Download citation
Download citation
link to html
The title compound, hexadecalanthanum pentatitanium heptadeca­sulfide heptadecaoxide, La16Ti5S17+xO17 [x = 0.75 (9)], has been obtained as a by-product in the preparation of new oxy­chalcogenide compounds in the La/Ti/Ag/S/O system. La16Ti5S17+xO17 crystallizes in the tetragonal system (space group I4/m) and is isostructural with Nd16Ti5S17O17. The structure of the title compound consists of an [La2S2] rock-salt-type framework, which delimits [001] square channels containing two types of chains of corner-sharing Ti(O,S)6 octahedra. These chains are connected through La(O,S)n polyhedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010552/bc1010sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010552/bc1010Isup2.hkl
Contains datablock I

Comment top

Recent explorations in the chemistry of oxychalcogenides, and particularly in quaternary systems of the type M/T/X/O (M is a rare earth metal, T is a transition metal, and X = S and Se), show that M and T atoms always bond preferentially to a particular anion (O or X), thus leading to segregated oxide or chalcogenide building blocks within the structure. For instance, the Ln2Ti2S2O5 compounds (Ln = Pr–Er) exhibit a structure type where such a segregation occurs (Boyer et al., 1999; Goga et al., 1999). In these compounds, a sulfide slab of composition [Ln2S2] is separated by an oxide slab built from the corner-sharing O atoms of two adjacent layers of Ti octahedra?.

The present structural study of La16Ti5S17 + xO17 shows that the structure can be described on the basis of an [La2S2] framework that delimits channels of squared sections. These channels contain chains of corner-sharing Ti(O,S)6 octahedra (four Ti1 chains for one Ti2 chain) parallel to the c direction, which are connected by La4 polyhedra (Fig. 1). Note that a similar [La2S2] framework (with a rock-salt-type structure) was encountered in the two-dimensional misfit layered chalcogenides (Wiegers et al., 1992), as well as in oxychalcogenides (Meignen et al., 2001; Gardberg et al., 2001).

The title compound is isostructural with Nd16Ti5S17O17 (Boyer- Candalen et al., 2000). The [La2S2] framework is built of two-atom-thick layers with La atoms (La1, La2 and La3) protruding from the plane of S atoms. This structure arises because these La atoms are also bonded to O atoms belonging to the Ti octahedra. A complex atomic arrangement is observed at the intersection of two adjacent [La2S2] building blocks. This atomic junction involves La3 polyhedra that are connected by S5 atoms, and this 'knot' of four La3 polyhedra encloses a channel filled with S atoms. By comparison with the structure of the Nd homologue, a third S-atom site (S7) is found in this channel for the La derivative. The filling within this channel corresponds to a higher S content, resulting in a slightly modified chemical composition, La16Ti5S17 + xO17, with x = 0.75 (9). This difference? led us to consider the existence of (S2)2− pairing, which would be required for charge balance. Not all combinations of atoms S2, S6, and S7 give a pair with a reasonable S—S bond distance, and the most probable pairing is between two S2 atoms ( 2.10 Å). Similar (S2)2− dianions were also encountered in Sr6V9S22O2 (Litteer et al., 2000). Another difference between the Nd and La analogues concerns the splitting of the Ti2 position. Although a rather high Ueq value for atom Ti2 was also obtained in the case of the Nd compound (although not as high as that for the present La compound), the splitting of this position was not considered. Finally, note that the high U value for atom O5 could also be related to the splitting of the Ti2-atom site. The resulting Ti2—O5 distances range from 1.769 to 2.256 Å. A comparable short Ti—O distance of 1.768 Å was encountered in La2Ti2O7 (Gasperin, 1975).

Experimental top

The title compound was obtained as a small number of needle-shaped translucent orange single crystals, as a by-product of a solid-state reaction of a mixture of La2O3, La2S3, TiO2 and Ag2O, in the molar ratio 1:3/2:2:1/2. The reaction was carried out for 160 h at 1273 K in a quartz ampoule sealed in vacuo. After a first heating, the product of the reaction was reground and a small amount of iodine was added to favor crystallization during a second heating.

Refinement top

During the refinement, the last positions to be found were those of atoms S2, S6 and S7. The largest residual peak in the Fourier difference map at (0, 1/2, 1/4) (4 d site) was introduced and refined (S2 position). Because the resulting displacement parameter of atom S2 was large and the contact between equivalent S2 positions (c/2 = 2.013 Å) was shorter than the minimum distance for a (S2)2− pairing (>2.05 Å), the site-occupancy factor for atom S2 was halved. Later, the hypothesis of a more general position for atom S2 [8 g site at (0, 1/2, z), with z 1/5] very slightly improved the refinement. A subsequent Fourier difference calculation revealed two futher residual peaks at (0, 1/2, 0) and (0.461, 0.043, 0), which were introduced as atoms S6 and S7, respectively. A constraint was initially imposed on the sum of the occupancy factors (S2+S6+S7 = half the occupancy of the 4 d site) for a total of two S atoms without formation of (S2)2− pairing. In addition, the displacement parameters for atoms S2, S6, and S7 were constrained to be identical. However, the refinement at this stage led to a negative U value for these sites (Uiso= −0.006 Å2). When the constraint on the occupancies was removed, the refinement was improved and yielded a positive U value [0.027 (3) Å2]. Initially, atom Ti2 in the 2 b site, (1/2, 1/2, 0), showed a large value of the U33 component, which led us to change it to a more general 4 e site [(1/2, 1/2, z), with z 0], with a statistical occupancy of 50%. Under these conditions, the final refinement converged to a R value of 0.0234 and yielded a featureless Fourier difference map [+1.65 e.Å−3 at (0.405, 0.241, 0.245) and −1.55 e.Å−3 at (1/2, 1/2, 0.377)].

Computing details top

Program(s) used to refine structure: (Jana 2000; Petricek & Dusek, 2000); software used to prepare material for publication: (Jana 2000; Petricek & Dusek, 2000).

Figures top
[Figure 1] Fig. 1. The structure of La16Ti5S17 + xO17, projected on to the ab plane.
hexadecalanthanum pentatitanium heptadecasulfide heptadecaoxide top
Crystal data top
La16Ti5S17.75O17Dx = 5.28 Mg m3
Mr = 3303.0Mo Kα radiation, λ = 0.71069 Å
Tetragonal, I4/mCell parameters from 21662 reflections
a = 22.633 (3) Åθ = 3.6–34.9°
c = 4.0252 (8) ŵ = 17.97 mm1
V = 2061.9 (6) Å3T = 293 K
Z = 2Needle, orange
F(000) = 28840.12 × 0.02 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
2028 independent reflections
Horizonally mounted graphite crystal monochromator1799 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.027
CCD, ϕ and ω frames scansθmax = 32.2°, θmin = 3.6°
Absorption correction: gaussian (Petricek & Dusek, 2000)
?
h = 3333
Tmin = 0.332, Tmax = 0.727k = 2425
4503 measured reflectionsl = 66
Refinement top
Refinement on Fσ w = 1/(σ2(F) + 0.0004F2)
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.004
wR(F2) = 0.032Δρmax = 1.64 e Å3
S = 1.11Δρmin = 1.55 e Å3
2028 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
95 parametersExtinction coefficient: 0.017 (4)
Crystal data top
La16Ti5S17.75O17Z = 2
Mr = 3303.0Mo Kα radiation
Tetragonal, I4/mµ = 17.97 mm1
a = 22.633 (3) ÅT = 293 K
c = 4.0252 (8) Å0.12 × 0.02 × 0.02 mm
V = 2061.9 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
2028 independent reflections
Absorption correction: gaussian (Petricek & Dusek, 2000)
?
1799 reflections with I > 2σ(I)
Tmin = 0.332, Tmax = 0.727Rint = 0.027
4503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02395 parameters
wR(F2) = 0.032Δρmax = 1.64 e Å3
S = 1.11Δρmin = 1.55 e Å3
2028 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.759231 (13)0.408156 (13)00.00842 (8)
La20.656946 (13)0.271533 (13)00.00825 (8)
La30.882639 (15)0.549374 (14)00.01350 (9)
La40.613148 (13)0.412900 (13)0.50.00821 (8)
Ti10.74936 (4)0.53324 (4)0.50.0095 (2)
Ti20.50.50.0605 (9)0.0124 (11)0.5
S10.51367 (5)0.39550 (6)00.0116 (3)
S20.500.24 (2)0.027 (3)0.239 (11)
S30.75500 (6)0.18604 (6)00.0095 (3)
S40.82935 (6)0.62248 (6)0.50.0105 (3)
S50.84779 (6)0.46270 (6)0.50.0115 (3)
S60.5000.027 (3)0.093 (8)
O10.69773 (16)0.59403 (16)0.50.0089 (9)
O20.71400 (16)0.46085 (16)0.50.0091 (9)
O30.65915 (16)0.37787 (16)00.0094 (10)
O40.76632 (17)0.53386 (16)00.0110 (10)
O50.50.50.50.045 (3)
S70.4618 (5)0.0453 (4)00.027 (3)0.152 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00833 (13)0.00915 (14)0.00778 (15)0.00126 (10)00
La20.00891 (14)0.00760 (13)0.00824 (15)0.00002 (10)00
La30.01752 (16)0.00978 (14)0.01319 (17)0.00077 (12)00
La40.00849 (14)0.00830 (14)0.00785 (15)0.00062 (10)00
Ti10.0081 (4)0.0057 (4)0.0148 (5)0.0007 (3)00
Ti20.0096 (6)0.0096 (6)0.018 (3)000
S10.0073 (5)0.0109 (6)0.0167 (7)0.0012 (4)00
S20.014 (3)0.010 (3)0.056 (7)0.005 (3)00
S30.0097 (5)0.0079 (5)0.0108 (6)0.0004 (4)00
S40.0107 (5)0.0092 (5)0.0117 (6)0.0006 (4)00
S50.0104 (6)0.0111 (6)0.0131 (6)0.0013 (5)00
S60.014 (3)0.010 (3)0.056 (7)0.005 (3)00
O10.0062 (15)0.0110 (16)0.0095 (17)0.0013 (13)00
O20.0093 (16)0.0085 (16)0.0097 (16)0.0002 (13)00
O30.0096 (16)0.0083 (16)0.0101 (18)0.0003 (13)00
O40.0117 (17)0.0122 (17)0.0092 (18)0.0006 (14)00
O50.045 (4)0.045 (4)0.045 (7)000
S70.014 (3)0.010 (3)0.056 (7)0.005 (3)00
Geometric parameters (Å, º) top
La1—S3i2.9495 (9)La3—S6xi3.5150 (3)
La1—S3ii2.9495 (9)La3—S6viii2.8817 (3)
La1—S4iii3.2170 (14)La3—O42.656 (4)
La1—S5iv3.0971 (10)La3—S7vii2.695 (7)
La1—S53.0971 (10)La3—S7xi2.695 (7)
La1—O2iv2.554 (2)La3—S7ix2.567 (10)
La1—O22.554 (2)La4—S13.0455 (9)
La1—O32.366 (4)La4—S1xii3.0455 (9)
La1—O42.849 (4)La4—S1ix3.0480 (9)
La2—S32.9444 (13)La4—S1xiii3.0480 (9)
La2—S3i2.9907 (10)La4—O1vi2.541 (4)
La2—S3ii2.9907 (10)La4—O22.527 (4)
La2—S4v3.1420 (11)La4—O32.401 (2)
La2—S4vi3.1420 (11)La4—O3xii2.401 (2)
La2—O1v2.562 (2)La4—O53.2318 (7)
La2—O1vi2.562 (2)Ti1—S42.7122 (16)
La2—O32.407 (4)Ti1—S52.7406 (16)
La2—O4vi2.915 (4)Ti1—O11.805 (4)
La3—S2vii3.07 (3)Ti1—O21.824 (4)
La3—S2ii3.07 (3)Ti1—O42.0489 (8)
La3—S2viii3.04 (3)Ti1—O4xii2.0489 (8)
La3—S2ix3.04 (3)Ti2—S12.3977 (14)
La3—S4iv2.8711 (10)Ti2—S1xiv2.3977 (14)
La3—S42.8711 (10)Ti2—S1vi2.3977 (14)
La3—S5iv2.9190 (10)Ti2—S1ix2.3977 (14)
La3—S52.9190 (10)Ti2—O5iv2.256 (3)
La3—S5x2.9498 (14)Ti2—O51.769 (3)
La3—S6vii3.5150 (3)
S3i—La1—S3ii86.06 (2)S4iv—La3—S7xi145.3 (2)
S3i—La1—S4iii71.95 (3)S4iv—La3—S7ix135.39 (2)
S3i—La1—S5iv85.15 (3)S4—La3—S4iv89.01 (3)
S3i—La1—S5143.34 (4)S4—La3—S5iv139.21 (4)
S3i—La1—O2iv75.88 (7)S4—La3—S577.90 (3)
S3i—La1—O2146.26 (9)S4—La3—S5x78.66 (3)
S3i—La1—O371.70 (7)S4—La3—S6vii154.43 (3)
S3i—La1—O4136.704 (19)S4—La3—S6xi95.70 (2)
S3ii—La1—S3i86.06 (2)S4—La3—S6viii127.64 (2)
S3ii—La1—S4iii71.95 (3)S4—La3—O470.11 (6)
S3ii—La1—S5iv143.34 (4)S4—La3—S7vii145.3 (2)
S3ii—La1—S585.15 (3)S4—La3—S7xi77.02 (18)
S3ii—La1—O2iv146.26 (9)S4—La3—S7ix135.39 (2)
S3ii—La1—O275.88 (7)S5iv—La3—S587.18 (3)
S3ii—La1—O371.70 (7)S5iv—La3—S5x134.13 (2)
S3ii—La1—O4136.704 (19)S5iv—La3—S6vii66.16 (2)
S4iii—La1—S5iv71.49 (3)S5iv—La3—S6xi112.67 (3)
S4iii—La1—S571.49 (3)S5iv—La3—S6viii89.34 (3)
S4iii—La1—O2iv126.34 (7)S5iv—La3—O469.10 (6)
S4iii—La1—O2126.34 (7)S5iv—La3—S7vii69.01 (19)
S4iii—La1—O3129.49 (9)S5iv—La3—S7xi132.2 (2)
S4iii—La1—O4120.44 (8)S5iv—La3—S7ix69.67 (15)
S5iv—La1—S581.06 (2)S5—La3—S5iv87.18 (3)
S5iv—La1—O2iv63.97 (8)S5—La3—S5x134.13 (2)
S5iv—La1—O2125.83 (8)S5—La3—S6vii112.67 (3)
S5iv—La1—O3137.30 (3)S5—La3—S6xi66.16 (2)
S5iv—La1—O464.25 (6)S5—La3—S6viii89.34 (3)
S5—La1—S5iv81.06 (2)S5—La3—O469.10 (6)
S5—La1—O2iv125.83 (8)S5—La3—S7vii132.2 (2)
S5—La1—O263.97 (8)S5—La3—S7xi69.01 (19)
S5—La1—O3137.30 (3)S5—La3—S7ix69.67 (15)
S5—La1—O464.25 (6)S5x—La3—S5iv134.13 (2)
O2iv—La1—O2104.02 (9)S5x—La3—S5134.13 (2)
O2iv—La1—O375.62 (10)S5x—La3—S6vii77.68 (2)
O2iv—La1—O463.66 (8)S5x—La3—S6xi77.68 (2)
O2—La1—O2iv104.02 (9)S5x—La3—S6viii74.91 (3)
O2—La1—O375.62 (10)S5x—La3—O4135.50 (8)
O2—La1—O463.66 (8)S5x—La3—S7vii67.6 (2)
O3—La1—O4110.07 (12)S5x—La3—S7xi67.6 (2)
S3—La2—S3i73.07 (3)S5x—La3—S7ix102.7 (2)
S3—La2—S3ii73.07 (3)S6vii—La3—S6xi69.861 (6)
S3—La2—S4v73.12 (3)S6vii—La3—S6viii34.931 (3)
S3—La2—S4vi73.12 (3)S6vii—La3—O4134.99 (5)
S3—La2—O1v126.69 (7)S6vii—La3—S7vii19.9 (2)
S3—La2—O1vi126.69 (7)S6vii—La3—S7xi85.10 (17)
S3—La2—O3129.89 (9)S6vii—La3—S7ix43.49 (12)
S3—La2—O4vi121.82 (8)S6xi—La3—S6vii69.861 (6)
S3i—La2—S373.07 (3)S6xi—La3—S6viii34.931 (3)
S3i—La2—S3ii84.59 (2)S6xi—La3—O4134.99 (5)
S3i—La2—S4v88.15 (3)S6xi—La3—S7vii85.10 (17)
S3i—La2—S4vi146.08 (4)S6xi—La3—S7xi19.9 (2)
S3i—La2—O1v75.79 (7)S6xi—La3—S7ix43.49 (12)
S3i—La2—O1vi144.28 (8)S6viii—La3—S6vii34.931 (3)
S3i—La2—O370.44 (7)S6viii—La3—S6xi34.931 (3)
S3i—La2—O4vi137.00 (2)S6viii—La3—O4149.59 (8)
S3ii—La2—S373.07 (3)S6viii—La3—S7vii51.28 (17)
S3ii—La2—S3i84.59 (2)S6viii—La3—S7xi51.28 (17)
S3ii—La2—S4v146.08 (4)S6viii—La3—S7ix27.8 (2)
S3ii—La2—S4vi88.15 (3)O4—La3—S7vii130.84 (17)
S3ii—La2—O1v144.28 (8)O4—La3—S7xi130.84 (17)
S3ii—La2—O1vi75.79 (7)O4—La3—S7ix121.8 (2)
S3ii—La2—O370.44 (7)S7vii—La3—S7xi96.6 (2)
S3ii—La2—O4vi137.00 (2)S7vii—La3—S7ix63.4 (2)
S4v—La2—S4vi79.67 (2)S7xi—La3—S7vii96.6 (2)
S4v—La2—O1v63.65 (8)S7xi—La3—S7ix63.4 (2)
S4v—La2—O1vi124.24 (8)S7ix—La3—S7vii63.4 (2)
S4v—La2—O3137.03 (4)S7ix—La3—S7xi63.4 (2)
S4v—La2—O4vi63.20 (6)S1—La4—S1xii82.73 (2)
S4vi—La2—S4v79.67 (2)S1—La4—S1ix67.23 (3)
S4vi—La2—O1v124.24 (8)S1—La4—S1xiii119.06 (3)
S4vi—La2—O1vi63.65 (8)S1—La4—O1vi75.32 (7)
S4vi—La2—O3137.03 (4)S1—La4—O2136.32 (3)
S4vi—La2—O4vi63.20 (6)S1—La4—O373.97 (8)
O1v—La2—O1vi103.56 (9)S1—La4—O3xii146.30 (9)
O1v—La2—O374.93 (9)S1—La4—O559.54 (2)
O1v—La2—O4vi63.16 (8)S1xii—La4—S182.73 (2)
O1vi—La2—O1v103.56 (9)S1xii—La4—S1ix119.06 (3)
O1vi—La2—O374.93 (9)S1xii—La4—S1xiii67.23 (3)
O1vi—La2—O4vi63.16 (8)S1xii—La4—O1vi75.32 (7)
O3—La2—O4vi108.28 (12)S1xii—La4—O2136.32 (3)
S2vii—La3—S2ii40 (2)S1xii—La4—O3146.30 (9)
S2vii—La3—S2viii38 (2)S1xii—La4—O3xii73.97 (8)
S2vii—La3—S2ix2 (2)S1xii—La4—O559.54 (2)
S2vii—La3—S4iv109.5 (15)S1ix—La4—S167.23 (3)
S2vii—La3—S4144.5 (12)S1ix—La4—S1xii119.06 (3)
S2vii—La3—S5iv75.7 (11)S1ix—La4—S1xiii82.65 (2)
S2vii—La3—S5103.0 (11)S1ix—La4—O1vi136.58 (3)
S2vii—La3—S5x75.85 (15)S1ix—La4—O274.73 (7)
S2vii—La3—S6vii14.9 (16)S1ix—La4—O373.82 (8)
S2vii—La3—S6xi55.0 (16)S1ix—La4—O3xii145.95 (9)
S2vii—La3—S6viii20.1 (16)S1ix—La4—O559.52 (2)
S2vii—La3—O4144.1 (8)S1xiii—La4—S1119.06 (3)
S2vii—La3—S7vii32.5 (15)S1xiii—La4—S1xii67.23 (3)
S2vii—La3—S7xi70.6 (16)S1xiii—La4—S1ix82.65 (2)
S2vii—La3—S7ix33.8 (9)S1xiii—La4—O1vi136.58 (3)
S2ii—La3—S2vii40 (2)S1xiii—La4—O274.73 (7)
S2ii—La3—S2viii2 (2)S1xiii—La4—O3145.95 (9)
S2ii—La3—S2ix38 (2)S1xiii—La4—O3xii73.82 (8)
S2ii—La3—S4iv144.5 (12)S1xiii—La4—O559.52 (2)
S2ii—La3—S4109.5 (15)O1vi—La4—O2125.23 (12)
S2ii—La3—S5iv103.0 (11)O1vi—La4—O375.43 (10)
S2ii—La3—S575.7 (11)O1vi—La4—O3xii75.43 (10)
S2ii—La3—S5x75.85 (15)O1vi—La4—O5117.78 (8)
S2ii—La3—S6vii55.0 (16)O2—La4—O375.53 (10)
S2ii—La3—S6xi14.9 (16)O2—La4—O3xii75.53 (10)
S2ii—La3—S6viii20.1 (16)O2—La4—O5116.98 (8)
S2ii—La3—O4144.1 (8)O3—La4—O3xii113.93 (10)
S2ii—La3—S7vii70.6 (16)O3—La4—O5123.03 (7)
S2ii—La3—S7xi32.5 (15)O3xii—La4—O3113.93 (10)
S2ii—La3—S7ix33.8 (9)O3xii—La4—O5123.03 (7)
S2viii—La3—S2vii38 (2)S4—Ti1—S583.76 (5)
S2viii—La3—S2ii2 (2)S4—Ti1—O182.22 (12)
S2viii—La3—S2ix37 (2)S4—Ti1—O2164.17 (13)
S2viii—La3—S4iv143.2 (13)S4—Ti1—O482.53 (11)
S2viii—La3—S4111.0 (15)S4—Ti1—O4xii82.53 (11)
S2viii—La3—S5iv101.9 (11)S5—Ti1—O1165.98 (13)
S2viii—La3—S576.8 (11)S5—Ti1—O280.41 (12)
S2viii—La3—S5x75.71 (14)S5—Ti1—O481.47 (11)
S2viii—La3—S6vii53.4 (16)S5—Ti1—O4xii81.47 (11)
S2viii—La3—S6xi16.5 (16)O1—Ti1—O2113.62 (17)
S2viii—La3—S6viii18.4 (16)O1—Ti1—O496.67 (11)
S2viii—La3—O4144.9 (8)O1—Ti1—O4xii96.67 (11)
S2viii—La3—S7vii69.1 (16)O2—Ti1—O495.07 (11)
S2viii—La3—S7xi33.9 (15)O2—Ti1—O4xii95.07 (11)
S2viii—La3—S7ix32.9 (9)O4—Ti1—O4xii158.39 (16)
S2ix—La3—S2vii2 (2)O4xii—Ti1—O4158.39 (16)
S2ix—La3—S2ii38 (2)S1—Ti2—S1xiv168.33 (16)
S2ix—La3—S2viii37 (2)S1—Ti2—S1vi89.41 (4)
S2ix—La3—S4iv111.0 (15)S1—Ti2—S1ix89.41 (4)
S2ix—La3—S4143.2 (13)S1—Ti2—O5iv84.17 (8)
S2ix—La3—S5iv76.8 (11)S1—Ti2—O595.83 (8)
S2ix—La3—S5101.9 (11)S1xiv—Ti2—S1168.33 (16)
S2ix—La3—S5x75.71 (14)S1xiv—Ti2—S1vi89.41 (4)
S2ix—La3—S6vii16.5 (16)S1xiv—Ti2—S1ix89.41 (4)
S2ix—La3—S6xi53.4 (16)S1xiv—Ti2—O5iv84.17 (8)
S2ix—La3—S6viii18.4 (16)S1xiv—Ti2—O595.83 (8)
S2ix—La3—O4144.9 (8)S1vi—Ti2—S189.41 (4)
S2ix—La3—S7vii33.9 (15)S1vi—Ti2—S1xiv89.41 (4)
S2ix—La3—S7xi69.1 (16)S1vi—Ti2—S1ix168.33 (16)
S2ix—La3—S7ix32.9 (9)S1vi—Ti2—O5iv84.17 (8)
S4iv—La3—S489.01 (3)S1vi—Ti2—O595.83 (8)
S4iv—La3—S5iv77.90 (3)S1ix—Ti2—S189.41 (4)
S4iv—La3—S5139.21 (4)S1ix—Ti2—S1xiv89.41 (4)
S4iv—La3—S5x78.66 (3)S1ix—Ti2—S1vi168.33 (16)
S4iv—La3—S6vii95.70 (2)S1ix—Ti2—O5iv84.17 (8)
S4iv—La3—S6xi154.43 (3)S1ix—Ti2—O595.83 (8)
S4iv—La3—S6viii127.64 (2)O5iv—Ti2—O5180
S4iv—La3—O470.11 (6)O5—Ti2—O5iv180
S4iv—La3—S7vii77.02 (18)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) y+3/2, x1/2, z+1/2; (iv) x, y, z1; (v) y, x+1, z1; (vi) y, x+1, z; (vii) x+1/2, y+1/2, z1/2; (viii) y+1, x+1, z; (ix) y+1, x, z; (x) y+1/2, x+3/2, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y, z+1; (xiii) y+1, x, z+1; (xiv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaLa16Ti5S17.75O17
Mr3303.0
Crystal system, space groupTetragonal, I4/m
Temperature (K)293
a, c (Å)22.633 (3), 4.0252 (8)
V3)2061.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)17.97
Crystal size (mm)0.12 × 0.02 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian (Petricek & Dusek, 2000)
Tmin, Tmax0.332, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
4503, 2028, 1799
Rint0.027
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.032, 1.11
No. of reflections2028
No. of parameters95
No. of restraints?
Δρmax, Δρmin (e Å3)1.64, 1.55

Computer programs: (Jana 2000; Petricek & Dusek, 2000).

Selected bond lengths (Å) top
La1—S3i2.9495 (9)La3—S6xi3.5150 (3)
La1—S3ii2.9495 (9)La3—S6viii2.8817 (3)
La1—S4iii3.2170 (14)La3—O42.656 (4)
La1—S5iv3.0971 (10)La3—S7vii2.695 (7)
La1—S53.0971 (10)La3—S7xi2.695 (7)
La1—O2iv2.554 (2)La3—S7ix2.567 (10)
La1—O22.554 (2)La4—S13.0455 (9)
La1—O32.366 (4)La4—S1xii3.0455 (9)
La1—O42.849 (4)La4—S1ix3.0480 (9)
La2—S32.9444 (13)La4—S1xiii3.0480 (9)
La2—S3i2.9907 (10)La4—O1vi2.541 (4)
La2—S3ii2.9907 (10)La4—O22.527 (4)
La2—S4v3.1420 (11)La4—O32.401 (2)
La2—S4vi3.1420 (11)La4—O3xii2.401 (2)
La2—O1v2.562 (2)La4—O53.2318 (7)
La2—O1vi2.562 (2)Ti1—S42.7122 (16)
La2—O32.407 (4)Ti1—S52.7406 (16)
La2—O4vi2.915 (4)Ti1—O11.805 (4)
La3—S2vii3.07 (3)Ti1—O21.824 (4)
La3—S2ii3.07 (3)Ti1—O42.0489 (8)
La3—S2viii3.04 (3)Ti1—O4xii2.0489 (8)
La3—S2ix3.04 (3)Ti2—S12.3977 (14)
La3—S4iv2.8711 (10)Ti2—S1xiv2.3977 (14)
La3—S42.8711 (10)Ti2—S1vi2.3977 (14)
La3—S5iv2.9190 (10)Ti2—S1ix2.3977 (14)
La3—S52.9190 (10)Ti2—O5iv2.256 (3)
La3—S5x2.9498 (14)Ti2—O51.769 (3)
La3—S6vii3.5150 (3)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) y+3/2, x1/2, z+1/2; (iv) x, y, z1; (v) y, x+1, z1; (vi) y, x+1, z; (vii) x+1/2, y+1/2, z1/2; (viii) y+1, x+1, z; (ix) y+1, x, z; (x) y+1/2, x+3/2, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y, z+1; (xiii) y+1, x, z+1; (xiv) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds