Download citation
Download citation
link to html
ν-Dysprosium borate (ν-DyBO3) was synthesized under conditions of high temperature and pressure in a Walker-type multi-anvil apparatus at 3 GPa and 1323 K. The compound is isotypic with the already known ν-samarium and ν-europium orthoborates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104024205/bc1055sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104024205/bc1055Isup2.hkl
Contains datablock I

Comment top

The rare earth orthoborates REBO3 exhibit a complex polymorphism. According to Meyer (1969, 1972; Meyer & Skokan, 1971), the first polymorphs were designated with the greek letters β, λ, µ, π and ν. Additionally, monoclinic phases H-REBO3 (RE is La or Ce) were described by Böhlhoff et al. (1971) and Lemanceau et al. (1999). Depending on the cation size, rare earth orthoborates are related to the three crystalline forms of CaCO3, i.e. aragonite (λ-phase), vaterite (π- and µ-phases) and calcite (β-phase). Recently, the vaterite-type rare-earth orthoborates have been well investigated by Ren et al. (1999) and Lin et al. (2004), who finally solved the long-debated structures of the π- and µ-phases by means of neutron diffraction. Additionally, Huppertz et al. (2002) were able to synthesize the high-pressure orthoborate phases χ-REBO3 with RE = Dy and Er. These phases contain the new non-cyclic [B3O9]9− anion and represent intermediates between the low- (π) and high-temperature (µ) polymorphs. In 1972, Meyer reported the syntheses and lattice parameters of the triclinic rare earth orthoborates REBO3 (RE = Pr—Dy), which were designated as ν-phases. For RE = Pr—Eu, the syntheses were performed at ambient pressure, whereas for RE = Gd—Dy, high-pressure conditions (1–4.5 GPa) were applied. However, the structure solution and refinement of triclinic ν-SmBO3 were first performed by Palkina et al. (1976) in the space group P1, but corrected afterwards to P1. Corbel et al. (1999) confirmed the new space group in their characterization of ν-EuBO3 and also briefly reported on the isotypic gadolinium compound. All three compounds were synthesized from the binary oxides with additional Na2B4O7 as a flux.

In this work, we have been able to synthesize single crystals of the isotypic dysprosium compound, ν-DyBO3, starting from the pure binary oxides using conditions of high temperature and pressure (3 GPa and 1323 K). The structure solution confirmed the P1 model (Fig. 1) found by Palkina et al. (1976). The lattice parameters of ν-DyBO3 agree well with the results published by Meyer (1972) [a = 6.147 (1), b = 6.386 (1) and c = 6.391 (1) Å, and α = 92.53 (1), β = 107.64 (1) and γ = 108.28 (1)°]. As expected, the lattice parameters decrease regularly from Pr to Dy, along with the size of the cations.

In the structure of ν-DyBO3, the rare earth atoms occupy the centres of distorted DyO8 triangulated dodecahedra (Fig. 2). Each dodecahedron shares edges with four others to build infinite double chains along the [110] direction (Fig. 3). The isolated threefold coordination of B is regular, with B—O distances corresponding to the known average value of 1.370 Å for ortho-borates (Table 1).

A calculation of the bond-valence sums (Brese & O'Keeffe, 1991) around atoms Dy1 and Dy2 led to values of 3.22 and 3.00, respectively. This corresponds to values found for the six crystallographically different Dy atoms in χ-DyBO3 (2.94–3.13).

In-situ X-ray diffractometry showed that ν-DyBO3 is stable up to a temperature of 1073 K, followed by a structural re-transformation into the high-temperature polymorph µ-DyBO3. Subsequent cooling leads to a complete transformation into the room-temperature modification π-DyBO3.

Experimental top

The starting material for the synthesis of triclinic ν-DyBO3 in this work was a 1:1 molar mixture of B2O3 [from H3BO3 (99.8%, Merck, Darmstadt) fired at 873 K] with the rare earth oxide Dy2O3 (99.9%). The compounds were compressed and heated via a multi-anvil assembly. Details of the assembly can be found elsewhere (Huppertz, 2001, 2004; Walker et al., 1990; Walker, 1991; Rubie, 1999). For the synthesis of ν-DyBO3, the 18/11 assembly was compressed within 1 h to 3 GPa and heated to 1323 K in the following 10 min. After holding this temperature for 10 min, the sample was cooled down to room temperature over another 10 min period. After decompression, the octahedral sample assembly was broken apart and the sample was carefully separated from the surrounding boron nitride. ν-DyBO3 was obtained as a single-phase crystalline product (yield 75 mg per run). The compound is air and water resistant and crystallizes as long thin colourless needles.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and SHELXL97.

Figures top
[Figure 1] Fig. 1. A schematic drawing of the unit cell of ν-DyBO3. Shaded and unshaded polyhedra contain atoms Dy1 and Dy2, respectively. [Symmetry codes: (i) 1 + x, y, z; (ii) 2 − x, 1 − y, 1 − z; (iii) 2 − x, 2 − y, 1 − z; (iv) x, y, 1 + z; (v) 1 − x, 1 − y, 1 − z; (vi) 1 − x, 2 − y, 1 − z; (vii) x, y, z − 1; (viii) x − 1, y, z.]
[Figure 2] Fig. 2. The coordination environments of Dy3+ (grey spheres) in the crystal structure of ν-DyBO3. Symmetry codes are as given in Fig. 1.
[Figure 3] Fig. 3. The crystal structure of ν-DyBO3. Shaded and unshaded polyhedra contain atoms Dy1 and Dy2, respectively.
Dysprosium borate top
Crystal data top
DyBO3Z = 4
Mr = 221.31F(000) = 380
Triclinic, P1Dx = 6.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1463 (12) ÅCell parameters from 3498 reflections
b = 6.3856 (13) Åθ = 3.1–37.8°
c = 6.3894 (13) ŵ = 33.01 mm1
α = 92.52 (3)°T = 293 K
β = 107.65 (3)°Rod, colourless
γ = 108.29 (3)°0.03 × 0.02 × 0.01 mm
V = 224.20 (10) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
1623 independent reflections
Radiation source: fine-focus sealed tube1446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9 pixels mm-1θmax = 32.5°, θmin = 3.4°
95 mm CCD camera on κ–Goniostat scansh = 99
Absorption correction: ψ scan
(XPREP; Siemens, 1996)
k = 99
Tmin = 0.432, Tmax = 0.760l = 99
6397 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0081P)2 + 0.5392P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.15Δρmax = 2.53 e Å3
1623 reflectionsΔρmin = 2.72 e Å3
92 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0101 (5)
Crystal data top
DyBO3γ = 108.29 (3)°
Mr = 221.31V = 224.20 (10) Å3
Triclinic, P1Z = 4
a = 6.1463 (12) ÅMo Kα radiation
b = 6.3856 (13) ŵ = 33.01 mm1
c = 6.3894 (13) ÅT = 293 K
α = 92.52 (3)°0.03 × 0.02 × 0.01 mm
β = 107.65 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1623 independent reflections
Absorption correction: ψ scan
(XPREP; Siemens, 1996)
1446 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.760Rint = 0.046
6397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02292 parameters
wR(F2) = 0.0510 restraints
S = 1.15Δρmax = 2.53 e Å3
1623 reflectionsΔρmin = 2.72 e Å3
Special details top

Experimental. Crystal embedded in oil and mounted with wax

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.94025 (4)0.71995 (4)0.81700 (3)0.00547 (8)
Dy20.55505 (4)0.84498 (4)0.27142 (3)0.00615 (8)
O10.5894 (6)0.8664 (6)0.6455 (6)0.0079 (7)
O20.5327 (6)0.5246 (6)0.7716 (6)0.0099 (7)
O41.1206 (6)0.6610 (6)0.2034 (6)0.0073 (6)
O30.3484 (6)0.7820 (6)0.8760 (6)0.0085 (7)
O50.8722 (6)0.8830 (6)0.1289 (5)0.0068 (6)
O60.9555 (8)0.7643 (7)0.4773 (6)0.0155 (8)
B10.4778 (10)0.7132 (9)0.7601 (9)0.0065 (9)
B20.9897 (10)0.7686 (9)0.2815 (9)0.0062 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.00589 (11)0.00596 (12)0.00546 (11)0.00244 (9)0.00266 (8)0.00142 (8)
Dy20.00758 (12)0.00668 (13)0.00577 (11)0.00329 (9)0.00347 (8)0.00131 (8)
O10.0104 (16)0.0068 (17)0.0075 (15)0.0030 (13)0.0041 (13)0.0020 (13)
O20.0090 (16)0.0069 (17)0.0145 (17)0.0033 (14)0.0045 (13)0.0010 (13)
O40.0071 (15)0.0068 (16)0.0097 (15)0.0035 (13)0.0037 (12)0.0017 (13)
O30.0067 (15)0.0117 (18)0.0086 (15)0.0034 (14)0.0045 (12)0.0009 (13)
O50.0059 (14)0.0105 (17)0.0049 (14)0.0047 (13)0.0012 (12)0.0027 (12)
O60.026 (2)0.019 (2)0.0103 (16)0.0133 (18)0.0112 (15)0.0074 (15)
B10.007 (2)0.004 (2)0.006 (2)0.0014 (19)0.0005 (17)0.0011 (18)
B20.010 (2)0.003 (2)0.007 (2)0.0019 (19)0.0047 (18)0.0000 (17)
Geometric parameters (Å, º) top
Dy1—O62.227 (4)Dy2—B1vi2.903 (6)
Dy1—O3i2.320 (3)Dy2—Dy1iii3.6678 (13)
Dy1—O4ii2.334 (4)Dy2—Dy2vi3.8000 (11)
Dy1—O22.341 (4)B1—O11.382 (7)
Dy1—O5iii2.393 (4)B1—O21.347 (6)
Dy1—O5iv2.414 (3)B1—O31.386 (6)
Dy1—O4iv2.480 (4)B2—O41.388 (6)
Dy1—O12.578 (4)B2—O51.405 (6)
Dy1—B12.740 (5)B2—O61.330 (6)
Dy1—B2iv2.882 (5)B1—Dy2vi2.903 (6)
Dy1—Dy2iii3.6678 (13)B2—Dy1vii2.882 (5)
Dy1—Dy2v3.8061 (16)O1—Dy2vi2.386 (3)
Dy2—O2v2.234 (4)O2—Dy2v2.234 (4)
Dy2—O12.329 (3)O4—Dy1ii2.334 (4)
Dy2—O52.342 (3)O4—Dy2i2.446 (4)
Dy2—O1vi2.386 (3)O4—Dy1vii2.480 (4)
Dy2—O3vii2.409 (4)O3—Dy1viii2.320 (3)
Dy2—O4viii2.446 (4)O3—Dy2iv2.409 (3)
Dy2—O3vi2.562 (4)O3—Dy2vi2.562 (4)
Dy2—O62.635 (4)O5—Dy1iii2.393 (4)
Dy2—B22.845 (5)O5—Dy1vii2.414 (3)
O6—Dy1—O3i79.20 (14)O3vii—Dy2—O6126.53 (11)
O6—Dy1—O4ii98.96 (14)O4viii—Dy2—O6135.73 (13)
O3i—Dy1—O4ii87.93 (12)O3vi—Dy2—O6111.21 (13)
O6—Dy1—O2106.20 (15)O2v—Dy2—B273.33 (14)
O3i—Dy1—O2158.74 (13)O1—Dy2—B2101.50 (14)
O4ii—Dy1—O270.99 (12)O5—Dy2—B229.43 (14)
O6—Dy1—O5iii80.44 (14)O1vi—Dy2—B2141.65 (14)
O3i—Dy1—O5iii74.91 (12)O3vii—Dy2—B2100.06 (13)
O4ii—Dy1—O5iii162.68 (12)O4viii—Dy2—B2143.79 (13)
O2—Dy1—O5iii125.98 (12)O3vi—Dy2—B296.45 (14)
O6—Dy1—O5iv143.47 (13)O6—Dy2—B227.76 (13)
O3i—Dy1—O5iv112.85 (12)O2v—Dy2—B1vi163.07 (14)
O4ii—Dy1—O5iv115.28 (12)O1—Dy2—B1vi93.84 (14)
O2—Dy1—O5iv75.38 (13)O5—Dy2—B1vi98.94 (14)
O5iii—Dy1—O5iv70.66 (14)O1vi—Dy2—B1vi28.20 (13)
O6—Dy1—O4iv151.56 (13)O3vii—Dy2—B1vi83.37 (14)
O3i—Dy1—O4iv73.03 (12)O4viii—Dy2—B1vi94.39 (13)
O4ii—Dy1—O4iv74.30 (13)O3vi—Dy2—B1vi28.52 (12)
O2—Dy1—O4iv97.74 (13)O6—Dy2—B1vi124.78 (14)
O5iii—Dy1—O4iv97.91 (12)B2—Dy2—B1vi120.33 (16)
O5iv—Dy1—O4iv57.50 (11)O2v—Dy2—Dy1iii129.08 (9)
O6—Dy1—O176.70 (13)O1—Dy2—Dy1iii111.51 (10)
O3i—Dy1—O1143.95 (13)O5—Dy2—Dy1iii39.73 (9)
O4ii—Dy1—O1121.94 (12)O1vi—Dy2—Dy1iii87.54 (9)
O2—Dy1—O156.02 (13)O3vii—Dy2—Dy1iii87.89 (9)
O5iii—Dy1—O174.96 (12)O4viii—Dy2—Dy1iii151.12 (9)
O5iv—Dy1—O174.60 (11)O3vi—Dy2—Dy1iii38.86 (7)
O4iv—Dy1—O1130.64 (11)O6—Dy2—Dy1iii72.99 (10)
O6—Dy1—B1100.34 (15)B2—Dy2—Dy1iii58.72 (12)
O3i—Dy1—B1171.62 (15)B1vi—Dy2—Dy1iii61.96 (11)
O4ii—Dy1—B1100.38 (15)O2v—Dy2—Dy2vi122.24 (10)
O2—Dy1—B129.44 (14)O1—Dy2—Dy2vi36.81 (9)
O5iii—Dy1—B196.74 (14)O5—Dy2—Dy2vi137.13 (9)
O5iv—Dy1—B162.69 (13)O1vi—Dy2—Dy2vi35.78 (8)
O4iv—Dy1—B1108.03 (14)O3vii—Dy2—Dy2vi128.80 (8)
O1—Dy1—B129.94 (14)O4viii—Dy2—Dy2vi77.03 (8)
O6—Dy1—B2iv166.88 (16)O3vi—Dy2—Dy2vi85.53 (7)
O3i—Dy1—B2iv95.39 (14)O6—Dy2—Dy2vi104.10 (8)
O4ii—Dy1—B2iv92.73 (14)B2—Dy2—Dy2vi127.92 (11)
O2—Dy1—B2iv83.18 (15)B1vi—Dy2—Dy2vi59.18 (11)
O5iii—Dy1—B2iv86.63 (14)Dy1iii—Dy2—Dy2vi101.41 (3)
O5iv—Dy1—B2iv29.07 (13)B1—O1—Dy2131.1 (3)
O4iv—Dy1—B2iv28.78 (13)B1—O1—Dy2vi97.2 (3)
O1—Dy1—B2iv102.13 (13)Dy2—O1—Dy2vi107.41 (14)
B1—Dy1—B2iv83.26 (15)B1—O1—Dy181.5 (3)
O6—Dy1—Dy2iii58.44 (12)Dy2—O1—Dy1103.23 (12)
O3i—Dy1—Dy2iii43.85 (10)Dy2vi—O1—Dy1139.57 (15)
O4ii—Dy1—Dy2iii126.88 (9)B1—O2—Dy2v154.6 (3)
O2—Dy1—Dy2iii155.69 (10)B1—O2—Dy191.9 (3)
O5iii—Dy1—Dy2iii38.73 (8)Dy2v—O2—Dy1112.55 (14)
O5iv—Dy1—Dy2iii105.35 (9)B2—O4—Dy1ii125.6 (3)
O4iv—Dy1—Dy2iii102.99 (9)B2—O4—Dy2i120.8 (3)
O1—Dy1—Dy2iii100.25 (9)Dy1ii—O4—Dy2i105.53 (13)
B1—Dy1—Dy2iii128.92 (12)B2—O4—Dy1vii91.9 (3)
B2iv—Dy1—Dy2iii109.52 (12)Dy1ii—O4—Dy1vii105.70 (13)
O6—Dy1—Dy2v103.85 (12)Dy2i—O4—Dy1vii101.72 (13)
O3i—Dy1—Dy2v126.19 (9)B1—O3—Dy1viii135.2 (3)
O4ii—Dy1—Dy2v38.25 (8)B1—O3—Dy2iv111.5 (3)
O2—Dy1—Dy2v32.83 (9)Dy1viii—O3—Dy2iv107.77 (13)
O5iii—Dy1—Dy2v158.81 (8)B1—O3—Dy2vi89.5 (3)
O5iv—Dy1—Dy2v96.11 (9)Dy1viii—O3—Dy2vi97.29 (13)
O4iv—Dy1—Dy2v87.97 (9)Dy2iv—O3—Dy2vi109.22 (14)
O1—Dy1—Dy2v85.73 (9)B2—O5—Dy295.5 (3)
B1—Dy1—Dy2v62.13 (12)B2—O5—Dy1iii116.6 (3)
B2iv—Dy1—Dy2v89.02 (12)Dy2—O5—Dy1iii101.54 (12)
Dy2iii—Dy1—Dy2v158.539 (13)B2—O5—Dy1vii94.3 (2)
O2v—Dy2—O192.83 (13)Dy2—O5—Dy1vii138.82 (16)
O2v—Dy2—O589.63 (13)Dy1iii—O5—Dy1vii109.34 (14)
O1—Dy2—O5126.00 (12)B2—O6—Dy1169.8 (3)
O2v—Dy2—O1vi143.27 (13)B2—O6—Dy284.9 (3)
O1—Dy2—O1vi72.59 (14)Dy1—O6—Dy2104.38 (14)
O5—Dy2—O1vi126.41 (13)O2—B1—O1116.4 (4)
O2v—Dy2—O3vii84.30 (14)O2—B1—O3126.4 (5)
O1—Dy2—O3vii156.42 (12)O1—B1—O3116.5 (4)
O5—Dy2—O3vii77.47 (11)O2—B1—Dy158.7 (2)
O1vi—Dy2—O3vii95.94 (12)O1—B1—Dy168.6 (2)
O2v—Dy2—O4viii70.74 (12)O3—B1—Dy1140.1 (3)
O1—Dy2—O4viii84.78 (12)O2—B1—Dy2vi169.8 (4)
O5—Dy2—O4viii145.04 (11)O1—B1—Dy2vi54.6 (2)
O1vi—Dy2—O4viii74.41 (12)O3—B1—Dy2vi62.0 (3)
O3vii—Dy2—O4viii72.16 (12)Dy1—B1—Dy2vi111.29 (19)
O2v—Dy2—O3vi151.17 (12)O6—B2—O4127.0 (5)
O1—Dy2—O3vi115.80 (12)O6—B2—O5117.9 (4)
O5—Dy2—O3vi71.37 (12)O4—B2—O5114.9 (4)
O1vi—Dy2—O3vi56.71 (11)O6—B2—Dy267.3 (3)
O3vii—Dy2—O3vi70.78 (14)O4—B2—Dy2153.4 (3)
O4viii—Dy2—O3vi112.98 (11)O5—B2—Dy255.0 (2)
O2v—Dy2—O672.06 (14)O6—B2—Dy1vii166.2 (4)
O1—Dy2—O673.92 (12)O4—B2—Dy1vii59.3 (2)
O5—Dy2—O655.81 (12)O5—B2—Dy1vii56.6 (2)
O1vi—Dy2—O6131.17 (12)Dy2—B2—Dy1vii102.04 (17)
O2v—Dy2—O1—B129.1 (4)O2v—Dy2—O6—Dy187.59 (18)
O5—Dy2—O1—B1120.7 (4)O1—Dy2—O6—Dy110.89 (14)
O1vi—Dy2—O1—B1116.5 (4)O5—Dy2—O6—Dy1170.2 (2)
O3vii—Dy2—O1—B153.1 (5)O1vi—Dy2—O6—Dy159.1 (2)
O4viii—Dy2—O1—B141.2 (4)O3vii—Dy2—O6—Dy1155.88 (13)
O3vi—Dy2—O1—B1154.3 (4)O4viii—Dy2—O6—Dy153.5 (2)
O6—Dy2—O1—B199.6 (4)O3vi—Dy2—O6—Dy1122.86 (15)
B2—Dy2—O1—B1102.7 (4)B2—Dy2—O6—Dy1175.7 (4)
B1vi—Dy2—O1—B1135.3 (3)B1vi—Dy2—O6—Dy194.3 (2)
Dy1iii—Dy2—O1—B1163.4 (4)Dy1iii—Dy2—O6—Dy1130.05 (16)
Dy2vi—Dy2—O1—B1116.5 (4)Dy2vi—Dy2—O6—Dy132.21 (16)
O2v—Dy2—O1—Dy2vi145.64 (14)Dy2v—O2—B1—O1125.6 (7)
O5—Dy2—O1—Dy2vi122.75 (15)Dy1—O2—B1—O138.8 (4)
O1vi—Dy2—O1—Dy2vi0.0Dy2v—O2—B1—O363.8 (10)
O3vii—Dy2—O1—Dy2vi63.4 (4)Dy1—O2—B1—O3131.8 (5)
O4viii—Dy2—O1—Dy2vi75.28 (14)Dy2v—O2—B1—Dy1164.4 (8)
O3vi—Dy2—O1—Dy2vi37.76 (17)Dy2v—O2—B1—Dy2vi153.0 (14)
O6—Dy2—O1—Dy2vi143.94 (17)Dy1—O2—B1—Dy2vi11 (2)
B2—Dy2—O1—Dy2vi140.80 (15)Dy2—O1—B1—O265.1 (6)
B1vi—Dy2—O1—Dy2vi18.79 (16)Dy2vi—O1—B1—O2174.3 (4)
Dy1iii—Dy2—O1—Dy2vi80.10 (13)Dy1—O1—B1—O235.1 (4)
O2v—Dy2—O1—Dy161.07 (14)Dy2—O1—B1—O3123.4 (4)
O5—Dy2—O1—Dy130.5 (2)Dy2vi—O1—B1—O32.7 (4)
O1vi—Dy2—O1—Dy1153.3 (2)Dy1—O1—B1—O3136.5 (4)
O3vii—Dy2—O1—Dy1143.3 (3)Dy2—O1—B1—Dy1100.2 (3)
O4viii—Dy2—O1—Dy1131.43 (14)Dy2vi—O1—B1—Dy1139.20 (15)
O3vi—Dy2—O1—Dy1115.53 (13)Dy2—O1—B1—Dy2vi120.6 (4)
O6—Dy2—O1—Dy19.35 (12)Dy1—O1—B1—Dy2vi139.20 (15)
B2—Dy2—O1—Dy112.49 (17)Dy1viii—O3—B1—O287.0 (6)
B1vi—Dy2—O1—Dy1134.50 (15)Dy2iv—O3—B1—O262.6 (6)
Dy1iii—Dy2—O1—Dy173.19 (12)Dy2vi—O3—B1—O2173.1 (5)
Dy2vi—Dy2—O1—Dy1153.3 (2)Dy1viii—O3—B1—O1102.4 (5)
O6—Dy1—O1—B1141.3 (3)Dy2iv—O3—B1—O1108.0 (4)
O3i—Dy1—O1—B1169.4 (3)Dy2vi—O3—B1—O12.5 (4)
O4ii—Dy1—O1—B148.9 (3)Dy1viii—O3—B1—Dy1169.9 (3)
O2—Dy1—O1—B120.9 (2)Dy2iv—O3—B1—Dy120.3 (7)
O5iii—Dy1—O1—B1135.2 (3)Dy2vi—O3—B1—Dy190.2 (5)
O5iv—Dy1—O1—B161.6 (3)Dy1viii—O3—B1—Dy2vi99.9 (4)
O4iv—Dy1—O1—B147.7 (3)Dy2iv—O3—B1—Dy2vi110.5 (2)
B2iv—Dy1—O1—B152.1 (3)O6—Dy1—B1—O2104.7 (3)
Dy2iii—Dy1—O1—B1164.9 (2)O4ii—Dy1—B1—O23.5 (3)
Dy2v—Dy1—O1—B135.9 (2)O5iii—Dy1—B1—O2173.8 (3)
O6—Dy1—O1—Dy210.94 (15)O5iv—Dy1—B1—O2109.7 (3)
O3i—Dy1—O1—Dy260.3 (2)O4iv—Dy1—B1—O273.2 (3)
O4ii—Dy1—O1—Dy281.43 (17)O1—Dy1—B1—O2143.0 (4)
O2—Dy1—O1—Dy2109.40 (17)B2iv—Dy1—B1—O288.1 (3)
O5iii—Dy1—O1—Dy294.43 (15)Dy2iii—Dy1—B1—O2162.3 (2)
O5iv—Dy1—O1—Dy2168.07 (16)Dy2v—Dy1—B1—O24.4 (2)
O4iv—Dy1—O1—Dy2178.02 (12)O6—Dy1—B1—O138.2 (3)
B1—Dy1—O1—Dy2130.3 (3)O4ii—Dy1—B1—O1139.5 (2)
B2iv—Dy1—O1—Dy2177.54 (14)O2—Dy1—B1—O1143.0 (4)
Dy2iii—Dy1—O1—Dy264.82 (12)O5iii—Dy1—B1—O143.2 (3)
Dy2v—Dy1—O1—Dy294.39 (12)O5iv—Dy1—B1—O1107.3 (3)
O6—Dy1—O1—Dy2vi127.7 (3)O4iv—Dy1—B1—O1143.8 (2)
O3i—Dy1—O1—Dy2vi78.3 (3)B2iv—Dy1—B1—O1129.0 (3)
O4ii—Dy1—O1—Dy2vi140.0 (2)Dy2iii—Dy1—B1—O119.3 (3)
O2—Dy1—O1—Dy2vi112.0 (3)Dy2v—Dy1—B1—O1138.5 (3)
O5iii—Dy1—O1—Dy2vi44.2 (2)O6—Dy1—B1—O3144.4 (6)
O5iv—Dy1—O1—Dy2vi29.5 (2)O4ii—Dy1—B1—O3114.4 (6)
O4iv—Dy1—O1—Dy2vi43.4 (3)O2—Dy1—B1—O3110.9 (7)
B1—Dy1—O1—Dy2vi91.1 (3)O5iii—Dy1—B1—O363.0 (6)
B2iv—Dy1—O1—Dy2vi38.9 (3)O5iv—Dy1—B1—O31.2 (5)
Dy2iii—Dy1—O1—Dy2vi73.8 (2)O4iv—Dy1—B1—O337.6 (6)
Dy2v—Dy1—O1—Dy2vi127.0 (2)O1—Dy1—B1—O3106.2 (7)
O6—Dy1—O2—B182.3 (3)B2iv—Dy1—B1—O322.8 (6)
O3i—Dy1—O2—B1175.7 (3)Dy2iii—Dy1—B1—O386.9 (6)
O4ii—Dy1—O2—B1176.4 (3)Dy2v—Dy1—B1—O3115.3 (6)
O5iii—Dy1—O2—B17.6 (3)O6—Dy1—B1—Dy2vi73.14 (19)
O5iv—Dy1—O2—B159.8 (3)O4ii—Dy1—B1—Dy2vi174.34 (15)
O4iv—Dy1—O2—B1113.3 (3)O2—Dy1—B1—Dy2vi177.8 (4)
O1—Dy1—O2—B121.3 (3)O5iii—Dy1—B1—Dy2vi8.33 (18)
B2iv—Dy1—O2—B188.4 (3)O5iv—Dy1—B1—Dy2vi72.46 (17)
Dy2iii—Dy1—O2—B135.2 (4)O4iv—Dy1—B1—Dy2vi108.94 (18)
Dy2v—Dy1—O2—B1172.8 (4)O1—Dy1—B1—Dy2vi34.89 (19)
O6—Dy1—O2—Dy2v90.54 (19)B2iv—Dy1—B1—Dy2vi94.11 (18)
O3i—Dy1—O2—Dy2v11.5 (4)Dy2iii—Dy1—B1—Dy2vi15.6 (2)
O4ii—Dy1—O2—Dy2v3.56 (13)Dy2v—Dy1—B1—Dy2vi173.4 (2)
O5iii—Dy1—O2—Dy2v179.62 (12)Dy1—O6—B2—O42 (3)
O5iv—Dy1—O2—Dy2v127.38 (19)Dy2—O6—B2—O4153.9 (5)
O4iv—Dy1—O2—Dy2v73.95 (17)Dy1—O6—B2—O5178.3 (19)
O1—Dy1—O2—Dy2v151.5 (2)Dy2—O6—B2—O522.3 (4)
B1—Dy1—O2—Dy2v172.8 (4)Dy1—O6—B2—Dy2156 (2)
B2iv—Dy1—O2—Dy2v98.83 (18)Dy1—O6—B2—Dy1vii115 (2)
Dy2iii—Dy1—O2—Dy2v137.63 (13)Dy2—O6—B2—Dy1vii40.7 (16)
O2v—Dy2—O5—B255.1 (3)Dy1ii—O4—B2—O654.4 (7)
O1—Dy2—O5—B238.2 (3)Dy2i—O4—B2—O689.9 (6)
O1vi—Dy2—O5—B2132.5 (3)Dy1vii—O4—B2—O6165.3 (5)
O3vii—Dy2—O5—B2139.3 (3)Dy1ii—O4—B2—O5122.0 (4)
O4viii—Dy2—O5—B2109.3 (3)Dy2i—O4—B2—O593.8 (4)
O3vi—Dy2—O5—B2147.0 (3)Dy1vii—O4—B2—O511.1 (4)
O6—Dy2—O5—B213.3 (3)Dy1ii—O4—B2—Dy260.9 (9)
B1vi—Dy2—O5—B2139.6 (3)Dy2i—O4—B2—Dy2154.9 (6)
Dy1iii—Dy2—O5—B2118.7 (3)Dy1vii—O4—B2—Dy250.0 (8)
Dy2vi—Dy2—O5—B285.9 (3)Dy1ii—O4—B2—Dy1vii110.9 (3)
O2v—Dy2—O5—Dy1iii173.73 (13)Dy2i—O4—B2—Dy1vii104.9 (3)
O1—Dy2—O5—Dy1iii80.50 (17)Dy2—O5—B2—O625.3 (5)
O1vi—Dy2—O5—Dy1iii13.88 (18)Dy1iii—O5—B2—O680.6 (5)
O3vii—Dy2—O5—Dy1iii102.03 (14)Dy1vii—O5—B2—O6165.3 (4)
O4viii—Dy2—O5—Dy1iii132.05 (18)Dy2—O5—B2—O4151.4 (4)
O3vi—Dy2—O5—Dy1iii28.34 (11)Dy1iii—O5—B2—O4102.7 (4)
O6—Dy2—O5—Dy1iii105.32 (17)Dy1vii—O5—B2—O411.4 (4)
B2—Dy2—O5—Dy1iii118.7 (3)Dy1iii—O5—B2—Dy2105.9 (2)
B1vi—Dy2—O5—Dy1iii20.92 (15)Dy1vii—O5—B2—Dy2139.97 (19)
Dy2vi—Dy2—O5—Dy1iii32.72 (18)Dy2—O5—B2—Dy1vii139.97 (19)
O2v—Dy2—O5—Dy1vii48.0 (2)Dy1iii—O5—B2—Dy1vii114.2 (2)
O1—Dy2—O5—Dy1vii141.2 (2)O2v—Dy2—B2—O683.0 (3)
O1vi—Dy2—O5—Dy1vii124.4 (2)O1—Dy2—B2—O66.5 (3)
O3vii—Dy2—O5—Dy1vii36.3 (2)O5—Dy2—B2—O6155.8 (5)
O4viii—Dy2—O5—Dy1vii6.3 (4)O1vi—Dy2—B2—O682.9 (4)
O3vi—Dy2—O5—Dy1vii110.0 (2)O3vii—Dy2—B2—O6163.9 (3)
O6—Dy2—O5—Dy1vii116.4 (3)O4viii—Dy2—B2—O690.4 (3)
B2—Dy2—O5—Dy1vii103.0 (4)O3vi—Dy2—B2—O6124.5 (3)
B1vi—Dy2—O5—Dy1vii117.4 (2)B1vi—Dy2—B2—O6107.9 (3)
Dy1iii—Dy2—O5—Dy1vii138.3 (3)Dy1iii—Dy2—B2—O6114.8 (3)
Dy2vi—Dy2—O5—Dy1vii171.03 (13)Dy2vi—Dy2—B2—O635.2 (4)
O3i—Dy1—O6—B242 (2)O2v—Dy2—B2—O445.5 (8)
O4ii—Dy1—O6—B244 (2)O1—Dy2—B2—O4135.0 (8)
O2—Dy1—O6—B2117 (2)O5—Dy2—B2—O475.7 (8)
O5iii—Dy1—O6—B2118 (2)O1vi—Dy2—B2—O4148.6 (8)
O5iv—Dy1—O6—B2156 (2)O3vii—Dy2—B2—O435.4 (9)
O4iv—Dy1—O6—B229 (2)O4viii—Dy2—B2—O438.1 (9)
O1—Dy1—O6—B2165 (2)O3vi—Dy2—B2—O4107.0 (8)
B1—Dy1—O6—B2146 (2)O6—Dy2—B2—O4128.5 (10)
B2iv—Dy1—O6—B2109 (2)B1vi—Dy2—B2—O4123.6 (8)
Dy2iii—Dy1—O6—B284 (2)Dy1iii—Dy2—B2—O4116.7 (9)
Dy2v—Dy1—O6—B283 (2)Dy2vi—Dy2—B2—O4163.7 (8)
O3i—Dy1—O6—Dy2162.68 (17)O2v—Dy2—B2—O5121.1 (3)
O4ii—Dy1—O6—Dy2111.17 (15)O1—Dy2—B2—O5149.3 (2)
O2—Dy1—O6—Dy238.48 (18)O1vi—Dy2—B2—O572.9 (3)
O5iii—Dy1—O6—Dy286.37 (15)O3vii—Dy2—B2—O540.3 (3)
O5iv—Dy1—O6—Dy248.7 (3)O4viii—Dy2—B2—O5113.7 (3)
O4iv—Dy1—O6—Dy2175.33 (19)O3vi—Dy2—B2—O531.3 (3)
O1—Dy1—O6—Dy29.70 (13)O6—Dy2—B2—O5155.8 (5)
B1—Dy1—O6—Dy28.81 (18)B1vi—Dy2—B2—O547.9 (3)
B2iv—Dy1—O6—Dy296.1 (6)Dy1iii—Dy2—B2—O541.0 (2)
Dy2iii—Dy1—O6—Dy2120.79 (16)Dy2vi—Dy2—B2—O5120.6 (2)
Dy2v—Dy1—O6—Dy272.43 (13)O2v—Dy2—B2—Dy1vii87.83 (17)
O2v—Dy2—O6—B288.1 (3)O1—Dy2—B2—Dy1vii177.36 (14)
O1—Dy2—O6—B2173.4 (3)O5—Dy2—B2—Dy1vii33.3 (2)
O5—Dy2—O6—B214.1 (3)O1vi—Dy2—B2—Dy1vii106.2 (2)
O1vi—Dy2—O6—B2125.1 (3)O3vii—Dy2—B2—Dy1vii6.95 (18)
O3vii—Dy2—O6—B219.8 (4)O4viii—Dy2—B2—Dy1vii80.4 (3)
O4viii—Dy2—O6—B2122.2 (3)O3vi—Dy2—B2—Dy1vii64.61 (16)
O3vi—Dy2—O6—B261.4 (3)O6—Dy2—B2—Dy1vii170.9 (4)
B1vi—Dy2—O6—B290.0 (3)B1vi—Dy2—B2—Dy1vii81.22 (19)
Dy1iii—Dy2—O6—B254.2 (3)Dy1iii—Dy2—B2—Dy1vii74.32 (15)
Dy2vi—Dy2—O6—B2152.1 (3)Dy2vi—Dy2—B2—Dy1vii153.96 (7)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x, y, z1; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formulaDyBO3
Mr221.31
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1463 (12), 6.3856 (13), 6.3894 (13)
α, β, γ (°)92.52 (3), 107.65 (3), 108.29 (3)
V3)224.20 (10)
Z4
Radiation typeMo Kα
µ (mm1)33.01
Crystal size (mm)0.03 × 0.02 × 0.01
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionψ scan
(XPREP; Siemens, 1996)
Tmin, Tmax0.432, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
6397, 1623, 1446
Rint0.046
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.15
No. of reflections1623
No. of parameters92
Δρmax, Δρmin (e Å3)2.53, 2.72

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 1999), enCIFer (Allen et al., 2004) and SHELXL97.

Selected geometric parameters (Å, º) top
Dy1—O62.227 (4)Dy2—O1vi2.386 (3)
Dy1—O3i2.320 (3)Dy2—O3vii2.409 (4)
Dy1—O4ii2.334 (4)Dy2—O4viii2.446 (4)
Dy1—O22.341 (4)Dy2—O3vi2.562 (4)
Dy1—O5iii2.393 (4)Dy2—O62.635 (4)
Dy1—O5iv2.414 (3)B1—O11.382 (7)
Dy1—O4iv2.480 (4)B1—O21.347 (6)
Dy1—O12.578 (4)B1—O31.386 (6)
Dy2—O2v2.234 (4)B2—O41.388 (6)
Dy2—O12.329 (3)B2—O51.405 (6)
Dy2—O52.342 (3)B2—O61.330 (6)
O2—B1—O1116.4 (4)O6—B2—O4127.0 (5)
O2—B1—O3126.4 (5)O6—B2—O5117.9 (4)
O1—B1—O3116.5 (4)O4—B2—O5114.9 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+1; (iv) x, y, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x, y, z1; (viii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds