Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the Rb analogue of grimselite, rubidium sodium uranyl tricarbonate hydrate, Rb6Na2[(UO2)(CO3)3]2(H2O), consists of a uranyl hexagonal bipyramid that shares three non-adjacent equatorial edges with carbonate triangles, resulting in a uranyl tricarbonate cluster of composition [(UO2)(CO3)3)]. These uranyl tricarbonate clusters form layers perpendicular to [001] and are interconnected by NaO8 polyhedra. The title compound is isostructural with grimselite, with a reduced occupancy of the H2O site (25% versus 50% in grimselite).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103028312/bc1032sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103028312/bc1032Isup2.hkl
Contains datablock I

Comment top

The compound Rb6Na2[(UO2)(CO3)3]2(H2O) was obtained by evaporation of a solution containing UO2(NO3)2(H2O)6, RbNO3 and Na2CO3 at ambient temperature and pressure. Rb6Na2[(UO2)(CO3)3]2(H2O) is structurally analogous to the mineral grimselite, K3Na[(UO2)(CO3)3](H2O) (Li & Burns, 2001). Each contains the uranyl tricarbonate cluster, [(UO2)(CO3)3], and crystallizes in space group P62c. However, these two compounds differ in their hydration state.

There is one symmetrically distinct UVI atom in the structure of Rb6Na2[(UO2)(CO3)3]2(H2O). This atom is part of a linear uranyl ion, (UO2)2+, which is coordinated by six equatorial O atoms, forming a uranyl hexagonal bipyramid. Three non-adjacent equatorial edges of the uranyl hexagonal bipyramid share edges with CO3 groups, giving the uranyl tricarbonate cluster, [(UO2)(CO3)3] (Fig 1). These clusters share edges with NaO8 hexagonal bipyramids, to form heteropolyhedral sheets parallel to (001) (Fig. 2). These sheets are stacked along [001], with voids in the resulting framework containing Rb cations and H2O molecules. The H2O sites are 25% occupied in the structure of Rb6Na2[(UO2)(CO3)3]2(H2O), whereas they are 50% occupied in the structure of grimselite. This difference in H2O content may be attributable to the larger size of the Rb+ cation.

Bond-valence sums were calculated for each ion using the parameters of Brese & O'Keeffe (1991), giving the following values: 6.18 for U, 4.15 for C, 1.29 for Rb and 1.15 for Na (Burns et al., 1997). The bond-valence sum for Rb is based on its coordination environment when the O5 site is occupied and the partial occupancy of this site may, therefore, represent a way to limit the overbonding of the Rb site. For atoms O1, O2, O3 and O4, the bond-valence sums are within the normal range (1.88–2.25). The bond-valence sum for atom O5 (0.32) is consistent with an H2O molecule.

Experimental top

Transparent yellow crystals of Rb6Na2[(UO2)(CO3)3]2(H2O), up to 1 mm in maximum dimension, were synthesized from a solution containing Na2CO3 (0.026 g), RbNO3 (0.111 g) and UO2(NO3)2(H2O)6 (0.123 g) in ultra-pure water (25 ml). Following evaporation in an open beaker for 28 d at 293 K under ambient pressure, crystals were recovered from the beaker walls.

Refinement top

The positions of the U, Rb, Na, C and most O atoms were determined by direct methods. The remaining O atoms were located by subsequent difference Fourier syntheses. The locations of the highest peak and deepest hole in the difference Fourier map are 0.75 Å from U and 0.51 Å from Rb, respectively. H-atom positions were not determined in the refinement. However, atom O2 is a possible hydrogen-bond acceptor, as it is the nearest O atom to O5 [O2···O5 3.122 (9) Å].

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Bruker, 1998); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXTL-NT and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the [(UO2)(CO3)3] clusters in Rb6Na2[(UO2)(CO3)3]2(H2O), shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The heteropolyhedral layer of NaO8 hexagonal bipyramids (grey) and [(UO2)(CO3)3] clusters (UO8 shown in white, CO3 shown in black), projected along [001] (unit cell shown as dashed black lines).
rubidium sodium uranyl tricarbonate hydrate top
Crystal data top
Rb6Na2[(UO2)(CO3)3]2(H2O)Dx = 3.808 Mg m3
Mr = 1476.94Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P62cCell parameters from 1623 reflections
Hall symbol: P -6c -2cθ = 3.3–33.8°
a = 9.4316 (7) ŵ = 23.95 mm1
c = 8.3595 (8) ÅT = 297 K
V = 643.99 (9) Å3Anhedral, yellow
Z = 10.15 × 0.12 × 0.12 mm
F(000) = 660
Data collection top
Bruker APEX CCD area-detector
diffractometer
787 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.073
Absorption correction: empirical (using intensity measurements)
via ψ-scan (SHELXTL-NT; Bruker, 1998)
θmax = 34.6°, θmin = 2.5°
Tmin = 0.044, Tmax = 0.056h = 1414
12787 measured reflectionsk = 1414
958 independent reflectionsl = 1313
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.034Δρmax = 2.04 e Å3
wR(F2) = 0.085Δρmin = 1.69 e Å3
S = 0.97Extinction correction: SHELXTL-NT (Bruker, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
958 reflectionsExtinction coefficient: 0.044 (8)
40 parametersAbsolute structure: Flack (1983), with 407 Friedel pairs
0 restraintsAbsolute structure parameter: 0.02 (4)
Crystal data top
Rb6Na2[(UO2)(CO3)3]2(H2O)Z = 1
Mr = 1476.94Mo Kα radiation
Hexagonal, P62cµ = 23.95 mm1
a = 9.4316 (7) ÅT = 297 K
c = 8.3595 (8) Å0.15 × 0.12 × 0.12 mm
V = 643.99 (9) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
958 independent reflections
Absorption correction: empirical (using intensity measurements)
via ψ-scan (SHELXTL-NT; Bruker, 1998)
787 reflections with I > 2σ(I)
Tmin = 0.044, Tmax = 0.056Rint = 0.073
12787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085Δρmax = 2.04 e Å3
S = 0.97Δρmin = 1.69 e Å3
958 reflectionsAbsolute structure: Flack (1983), with 407 Friedel pairs
40 parametersAbsolute structure parameter: 0.02 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U0.66670.33330.750.02461 (13)
Rb0.2764 (2)0.00.00.0602 (4)
Na0.33330.66670.750.0369 (12)
C0.9878 (15)0.6164 (13)0.750.0330 (19)
O10.9642 (8)0.4689 (15)0.750.046 (2)
O20.8564 (9)0.6250 (10)0.750.042 (2)
O30.66670.33330.9628 (10)0.0434 (17)
O41.1262 (10)0.7388 (11)0.750.043 (2)
O50.00.00.198 (4)0.078 (14)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.02406 (16)0.02406 (16)0.0257 (2)0.01203 (8)0.00.0
Rb0.0726 (7)0.0552 (8)0.0471 (7)0.0276 (4)0.0049 (3)0.0099 (6)
Na0.0437 (19)0.0437 (19)0.023 (2)0.0219 (10)0.00.0
C0.035 (5)0.025 (4)0.042 (5)0.017 (4)0.00.0
O10.026 (3)0.037 (5)0.069 (4)0.011 (4)0.00.0
O20.029 (4)0.028 (4)0.062 (5)0.010 (3)0.00.0
O30.049 (3)0.049 (3)0.032 (3)0.0247 (14)0.00.0
O40.029 (4)0.039 (4)0.059 (6)0.014 (4)0.00.0
O50.10 (2)0.10 (2)0.026 (14)0.052 (11)0.00.0
Geometric parameters (Å, º) top
U—O3i1.779 (8)Na—O4vii2.368 (9)
U—O2ii2.418 (8)Na—O3viii2.401 (8)
U—O12.433 (6)Na—O1ix3.018 (6)
Rb—O2iii2.822 (6)C—O41.237 (14)
Rb—O1iv2.897 (9)C—O21.281 (14)
Rb—O4v2.992 (7)C—O11.295 (17)
Rb—O5vi3.086 (19)
O2ii—U—O2120.0140O4v—Rb—O3xiv122.42 (18)
O2ii—U—O2x120.0080O4xiii—Rb—O3xiv62.6 (2)
O2—U—O2x119.9780O5vi—Rb—O3xiv117.8 (3)
O2ii—U—O166.9 (4)O5—Rb—O3xiv124.3 (2)
O2—U—O153.1 (4)O3iv—Rb—O3xiv104.83 (5)
O2x—U—O1173.0 (4)O2iii—Rb—O5viii118.3 (3)
O2ii—U—O1ii53.1 (4)O2xi—Rb—O5viii56.2 (3)
O2—U—O1ii173.1 (4)O1iv—Rb—O5viii173.7 (2)
O2x—U—O1ii66.9 (4)O1xii—Rb—O5viii89.4 (5)
O2ii—U—O1x173.1 (4)O4v—Rb—O5viii58.0 (3)
O2—U—O1x66.9 (4)O4xiii—Rb—O5viii116.2 (3)
O2x—U—O1x53.1 (4)O5vi—Rb—O5viii11.8 (10)
O1—U—O1x119.990 (5)O5—Rb—O5viii76.49 (16)
O1ii—U—O1x119.988 (5)O3iv—Rb—O5viii120.03 (19)
O2iii—Rb—O2xi173.5 (3)O3xiv—Rb—O5viii112.0 (2)
O2iii—Rb—O1iv55.8 (2)O2iii—Rb—O5xv56.2 (3)
O2xi—Rb—O1iv129.9 (2)O2xi—Rb—O5xv118.3 (3)
O2iii—Rb—O1xii129.9 (2)O1iv—Rb—O5xv89.4 (5)
O2xi—Rb—O1xii55.8 (2)O1xii—Rb—O5xv173.7 (2)
O1iv—Rb—O1xii93.5 (4)O4v—Rb—O5xv116.2 (3)
O2iii—Rb—O4v92.07 (17)O4xiii—Rb—O5xv58.0 (3)
O2xi—Rb—O4v87.52 (17)O5vi—Rb—O5xv76.49 (16)
O1iv—Rb—O4v118.3 (2)O5—Rb—O5xv11.8 (10)
O1xii—Rb—O4v67.1 (2)O3iv—Rb—O5xv112.0 (2)
O4v—Rb—O4xiii172.9 (3)O3xiv—Rb—O5xv120.04 (19)
O2iii—Rb—O5vi110.4 (4)O5viii—Rb—O5xv88.2 (8)
O2xi—Rb—O5vi63.6 (4)O4vii—Na—O4x120
O1iv—Rb—O5vi164.8 (6)Naviii—O3—901_455
O1xii—Rb—O5vi101.1 (6)Naxvi—O3—18010_554
O4v—Rb—O5vi64.8 (4)Naix—O1—73.2 (3)1_455
O4xiii—Rb—O5vi108.8 (4)Naix—O1—46.8 (3)3_675
O2xi—Rb—O5110.4 (4)Naix—O1—166.7 (3)2_655
O5vi—Rb—O564.7 (11)Naix—O1—9010_554
O2iii—Rb—O3iv56.01 (19)O4vii—Na—O1vii46.8 (3)
O2xi—Rb—O3iv128.96 (19)O4x—Na—O1vii73.2 (3)
O1iv—Rb—O3iv55.78 (17)O3viii—Na—O1vii90
O1xii—Rb—O3iv74.14 (19)O3xvi—Na—O1vii90
O4v—Rb—O3iv62.6 (2)O1ix—Na—O1vii120
O4xiii—Rb—O3iv122.42 (18)O4x—Na—O1x46.8 (3)
O5vi—Rb—O3iv124.3 (2)O3viii—Na—O1x90
O5—Rb—O3iv117.8 (3)O3xvi—Na—O1x90
O2iii—Rb—O3xiv128.95 (19)O1ix—Na—O1x120
O2xi—Rb—O3xiv56.01 (19)O4—C—O2122.9 (10)
O1iv—Rb—O3xiv74.13 (19)O4—C—O1122.5 (11)
O1xii—Rb—O3xiv55.77 (17)O2—C—O1114.6 (10)
Symmetry codes: (i) x, y, z+3/2; (ii) x+y+1, x+1, z; (iii) x+1, x+y, z+1; (iv) y, x1, z+1; (v) x1, y1, z1; (vi) y, x, z; (vii) x1, y, z; (viii) y, x, z1/2; (ix) x+y+1, x+2, z; (x) y+1, xy, z; (xi) y+1, xy, z1; (xii) x+y+1, x+1, z1; (xiii) xy, y+1, z+1; (xiv) x, y, z1; (xv) x, y, z+1/2; (xvi) y, x, z+2.

Experimental details

Crystal data
Chemical formulaRb6Na2[(UO2)(CO3)3]2(H2O)
Mr1476.94
Crystal system, space groupHexagonal, P62c
Temperature (K)297
a, c (Å)9.4316 (7), 8.3595 (8)
V3)643.99 (9)
Z1
Radiation typeMo Kα
µ (mm1)23.95
Crystal size (mm)0.15 × 0.12 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ-scan (SHELXTL-NT; Bruker, 1998)
Tmin, Tmax0.044, 0.056
No. of measured, independent and
observed [I > 2σ(I)] reflections
12787, 958, 787
Rint0.073
(sin θ/λ)max1)0.798
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 0.97
No. of reflections958
No. of parameters40
Δρmax, Δρmin (e Å3)2.04, 1.69
Absolute structureFlack (1983), with 407 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2000), SAINT-NT, SHELXTL-NT (Bruker, 1998), ATOMS (Dowty, 2000), SHELXTL-NT and WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
U—O3i1.779 (8)Na—O4vii2.368 (9)
U—O2ii2.418 (8)Na—O3viii2.401 (8)
U—O12.433 (6)Na—O1ix3.018 (6)
Rb—O2iii2.822 (6)C—O41.237 (14)
Rb—O1iv2.897 (9)C—O21.281 (14)
Rb—O4v2.992 (7)C—O11.295 (17)
Rb—O5vi3.086 (19)
Symmetry codes: (i) x, y, z+3/2; (ii) x+y+1, x+1, z; (iii) x+1, x+y, z+1; (iv) y, x1, z+1; (v) x1, y1, z1; (vi) y, x, z; (vii) x1, y, z; (viii) y, x, z1/2; (ix) x+y+1, x+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds