Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The cation distribution in a natural magnesium aluminium chromite spinel (cubic, space group Fd\overline{3}m), Al0.41Cr1.42Fe0.65Mg0.4O4, was determined by electron-microprobe analysis, Mössbauer spectroscopy and single-crystal X-ray analysis. Several structural models of the octahedral and tetrahedral cation distributions were tested; the most probable is (Mg{}_{0.40\,(11)}^{2+},Al{}_{0.28\,(5)}^{3+},Fe{}_{0.39\,(4)}^{2+})[Al{}_{0.13\,(5)}^{3+},Cr{}_{1.42\,(6)}^{3+},Fe{}_{0.26\,(4)}^{3+}0.19]O_{4}^{2-{, where (…) and […] represent the tetrahedral and octahedral sites, respectively, and Φ represents a vacancy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105000338/bc1063sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000338/bc1063Isup2.hkl
Contains datablock I

Comment top

Chromite, (Fe2+)[Cr3+]2O4, which belongs to the spinel group of minerals, is an important material widely used in the metallurgical and chemical industries (Rollinson, 1973). The first structural studies concerning spinels were performed by Bragg (1915) and Nishikawa (1915). Spinels are mixed-valence compounds, AB2X4, and for most compounds, X is oxygen, A is a divalent cation and B is a trivalent cation. The spinels may be classified as normal spinel, (A)[B2]O4, and inverse spinel, (B)[A,B]O4, where (···) and [···] represent the tetrahedral and octahedral sites, respectively. In general, (A1-i, Bi)[Ai, B2-i]O42− represents a partially inverse spinel, where i is the degree of inversion. Chromite is a normal spinel with cubic Fd3m symmetry. Several overviews of spinels and their properties are available in the literature (O'Neill & Navrotsky, 1983; Valenzuela, 1994, and references therein).

In natural chromites, chromium and iron may be replaced by other metallic cations with similar charges and/or ionic radii. Therefore, because a wide variety of solid solutions may form in natural spinels, it can be helpful to use complementary experimental techniques in order to establish their structures. This strategy can be seen in several studies concerning chromites, e.g. powder and single-crystal X-ray diffraction (Salviulo et al., 2000), and Mössbauer spectroscopy and single-crystal X-ray diffraction (Lenaz et al., 2004; Figueiras & Waerenborgh, 1997).

This work forms part of a project involving the structural studies of natural spinels from Brazil. In particular, attention is focused on the cation distribution in this class of compounds. The structure of a magnesium- and aluminium-rich natural chromite has been analysed by single-crystal X-ray diffraction combined with Mössbauer spectroscopy and electron microprobe analysis. Single crystals were collected in a geological site near Piumhi town (20° 22' 00" S and 45° 56' 00" W), Minas Gerais, Brazil. A typically well shaped chromite single-crystal was mounted on a diffractometer to perform the X-ray data collection. This same crystal was later characterized by electron microprobe analysis as (Mg0.45 (8) Al0.41 (5) Cr1.49 (4) Fe0.65 (6))O4.00 (s.u. values calculated from measurements on four differents points using MgO, Al2O3, Cr2O3 and Fe2O3 as standards. Mössbauer spectra of a powder sample showed that around 70% of the total Fe content is tetrahedral Fe2+ and 30% is octahedral Fe3+. The refined chemical formula and cation distribution is (Mg2+0.40 (11), Al3+0.28 (5), Fe2+0.39 (4))[Al3+0.13 (5), Cr3+1.42 (6), Fe3+0.26 (4), Φ0.19]O4, where Φ represents the vacancy. This composition is in agreement with the microprobe analysis and the Mössbauer data. Moreover, the tetrahedral site occupancy is 1.1 (1) and the crystal electroneutrality is maintained with a total cation charge of +7.9 (3). Fig. 1 shows the structure of the Mg,Al-rich chromite. As can be seen, it has a trigonal distortion in the [111] direction. Table 1 gives selected geometrical parameters.

Experimental top

Single crystals were extracted from rocks by mechanical separation, followed by a bath in deionized water. The aluminosilicate minerals were dissolved by repeated treatment with hot HCl and HF solutions. The residue was rinsed with distilled water and the purity of crystals was checked by powder X-ray diffraction.

Refinement top

The microprobe analysis result (Mg0.45 (8) Al0.41 (5) Cr1.49 (4) Fe0.65 (6))O4.00 was used as a first approximation for cation substitution. In all refinements, different atoms on the same site were constrained to share the same anisotropic displacement parameter. Models with an inverse distribution or a partial degree of inversion were rejected for chemical reasons and on the basis of the refinement results. Four normal spinel models have been tested:

(1) Model 1: (Mg2+0.52 (1), Fe2+0.48 (1))[Cr3+1.57 (3), Al3+0.43 (3))O42−, with R(Fo) = 0.0163, wR(Fo2) = 0.0456, S(Fo2) = 1.477 and NP = 12.

(2) Model 2: on the basis of the Mössbauer data, Fe3+ was added to the octahedral site, keeping the total amount of iron given by the electron microprobe analysis. The refined formula is (Mg2+0.51 (1), Fe2+0.49 (1))[Al3+0.47 (3), Cr3+1.37 (3), Fe3+0.16 (1)]O4, R(Fo) = 0.0167, wR(Fo2) = 0.0470, S(Fo2) = 1.478 and NP = 13. From a statistical point of view, this model is not better than model 1.

(3) Model 3: according to O'Neill & Navrotsky (1983, 1984), Al3+ in spinels can be found on both octahedral and tetrahedral sites. A refinement with an additional constraint on the total Al content yielded the formula (Mg2+0.26 (5), Al3+0.30 (5), Fe2+0.44 (1))[Al3+0.11 (5), Cr3+1.49 (3), Fe3+0.21 (1), Φ0.19]O4. with R(Fo) = 0.0155, wR(Fo2) = 0.0409, S(Fo2) = 1.406 and NP = 14. This refinement clearly indicates that Al3+ is present at both sites, but the Mg2+ content disagrees with the chemical analysis.

(4) Model 4: the total tetrahedral site occupancy is relaxed, which yields the formula (Mg2+0.40 (11), Al3+0.28 (5), Fe2+0.39 (4))[Al3+0.13 (5), Cr3+1.42 (6), Fe3+0.26 (4), Φ0.19]O4, with R(Fo) = 0.0155, wR(Fo2) = 0.0408, S(Fo2) = 1.402 and NP = 14. Although it does not seem to be statistically different from model 3, this is the preferred model since electroneutrality is reached with a total positive charge of +7.9 (3), against +7.7 (2) for model 3.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-PC (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the chromite structure from Piumhi. T (large ellipsoid) represents the tetrahedral site containing the Fe2+, Mg2+ and Al3+ions. M (large circle) represents the octahedral site containing the Cr3+, Fe3+ and Al3+ ions. The ellipsoids are drawn at the 50% probability level [symmetry code: (i) x, y − 1/4, z − 1/4].
(I) top
Crystal data top
Al0.41Cr1.42Fe0.65Mg0.40O4.00Dx = 4.512 Mg m3
Mr = 194.94Mo Kα radiation, λ = 0.71073 Å
Cubic, Fd3mCell parameters from 98 reflections
Hall symbol: -F 4vw 2vw 3θ = 20.0–32.8°
a = 8.31058 (5) ŵ = 8.67 mm1
V = 573.98 (1) Å3T = 298 K
Z = 8Octahedron, black
F(000) = 7460.07 × 0.07 × 0.07 mm
Data collection top
Siemens P4
diffractometer
219 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed X-ray tubeRint = 0.049
Graphite monochromatorθmax = 56.4°, θmin = 4.3°
θ/2θ scansh = 119
Absorption correction: analytical
(Lundgren, 1982)
k = 1919
Tmin = 0.385, Tmax = 0.445l = 1919
5083 measured reflections3 standard reflections every 297 reflections
220 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0138P)2 + 0.6778P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.40Δρmax = 0.96 e Å3
220 reflectionsΔρmin = 0.69 e Å3
14 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0152 (10)
Crystal data top
Al0.41Cr1.42Fe0.65Mg0.40O4.00Z = 8
Mr = 194.94Mo Kα radiation
Cubic, Fd3mµ = 8.67 mm1
a = 8.31058 (5) ÅT = 298 K
V = 573.98 (1) Å30.07 × 0.07 × 0.07 mm
Data collection top
Siemens P4
diffractometer
219 reflections with I > 2σ(I)
Absorption correction: analytical
(Lundgren, 1982)
Rint = 0.049
Tmin = 0.385, Tmax = 0.4453 standard reflections every 297 reflections
5083 measured reflections intensity decay: 0.5%
220 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01514 parameters
wR(F2) = 0.0412 restraints
S = 1.40Δρmax = 0.96 e Å3
220 reflectionsΔρmin = 0.69 e Å3
Special details top

Experimental. ? #Insert any special details here.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O0.26254 (5)0.26254 (5)0.26254 (5)0.00650 (14)
CrM0.50000.50000.50000.00477 (9)0.71 (3)
AlM0.50000.50000.50000.00477 (9)0.063 (27)
Fe3M0.50000.50000.50000.00477 (9)0.13 (2)
Fe2T0.12500.12500.12500.0062 (3)0.39 (4)
MgT0.12500.12500.12500.0062 (3)0.40 (11)
AlT0.12500.12500.12500.0062 (3)0.28 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.00650 (14)0.00650 (14)0.00650 (14)0.00079 (9)0.00079 (9)0.00079 (9)
CrM0.00477 (9)0.00477 (9)0.00477 (9)0.00037 (2)0.00037 (2)0.00037 (2)
AlM0.00477 (9)0.00477 (9)0.00477 (9)0.00037 (2)0.00037 (2)0.00037 (2)
Fe3M0.00477 (9)0.00477 (9)0.00477 (9)0.00037 (2)0.00037 (2)0.00037 (2)
Fe2T0.0062 (3)0.0062 (3)0.0062 (3)0.0000.0000.000
MgT0.0062 (3)0.0062 (3)0.0062 (3)0.0000.0000.000
AlT0.0062 (3)0.0062 (3)0.0062 (3)0.0000.0000.000
Geometric parameters (Å, º) top
O—Fe3Mi1.9790 (4)AlM—CrMviii2.9382
O—Fe3Mii1.9790 (4)AlM—CrMiii2.9382
O—Fe3Miii1.9790 (4)AlM—CrMii2.9382
O—AlMi1.9790 (4)AlM—CrMix2.9382
O—Miii1.9790 (4)AlM—CrMi2.9382
O—CrMii1.9790 (4)Fe3M—Oiv1.9789 (4)
O—CrMi1.9790 (4)Fe3M—Ov1.9789 (4)
O—AlMiii1.9790 (4)Fe3M—Oii1.9790 (4)
O—AlMii1.9790 (4)Fe3M—Oiii1.9790 (4)
O—T1.9797 (8)Fe3M—Oi1.9790 (4)
O—AlT1.9797 (8)Fe3M—Ovi1.9790 (4)
O—MgT1.9797 (8)Fe3M—Fe3Mvii2.9382
CrM—Oiv1.9789 (4)Fe3M—CrMviii2.9382
CrM—Ov1.9789 (4)Fe3M—CrMiii2.9382
CrM—Oii1.9790 (4)Fe3M—CrMii2.9382
CrM—Oiii1.9790 (4)Fe3M—CrMix2.9382
CrM—Oi1.9790 (4)Fe3M—CrMi2.9382
CrM—Ovi1.9790 (4)Fe2T—Ox1.9798 (8)
CrM—Fe3Mvii2.9382Fe2T—Oxi1.9798 (8)
CrM—CrMviii2.9382Fe2T—Oxii1.9798 (8)
CrM—CrMiii2.9382MgT—Ox1.9798 (8)
CrM—CrMii2.9382MgT—Oxi1.9798 (8)
CrM—CrMix2.9382MgT—Oxii1.9798 (8)
CrM—CrMi2.9382MgT—MgTxiii3.5986
AlM—Oiv1.9789 (4)MgT—MgTxiv3.5986
AlM—Ov1.9789 (4)MgT—MgTxv3.5986
AlM—Oii1.9790 (4)MgT—MgTxvi3.5987
AlM—Oiii1.9790 (4)AlT—Ox1.9798 (8)
AlM—Oi1.9790 (4)AlT—Oxi1.9798 (8)
AlM—Ovi1.9790 (4)AlT—Oxii1.9798 (8)
AlM—Fe3Mvii2.9382
Fe3Mi—O—Fe3Mii95.87 (3)Ovi—AlM—CrMviii42.066 (13)
Fe3Mi—O—Fe3Miii95.87 (3)Fe3Mvii—AlM—CrMviii60.0
Fe3Mii—O—Fe3Miii95.87 (3)Oiv—AlM—CrMiii137.934 (13)
Fe3Mii—O—AlMi95.87 (3)Ov—AlM—CrMiii94.27 (2)
Fe3Miii—O—AlMi95.87 (3)Oii—AlM—CrMiii42.066 (13)
Fe3Mi—O—CrMiii95.87 (3)Oiii—AlM—CrMiii85.73 (2)
Fe3Mii—O—CrMiii95.87 (3)Oi—AlM—CrMiii42.066 (13)
AlMi—O—CrMiii95.87 (3)Ovi—AlM—CrMiii137.934 (13)
Fe3Mi—O—CrMii95.87 (3)Fe3Mvii—AlM—CrMiii120.0
Fe3Miii—O—CrMii95.87 (3)CrMviii—AlM—CrMiii180.0
AlMi—O—CrMii95.87 (3)Oiv—AlM—CrMii137.934 (13)
CrMiii—O—CrMii95.87 (3)Ov—AlM—CrMii137.934 (13)
Fe3Mii—O—CrMi95.87 (3)Oii—AlM—CrMii85.73 (2)
Fe3Miii—O—CrMi95.87 (3)Oiii—AlM—CrMii42.066 (13)
CrMiii—O—CrMi95.87 (3)Oi—AlM—CrMii42.066 (13)
CrMii—O—CrMi95.87 (3)Ovi—AlM—CrMii94.27 (2)
Fe3Mi—O—AlMiii95.87 (3)Fe3Mvii—AlM—CrMii120.0
Fe3Mii—O—AlMiii95.87 (3)CrMviii—AlM—CrMii120.0
AlMi—O—AlMiii95.87 (3)CrMiii—AlM—CrMii60.0
CrMii—O—AlMiii95.87 (3)Oiv—AlM—CrMix42.066 (13)
CrMi—O—AlMiii95.87 (3)Ov—AlM—CrMix42.066 (13)
Fe3Mi—O—AlMii95.87 (3)Oii—AlM—CrMix94.27 (2)
Fe3Miii—O—AlMii95.87 (3)Oiii—AlM—CrMix137.934 (13)
AlMi—O—AlMii95.87 (3)Oi—AlM—CrMix137.934 (13)
CrMiii—O—AlMii95.87 (3)Ovi—AlM—CrMix85.73 (2)
CrMi—O—AlMii95.87 (3)Fe3Mvii—AlM—CrMix60.0
AlMiii—O—AlMii95.87 (3)CrMviii—AlM—CrMix60.0
Fe3Mi—O—Fe2T120.99 (2)CrMiii—AlM—CrMix120.0
Fe3Mii—O—Fe2T120.99 (2)CrMii—AlM—CrMix180.0
Fe3Miii—O—Fe2T120.99 (2)Oiv—AlM—CrMi94.27 (2)
AlMi—O—Fe2T120.99 (2)Ov—AlM—CrMi137.934 (13)
CrMiii—O—Fe2T120.99 (2)Oii—AlM—CrMi42.066 (13)
CrMii—O—Fe2T120.99 (2)Oiii—AlM—CrMi42.066 (13)
CrMi—O—Fe2T120.99 (2)Oi—AlM—CrMi85.73 (2)
AlMiii—O—Fe2T120.99 (2)Ovi—AlM—CrMi137.934 (13)
AlMii—O—Fe2T120.99 (2)Fe3Mvii—AlM—CrMi180.0
Fe3Mi—O—AlT120.99 (2)CrMviii—AlM—CrMi120.0
Fe3Mii—O—AlT120.99 (2)CrMiii—AlM—CrMi60.0
Fe3Miii—O—AlT120.99 (2)CrMii—AlM—CrMi60.0
AlMi—O—AlT120.99 (2)CrMix—AlM—CrMi120.0
CrMiii—O—AlT120.99 (2)Oiv—Fe3M—Ov83.81 (3)
CrMii—O—AlT120.99 (2)Oiv—Fe3M—Oii96.19 (3)
CrMi—O—AlT120.99 (2)Ov—Fe3M—Oii96.19 (3)
AlMiii—O—AlT120.99 (2)Oiv—Fe3M—Oiii96.19 (3)
AlMii—O—AlT120.99 (2)Ov—Fe3M—Oiii180.0
Fe3Mi—O—MgT120.99 (2)Oii—Fe3M—Oiii83.81 (3)
Fe3Mii—O—MgT120.99 (2)Oiv—Fe3M—Oi180.0
Fe3Miii—O—MgT120.99 (2)Ov—Fe3M—Oi96.19 (3)
AlMi—O—MgT120.99 (2)Oii—Fe3M—Oi83.81 (3)
CrMiii—O—MgT120.99 (2)Oiii—Fe3M—Oi83.81 (3)
CrMii—O—MgT120.99 (2)Oiv—Fe3M—Ovi83.81 (3)
CrMi—O—MgT120.99 (2)Ov—Fe3M—Ovi83.81 (3)
AlMiii—O—MgT120.99 (2)Oii—Fe3M—Ovi180.0
AlMii—O—MgT120.99 (2)Oiii—Fe3M—Ovi96.19 (3)
Oiv—M—Ov83.81 (3)Oi—Fe3M—Ovi96.19 (3)
Oiv—M—Oii96.19 (3)Oiv—Fe3M—Fe3Mvii85.73 (2)
Ov—CrM—Oii96.19 (3)Ov—Fe3M—Fe3Mvii42.066 (13)
Oiv—CrM—Oiii96.19 (3)Oii—Fe3M—Fe3Mvii137.934 (13)
Ov—CrM—Oiii180.0Oiii—Fe3M—Fe3Mvii137.934 (13)
Oii—CrM—Oiii83.81 (3)Oi—Fe3M—Fe3Mvii94.27 (2)
Oiv—M—Oi180.0Ovi—Fe3M—Fe3Mvii42.066 (13)
Ov—CrM—Oi96.19 (3)Oiv—Fe3M—CrMviii42.066 (13)
Oii—CrM—Oi83.81 (3)Ov—Fe3M—CrMviii85.73 (2)
Oiii—CrM—Oi83.81 (3)Oii—Fe3M—CrMviii137.934 (13)
Oiv—CrM—Ovi83.81 (3)Oiii—Fe3M—CrMviii94.27 (2)
Ov—CrM—Ovi83.81 (3)Oi—Fe3M—CrMviii137.934 (13)
Oii—CrM—Ovi180.0Ovi—Fe3M—CrMviii42.066 (13)
Oiii—CrM—Ovi96.19 (3)Fe3Mvii—Fe3M—CrMviii60.0
Oi—CrM—Ovi96.19 (3)Oiv—Fe3M—CrMiii137.934 (13)
Oiv—CrM—Fe3Mvii85.73 (2)Ov—Fe3M—CrMiii94.27 (2)
Ov—CrM—Fe3Mvii42.066 (13)Oii—Fe3M—CrMiii42.066 (13)
Oii—CrM—Fe3Mvii137.934 (13)Oiii—Fe3M—CrMiii85.73 (2)
Oiii—CrM—Fe3Mvii137.934 (13)Oi—Fe3M—CrMiii42.066 (13)
Oi—CrM—Fe3Mvii94.27 (2)Ovi—Fe3M—CrMiii137.934 (13)
Ovi—CrM—Fe3Mvii42.066 (13)Fe3Mvii—Fe3M—CrMiii120.0
Oiv—CrM—CrMviii42.066 (13)CrMviii—Fe3M—CrMiii180.0
Ov—CrM—CrMviii85.73 (2)Oiv—Fe3M—CrMii137.934 (13)
Oii—CrM—CrMviii137.934 (13)Ov—Fe3M—CrMii137.934 (13)
Oiii—CrM—CrMviii94.27 (2)Oii—Fe3M—CrMii85.73 (2)
Oi—CrM—CrMviii137.934 (13)Oiii—Fe3M—CrMii42.066 (13)
Ovi—CrM—CrMviii42.066 (13)Oi—Fe3M—CrMii42.066 (13)
Fe3Mvii—CrM—CrMviii60.0Ovi—Fe3M—CrMii94.27 (2)
Oiv—CrM—CrMiii137.934 (13)Fe3Mvii—Fe3M—CrMii120.0
Ov—CrM—CrMiii94.27 (2)CrMviii—Fe3M—CrMii120.0
Oii—CrM—CrMiii42.066 (13)CrMiii—Fe3M—CrMii60.0
Oiii—CrM—CrMiii85.73 (2)Oiv—Fe3M—CrMix42.066 (13)
Oi—CrM—CrMiii42.066 (13)Ov—Fe3M—CrMix42.066 (13)
Ovi—CrM—CrMiii137.934 (13)Oii—Fe3M—CrMix94.27 (2)
Fe3Mvii—CrM—CrMiii120.0Oiii—Fe3M—CrMix137.934 (13)
CrMviii—CrM—CrMiii180.0Oi—Fe3M—CrMix137.934 (13)
Oiv—CrM—CrMii137.934 (13)Ovi—Fe3M—CrMix85.73 (2)
Ov—CrM—CrMii137.934 (13)Fe3Mvii—Fe3M—CrMix60.0
Oii—CrM—CrMii85.73 (2)CrMviii—Fe3M—CrMix60.0
Oiii—CrM—CrMii42.066 (13)CrMiii—Fe3M—CrMix120.0
Oi—CrM—CrMii42.066 (13)CrMii—Fe3M—CrMix180.0
Ovi—CrM—CrMii94.27 (2)Oiv—Fe3M—CrMi94.27 (2)
Fe3Mvii—CrM—CrMii120.0Ov—Fe3M—CrMi137.934 (13)
CrMviii—CrM—CrMii120.0Oii—Fe3M—CrMi42.066 (13)
CrMiii—CrM—CrMii60.0Oiii—Fe3M—CrMi42.066 (13)
Oiv—CrM—CrMix42.066 (13)Oi—Fe3M—CrMi85.73 (2)
Ov—CrM—CrMix42.066 (13)Ovi—Fe3M—CrMi137.934 (13)
Oii—CrM—CrMix94.27 (2)Fe3Mvii—Fe3M—CrMi180.0
Oiii—CrM—CrMix137.934 (13)CrMviii—Fe3M—CrMi120.0
Oi—CrM—CrMix137.934 (13)CrMiii—Fe3M—CrMi60.0
Ovi—CrM—CrMix85.73 (2)CrMii—Fe3M—CrMi60.0
Fe3Mvii—CrM—CrMix60.0CrMix—Fe3M—CrMi120.0
CrMviii—CrM—CrMix60.0O—Fe2T—Ox109.5
CrMiii—CrM—CrMix120.0O—T—Oxi109.5
CrMii—CrM—CrMix180.0Ox—Fe2T—Oxi109.5
Oiv—CrM—CrMi94.27 (2)O—Fe2T—Oxii109.5
Ov—CrM—CrMi137.934 (13)Ox—Fe2T—Oxii109.5
Oii—CrM—CrMi42.066 (13)Oxi—Fe2T—Oxii109.5
Oiii—CrM—CrMi42.066 (13)O—MgT—Ox109.5
Oi—CrM—CrMi85.73 (2)O—MgT—Oxi109.5
Ovi—CrM—CrMi137.934 (13)Ox—MgT—Oxi109.5
Fe3Mvii—CrM—CrMi180.0O—MgT—Oxii109.5
CrMviii—CrM—CrMi120.0Ox—MgT—Oxii109.5
CrMiii—CrM—CrMi60.0Oxi—MgT—Oxii109.5
CrMii—CrM—CrMi60.0O—MgT—MgTxiii70.5
CrMix—CrM—CrMi120.0Ox—MgT—MgTxiii70.5
Oiv—AlM—Ov83.81 (3)Oxi—MgT—MgTxiii70.5
Oiv—AlM—Oii96.19 (3)Oxii—MgT—MgTxiii179.998 (10)
Ov—AlM—Oii96.19 (3)O—MgT—MgTxiv70.5
Oiv—AlM—Oiii96.19 (3)Ox—MgT—MgTxiv179.998 (10)
Ov—AlM—Oiii180.0Oxi—MgT—MgTxiv70.5
Oii—AlM—Oiii83.81 (3)Oxii—MgT—MgTxiv70.5
Oiv—AlM—Oi180.0MgTxiii—MgT—MgTxiv109.5
Ov—AlM—Oi96.19 (3)O—MgT—MgTxv70.5
Oii—AlM—Oi83.81 (3)Ox—MgT—MgTxv70.5
Oiii—AlM—Oi83.81 (3)Oxi—MgT—MgTxv179.998 (10)
Oiv—AlM—Ovi83.81 (3)Oxii—MgT—MgTxv70.5
Ov—AlM—Ovi83.81 (3)MgTxiii—MgT—MgTxv109.5
Oii—AlM—Ovi180.0MgTxiv—MgT—MgTxv109.5
Oiii—AlM—Ovi96.19 (3)O—MgT—MgTxvi180.000 (11)
Oi—AlM—Ovi96.19 (3)Ox—MgT—MgTxvi70.5
Oiv—AlM—Fe3Mvii85.73 (2)Oxi—MgT—MgTxvi70.5
Ov—AlM—Fe3Mvii42.066 (13)Oxii—MgT—MgTxvi70.5
Oii—AlM—Fe3Mvii137.934 (13)MgTxiii—MgT—MgTxvi109.5
Oiii—AlM—Fe3Mvii137.934 (13)MgTxiv—MgT—MgTxvi109.5
Oi—AlM—Fe3Mvii94.27 (2)MgTxv—MgT—MgTxvi109.5
Ovi—AlM—Fe3Mvii42.066 (13)O—AlT—Ox109.5
Oiv—AlM—CrMviii42.066 (13)O—AlT—Oxi109.5
Ov—AlM—CrMviii85.73 (2)Ox—AlT—Oxi109.5
Oii—AlM—CrMviii137.934 (13)O—AlT—Oxii109.5
Oiii—AlM—CrMviii94.27 (2)Ox—AlT—Oxii109.5
Oi—AlM—CrMviii137.934 (13)Oxi—AlT—Oxii109.5
Symmetry codes: (i) x+3/4, y, z+3/4; (ii) x+3/4, y+3/4, z; (iii) x, y+3/4, z+3/4; (iv) x+1/4, y+1, z+1/4; (v) x+1, y+1/4, z+1/4; (vi) x+1/4, y+1/4, z+1; (vii) x+5/4, y, z+5/4; (viii) x, y+5/4, z+5/4; (ix) x+5/4, y+5/4, z; (x) x+1/4, y, z+1/4; (xi) x, y+1/4, z+1/4; (xii) x+1/4, y+1/4, z; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y, z+1/2; (xv) x, y+1/2, z+1/2; (xvi) x, y, z.

Experimental details

Crystal data
Chemical formulaAl0.41Cr1.42Fe0.65Mg0.40O4.00
Mr194.94
Crystal system, space groupCubic, Fd3m
Temperature (K)298
a (Å)8.31058 (5)
V3)573.98 (1)
Z8
Radiation typeMo Kα
µ (mm1)8.67
Crystal size (mm)0.07 × 0.07 × 0.07
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionAnalytical
(Lundgren, 1982)
Tmin, Tmax0.385, 0.445
No. of measured, independent and
observed [I > 2σ(I)] reflections
5083, 220, 219
Rint0.049
(sin θ/λ)max1)1.171
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.041, 1.40
No. of reflections220
No. of parameters14
No. of restraints2
Δρmax, Δρmin (e Å3)0.96, 0.69

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXTL-PC (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O—Mi1.9790 (4)O—T1.9797 (8)
Oii—M—Oiii83.81 (3)O—T—Oiv109.5
Symmetry codes: (i) x, y+3/4, z+3/4; (ii) x+1/4, y+1, z+1/4; (iii) x+1, y+1/4, z+1/4; (iv) x, y+1/4, z+1/4.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds