mean V1—O and V2—O distances of 1.707 and 1.704 Å, respectively, in good agreement with the Shannon (1976) radii. The bond-valence sums, equal to 5.18 and 5.23 for atoms V1 and V2, respectively (Brown, 1996), are close to the +5 oxidation state expected for vanadium. The Ca1/Na1 and Ca3/Na3 sites are occupied by 77 and 80% Ca, and 23 and 20% Na, respectively. The (Na/Ca)—O distances range from 2.2724 (14) to 2.6834 (19) Å and are consistent with the Shannon radii [r(Ca2+) = 1.06 Å and r(Na+) = 1.12 Å for a coordination number of 7]. The bond-valence sums are 1.97, 1.84, 1.26 and 1.18 for Ca1, Ca3, Na1 and Na3, respectively. By comparison with the expected values of +2 and +1, these bond-valence sums show that sites 1 and 3 are more favorable for Ca2+ than Na+ ions, since the Na+ ions are overbonded. In contrast, one would expect site 2 to be more favorable for Na+ ions, as suggested by the bond-valence sums of 1.68 for Ca2 and 1.08 for Na2. The Ca2/Na2—O distances range from 2.4365 (18) to 2.780 (3) Å and are longer than for the two other Ca/Na sites. Surprisingly, the Na2/Ca2 ratio of 0.14 is smaller than those for the two other sites, viz. 0.31 for Na1/Ca1 and 0.26 for Na3/Ca3. In the case of the isotypic compound NaCd4(PO4)3 (Ben Amara et al., 1982), no Cd/Na disorder has been observed. The Na atoms occupy the crystallographic site corresponding to the Ca2/Na2 site of the title compound where the coordination number is the highest. The disorder between calcium and sodium over the three sites can be attributed to their close ionic radii and, moreover, calcium unlike cadmium is often observed with a high coordination number.

Experimental top

NaCa4(VO4)3 was obtained by the solid-state reaction of a stoichiometric mixture of Na2CO3, CaCO3 and V2O5. The reagents were ground in an agate mortar and placed into a platinum crucible. The temperature was raised slowly to 873 K in an oxygen flow and maintained for 12 h to decompose the carbonates. A second heat treatment at 1123 K for 48 h with intermediate grindings was needed to ensure a total reaction. The purity of the powder product was confirmed by powder X-ray diffraction. Single crystals of NaCa4(VO4)3 were obtained by heating 1 g of the the corresponding powder at 1673 K in a platinum crucible in air for 1 h, followed by slow cooling at 10 k h−1 to 1473 K and at 20 K h-1 to ambient temperature. A product consisting of the major phase NaCa4(VO4)3 and two impurities, NaCaVO4 and Ca3(VO4)2, was recovered. Electron microprobe quantitative analyses revealed the presence of these impurities and confirmed the stoichiometry of the NaCa4(VO4)3 crystals. No impurities were observed in the powder of NaCa4(VO4)3 before crystallization.

Refinement top

An initial model with sites 1 and 3 fully occupied by Ca atoms and site 2 by Na atoms gave a reliability index R of 6.2% (wR = 14.9%) and a non-positive definite value for the Na2 atomic displacement parameter. The disordering of Na and Ca over the three cation positions led to the best result. In a first step, only constraints of fully occupied sites were used, and the chemical formula calculated from the refined Na and Ca site occupancies was found to be equal to the expected NaCa4(VO4)3 composition. Then, in the final step, the total Ca and Na contents were fixed to match this ideal stoichiometry.

Computing details top

Data collection: Collect (Nonius, 2004); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: Jana2000 (Petricek & Dusek, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: Jana2000; molecular graphics: Diamond (Brandenburg, 1999); software used to prepare material for publication: Jana2000.

Figures top
[Figure 1] Fig. 1. : A view of the structure of NaCa4(VO4)3 along the a axis. The VO4 tetrahedra are drawn in grey and white for V1 and V2, respectively. Displacement ellipsoids are shown at the 90% probability level.
sodium tetracalcium trivanadiun dodecaoxide top
Crystal data top
NaCa4(VO4)3F(000) = 1024
Mr = 528.1Dx = 3.120 (1) Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 236 reflections
a = 6.7703 (10) Åθ = 5–35°
b = 16.0954 (11) ŵ = 4.37 mm1
c = 10.3136 (5) ÅT = 295 K
V = 1123.88 (19) Å3Block, colourless
Z = 40.09 × 0.07 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed X-ray tube1927 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.088
Detector resolution: 9 pixels mm-1θmax = 35.0°, θmin = 11.5°
ϕ and ω frames scansh = 1010
Absorption correction: gaussian
(Jana2000; Petricek & Dusek, 2000)
k = 2525
Tmin = 0.643, Tmax = 0.795l = 1616
25346 measured reflections
Refinement top
Refinement on F299 parameters
R[F2 > 2σ(F2)] = 0.035Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.16Δρmax = 0.89 e Å3
2433 reflectionsΔρmin = 0.57 e Å3
Crystal data top
NaCa4(VO4)3V = 1123.88 (19) Å3
Mr = 528.1Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 6.7703 (10) ŵ = 4.37 mm1
b = 16.0954 (11) ÅT = 295 K
c = 10.3136 (5) Å0.09 × 0.07 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
2433 independent reflections
Absorption correction: gaussian
(Jana2000; Petricek & Dusek, 2000)
1927 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.795Rint = 0.088
25346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03599 parameters
wR(F2) = 0.083Δρmax = 0.89 e Å3
S = 1.16Δρmin = 0.57 e Å3
2433 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca10.37639 (7)0.09230 (3)0.06696 (4)0.01321 (15)0.765 (7)
Na10.37639 (7)0.09230 (3)0.06696 (4)0.01321 (15)0.235 (7)
Ca20.04490 (11)0.250.17790 (8)0.0215 (3)0.878 (12)
Na20.04490 (11)0.250.17790 (8)0.0215 (3)0.122 (12)
Ca30.31152 (8)0.10699 (3)0.67177 (4)0.01493 (15)0.796 (9)
Na30.31152 (8)0.10699 (3)0.67177 (4)0.01493 (15)0.204 (9)
V10.35932 (5)0.07258 (2)0.37321 (3)0.00824 (8)
V20.02550 (8)0.250.57421 (4)0.01112 (12)
O10.2740 (4)0.250.5762 (3)0.0254 (7)
O20.1881 (2)0.04082 (9)0.48481 (13)0.0117 (3)
O30.2689 (3)0.15011 (10)0.27731 (15)0.0161 (4)
O40.5435 (2)0.11710 (11)0.46136 (16)0.0175 (4)
O50.4327 (3)0.00606 (11)0.27284 (16)0.0196 (4)
O60.0449 (3)0.15894 (10)0.64634 (15)0.0194 (4)
O70.0736 (4)0.250.4219 (2)0.0206 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0120 (3)0.0123 (3)0.0154 (3)0.00096 (15)0.00299 (15)0.00030 (16)
Na10.0120 (3)0.0123 (3)0.0154 (3)0.00096 (15)0.00299 (15)0.00030 (16)
Ca20.0170 (4)0.0091 (4)0.0384 (5)00.0023 (3)0
Na20.0170 (4)0.0091 (4)0.0384 (5)00.0023 (3)0
Ca30.0180 (3)0.0148 (3)0.0120 (2)0.00291 (17)0.00509 (16)0.00288 (16)
Na30.0180 (3)0.0148 (3)0.0120 (2)0.00291 (17)0.00509 (16)0.00288 (16)
V10.00819 (14)0.00900 (14)0.00753 (13)0.00096 (11)0.00128 (10)0.00059 (10)
V20.0151 (2)0.00757 (19)0.0107 (2)00.00102 (16)0
O10.0170 (12)0.0165 (10)0.0426 (15)00.0024 (10)0
O20.0100 (6)0.0147 (6)0.0104 (6)0.0017 (5)0.0018 (5)0.0011 (5)
O30.0210 (8)0.0134 (6)0.0138 (6)0.0048 (6)0.0024 (6)0.0019 (5)
O40.0104 (7)0.0224 (8)0.0196 (7)0.0002 (6)0.0021 (5)0.0033 (6)
O50.0241 (8)0.0190 (7)0.0157 (7)0.0066 (7)0.0043 (6)0.0035 (6)
O60.0312 (10)0.0117 (7)0.0153 (6)0.0007 (6)0.0061 (6)0.0037 (5)
O70.0329 (14)0.0155 (10)0.0133 (9)00.0041 (9)0
Geometric parameters (Å, º) top
Ca1/Na1—O2i2.3292 (14)Ca3/Na3—O12.5168 (13)
Ca1/Na1—O2ii2.3451 (15)Ca3/Na3—O22.3561 (13)
Ca1/Na1—O32.4701 (13)Ca3/Na3—O42.6834 (19)
Ca1/Na1—O4iii2.3075 (15)Ca3/Na3—O5vi2.4418 (19)
Ca1/Na1—O52.676 (2)Ca3/Na3—O5vii2.5410 (19)
Ca1/Na1—O6i2.5041 (13)Ca3/Na3—O62.567 (2)
Ca1/Na1—O7i2.5633 (6)Ca3/Na3—O6viii2.2724 (14)
Ca2/Na2—O32.4365 (18)V1—O21.7116 (13)
Ca2/Na2—O3iii2.5081 (19)V1—O31.7059 (15)
Ca2/Na2—O3iv2.5081 (19)V1—O41.7017 (17)
Ca2/Na2—O3v2.4365 (18)V1—O51.7097 (19)
Ca2/Na2—O4iii2.5768 (18)V2—O11.683 (3)
Ca2/Na2—O4iv2.5768 (18)V2—O61.7117 (16)
Ca2/Na2—O72.641 (2)V2—O6v1.7117 (16)
Ca2/Na2—O7i2.780 (3)V2—O71.708 (2)
O2i—Ca1—O2ii76.16 (5)O3v—Ca2—O4iv71.88 (5)
O2i—Ca1—O3127.03 (6)O3v—Ca2—O777.77 (6)
O2i—Ca1—O4iii156.56 (6)O3v—Ca2—O7i65.01 (5)
O2i—Ca1—O580.92 (5)O4iii—Ca2—O4iv112.23 (7)
O2i—Ca1—O6i76.01 (5)O4iii—Ca2—O7122.01 (5)
O2i—Ca1—O7i104.06 (7)O4iii—Ca2—O7i78.29 (4)
O2ii—Ca1—O2i76.16 (5)O4iv—Ca2—O4iii112.23 (7)
O2ii—Ca1—O3127.34 (5)O4iv—Ca2—O7122.01 (5)
O2ii—Ca1—O4iii86.01 (6)O4iv—Ca2—O7i78.29 (4)
O2ii—Ca1—O576.85 (5)O7—Ca2—O7i129.41 (8)
O2ii—Ca1—O6i96.51 (5)O7i—Ca2—O7129.41 (8)
O2ii—Ca1—O7i161.00 (6)O1—Ca3—O293.27 (7)
O3—Ca1—O4iii76.02 (7)O1—Ca3—O471.76 (7)
O3—Ca1—O564.41 (5)O1—Ca3—O5vi140.49 (8)
O3—Ca1—O6i132.29 (5)O1—Ca3—O5vii132.80 (8)
O3—Ca1—O7i68.07 (6)O1—Ca3—O664.37 (7)
O4iii—Ca1—O5110.01 (7)O1—Ca3—O6viii91.74 (8)
O4iii—Ca1—O6i91.29 (7)O2—Ca3—O464.74 (5)
O4iii—Ca1—O7i87.90 (7)O2—Ca3—O5vi98.19 (6)
O5—Ca1—O6i156.91 (6)O2—Ca3—O5vii79.39 (6)
O5—Ca1—O7i122.12 (6)O2—Ca3—O674.34 (5)
O6i—Ca1—O7i65.63 (6)O2—Ca3—O6viii173.59 (6)
O3—Ca2—O3iii87.89 (6)O4—Ca3—O5vi79.31 (6)
O3—Ca2—O3iv144.03 (5)O4—Ca3—O5vii138.69 (6)
O3—Ca2—O3v82.59 (6)O4—Ca3—O6116.60 (5)
O3—Ca2—O4iii71.88 (5)O4—Ca3—O6viii113.26 (6)
O3—Ca2—O4iv141.70 (6)O5vi—Ca3—O5vii86.59 (6)
O3—Ca2—O777.77 (6)O5vi—Ca3—O6155.10 (6)
O3—Ca2—O7i65.01 (5)O5vi—Ca3—O6viii75.39 (7)
O3iii—Ca2—O387.89 (6)O5vii—Ca3—O5vi86.59 (6)
O3iii—Ca2—O3iv79.75 (6)O5vii—Ca3—O668.79 (6)
O3iii—Ca2—O3v144.03 (5)O5vii—Ca3—O6viii100.06 (6)
O3iii—Ca2—O4iii64.39 (5)O6—Ca3—O6viii111.53 (6)
O3iii—Ca2—O4iv129.21 (6)O6viii—Ca3—O6111.53 (6)
O3iii—Ca2—O766.31 (5)O2—V1—O3111.43 (8)
O3iii—Ca2—O7i139.49 (4)O2—V1—O4105.23 (8)
O3iv—Ca2—O3144.03 (5)O2—V1—O5112.51 (8)
O3iv—Ca2—O3iii79.75 (6)O3—V1—O4105.36 (8)
O3iv—Ca2—O3v87.89 (6)O3—V1—O5107.15 (8)
O3iv—Ca2—O4iii129.21 (6)O4—V1—O5115.01 (9)
O3iv—Ca2—O4iv64.39 (5)O1—V2—O6105.85 (8)
O3iv—Ca2—O766.31 (5)O1—V2—O6v105.85 (8)
O3iv—Ca2—O7i139.49 (4)O1—V2—O7113.83 (14)
O3v—Ca2—O382.59 (6)O6—V2—O6v117.88 (7)
O3v—Ca2—O3iii144.03 (5)O6—V2—O7106.86 (6)
O3v—Ca2—O3iv87.89 (6)O6v—V2—O6117.88 (7)
O3v—Ca2—O4iii141.70 (6)O6v—V2—O7106.86 (6)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y+1/2, z; (vi) x+1, y, z+1; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaNaCa4(VO4)3
Mr528.1
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)6.7703 (10), 16.0954 (11), 10.3136 (5)
V3)1123.88 (19)
Z4
Radiation typeMo Kα
µ (mm1)4.37
Crystal size (mm)0.09 × 0.07 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Jana2000; Petricek & Dusek, 2000)
Tmin, Tmax0.643, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
25346, 2433, 1927
Rint0.088
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.16
No. of reflections2433
No. of parameters99
No. of restraints?
Δρmax, Δρmin (e Å3)0.89, 0.57

Computer programs: Collect (Nonius, 2004), EVALCCD (Duisenberg et al., 2003), Jana2000 (Petricek & Dusek, 2000), SIR97 (Altomare et al., 1999), Jana2000, Diamond (Brandenburg, 1999).

Selected bond lengths (Å) top
Ca1/Na1—O2i2.3292 (14)Ca3/Na3—O12.5168 (13)
Ca1/Na1—O2ii2.3451 (15)Ca3/Na3—O22.3561 (13)
Ca1/Na1—O32.4701 (13)Ca3/Na3—O42.6834 (19)
Ca1/Na1—O4iii2.3075 (15)Ca3/Na3—O5vi2.4418 (19)
Ca1/Na1—O52.676 (2)Ca3/Na3—O5vii2.5410 (19)
Ca1/Na1—O6i2.5041 (13)Ca3/Na3—O62.567 (2)
Ca1/Na1—O7i2.5633 (6)Ca3/Na3—O6viii2.2724 (14)
Ca2/Na2—O32.4365 (18)V1—O21.7116 (13)
Ca2/Na2—O3iii2.5081 (19)V1—O31.7059 (15)
Ca2/Na2—O3iv2.5081 (19)V1—O41.7017 (17)
Ca2/Na2—O3v2.4365 (18)V1—O51.7097 (19)
Ca2/Na2—O4iii2.5768 (18)V2—O11.683 (3)
Ca2/Na2—O4iv2.5768 (18)V2—O61.7117 (16)
Ca2/Na2—O72.641 (2)V2—O6v1.7117 (16)
Ca2/Na2—O7i2.780 (3)V2—O71.708 (2)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z1/2; (iii) x1/2, y, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x, y+1/2, z; (vi) x+1, y, z+1; (vii) x+1/2, y, z+1/2; (viii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds