Download citation
Download citation
link to html
4-Methylhippuric acid {systematic name: 2-[(4-methylbenzoyl)amino]ethanoic acid}, a p-xylene excreted metabolite with a backbone containing three rotatable bonds (R-bonds), is likely to produce more than one stable molecular structure in the solid state. In this work, we prepared polymorph I by slow solvent evaporation (plates with Z′ = 1) and polymorph II by mechanical grinding (plates with Z′ = 2). Potential energy surface (PES) analysis, rotating the molecule about the C—C—N—C torsion angle, shows four conformational energy basins. The second basin, with torsion angles near −73°, agree with the conformations adopted by polymorph I and molecules A of polymorph II, and the third basin at 57° matched molecules B of polymorph II. The energy barrier between these basins is 27.5 kJ mol−1. Superposition of the molecules of polymorphs I and II rendered a maximum r.m.s. deviation of 0.398 Å. Polymorphs I and II are therefore true conformational polymorphs. The crystal packing of polymorph I consists of C(5) chains linked by N—H...O interactions along the a axis and C(7) chains linked by O—H...O interactions along the b axis. In polymorph II, two molecules (A with A or B with B) are connected by two acid–amide O—H...O interactions rendering R22(14) centrosymmetric dimers. These dimers alternate to pile up along the b axis linked by N—H...O interactions. A Hirshfeld surface analysis localized weaker noncovalent interactions, C—H...O and C—H...π, with contact distances close to the sum of the van der Waals radii. Electron density at a local level using the Quantum Theory of Atoms in Molecules (QTAIM) and the Electron Localization Function (ELF), or a semi-local level using noncovalent interactions, was used to rank interactions. Strong closed shell interactions in classical O—H...O and N—H...O hydrogen bonds have electron density highly localized on bond critical points. Weaker delocalized electron density is seen around the p-methyl­phenyl rings associated with dispersive C—H...π and H...H inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520620013773/aw5049sup1.cif
Contains datablocks 4MHA-I, 4MHA-II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620013773/aw50494MHA-Isup2.hkl
Contains datablock 4MHA-I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520620013773/aw50494MHA-IIsup3.hkl
Contains datablock 4MHA-II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520620013773/aw5049sup4.pdf
Assignment of IR absorption bands for polymorphs I and II of 4-methylhippuric acid, selected geometric parameters (Å, °), photographs of the crystals and views of Hirshfeld surfaces

CCDC references: 2002525; 2038342

Computing details top

For both structures, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015).

2-[(4-Methylbenzoyl)amino]ethanoic acid (4MHA-I) top
Crystal data top
C10H11NO3Dx = 1.345 Mg m3
Mr = 193.20Melting point = 436–438 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.1732 (18) ÅCell parameters from 770 reflections
b = 8.286 (3) Åθ = 1.8–19.1°
c = 22.264 (8) ŵ = 0.10 mm1
V = 954.4 (6) Å3T = 298 K
Z = 4Needle, colourless
F(000) = 4080.41 × 0.18 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
770 independent reflections
Radiation source: sealed tube723 reflections with I > 2σ(I)
Detector resolution: CCD pixels mm-1Rint = 0.026
φ and ω scansθmax = 19.1°, θmin = 1.8°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 44
Tmin = 0.958, Tmax = 0.998k = 67
6711 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.0172P]
where P = (Fo2 + 2Fc2)/3
770 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3753 (6)0.8008 (3)0.31657 (13)0.0613 (9)
H10.504 (8)0.739 (5)0.3196 (16)0.070 (15)*
O20.4221 (5)0.7580 (3)0.21876 (12)0.0645 (9)
O30.2270 (6)1.1150 (4)0.16192 (11)0.0699 (9)
N10.0379 (7)0.9240 (5)0.19607 (13)0.0491 (10)
H40.162 (8)0.868 (4)0.1870 (17)0.050 (14)*
C10.3075 (7)0.8176 (4)0.25990 (19)0.0454 (10)
C20.0731 (7)0.9227 (5)0.25493 (16)0.0534 (11)
H20.1197091.0321350.2659350.064*
H30.0558620.8853480.2833450.064*
C30.0495 (8)1.0202 (5)0.15193 (17)0.0441 (10)
C40.0671 (7)1.0057 (4)0.09194 (15)0.0378 (9)
C50.0509 (7)1.0859 (4)0.04457 (17)0.0500 (10)
H50.1952901.1496950.0520260.060*
C60.0414 (8)1.0730 (4)0.01318 (15)0.0532 (10)
H60.0432471.1266130.0441630.064*
C70.2582 (8)0.9816 (4)0.02586 (14)0.0473 (10)
C80.3785 (7)0.9043 (4)0.02107 (17)0.0517 (10)
H70.5247170.8423030.0134710.062*
C90.2877 (7)0.9164 (4)0.07919 (16)0.0481 (10)
H80.3750480.8643380.1101270.058*
C100.3603 (9)0.9662 (5)0.08925 (17)0.0755 (13)
H90.3045940.8653400.1061000.113*
H100.5457390.9698910.0886570.113*
H110.2953111.0534600.1132460.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (18)0.080 (2)0.047 (2)0.0214 (18)0.0104 (15)0.0041 (14)
O20.0666 (19)0.0796 (19)0.0473 (16)0.0193 (19)0.0006 (14)0.0041 (13)
O30.0661 (18)0.0717 (17)0.0717 (19)0.0264 (19)0.0213 (16)0.0001 (14)
N10.045 (2)0.061 (2)0.042 (3)0.001 (2)0.0108 (18)0.0076 (18)
C10.050 (3)0.052 (2)0.034 (3)0.005 (2)0.006 (2)0.005 (2)
C20.050 (3)0.061 (2)0.049 (3)0.013 (2)0.009 (2)0.0043 (17)
C30.040 (2)0.043 (2)0.050 (3)0.006 (2)0.004 (2)0.002 (2)
C40.033 (2)0.036 (2)0.044 (3)0.003 (2)0.0019 (19)0.0026 (18)
C50.044 (2)0.045 (2)0.061 (3)0.004 (2)0.005 (2)0.006 (2)
C60.058 (3)0.053 (2)0.048 (3)0.006 (2)0.003 (2)0.0122 (17)
C70.060 (3)0.040 (2)0.042 (3)0.009 (2)0.006 (2)0.0003 (18)
C80.051 (2)0.055 (2)0.049 (3)0.006 (2)0.009 (2)0.0004 (19)
C90.047 (2)0.055 (2)0.042 (3)0.007 (2)0.0004 (18)0.0073 (17)
C100.104 (3)0.075 (3)0.047 (3)0.003 (3)0.013 (2)0.0019 (19)
Geometric parameters (Å, º) top
O1—C11.317 (4)C8—C91.380 (4)
O2—C11.198 (4)O1—H10.840 (4)
O3—C31.229 (4)N1—H40.820 (4)
N1—C31.344 (5)C2—H20.970
N1—C21.431 (5)C2—H30.970
C1—C21.497 (5)C5—H50.930
C3—C41.470 (5)C6—H60.930
C4—C51.388 (4)C8—H70.930
C4—C91.389 (4)C9—H80.930
C5—C61.376 (4)C10—H90.960
C6—C71.382 (5)C10—H100.960
C7—C81.374 (4)C10—H110.960
C7—C101.512 (4)
C3—N1—C2122.6 (4)C3—N1—H4115 (3)
O2—C1—O1123.9 (3)N1—C2—H2109.00
O2—C1—C2125.8 (3)N1—C2—H3109.00
O1—C1—C2110.4 (4)C1—C2—H2109.00
N1—C2—C1113.4 (3)C1—C2—H3109.00
O3—C3—N1119.9 (4)H2—C2—H3108.00
O3—C3—C4121.6 (4)C4—C5—H5119.00
N1—C3—C4118.5 (4)C6—C5—H5119.00
C5—C4—C9117.4 (3)C5—C6—H6120.00
C5—C4—C3118.1 (4)C7—C6—H6119.00
C9—C4—C3124.5 (3)C7—C8—H7119.00
C6—C5—C4121.4 (3)C9—C8—H7119.00
C5—C6—C7121.0 (3)C4—C9—H8120.00
C8—C7—C6117.9 (3)C8—C9—H8120.00
C8—C7—C10120.8 (4)C7—C10—H9109.00
C6—C7—C10121.3 (3)C7—C10—H10109.00
C7—C8—C9121.6 (3)C7—C10—H11109.00
C8—C9—C4120.6 (3)H9—C10—H10109.00
C1—O1—H1111 (2)H9—C10—H11109.00
C2—N1—H4123 (3)H10—C10—H11109.00
2-[(4-Methylbenzoyl)amino]ethanoic acid (4MHA-II) top
Crystal data top
C10H11NO3Dx = 1.300 Mg m3
Mr = 193.20Melting point = 433–434 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.590 (3) ÅCell parameters from 4019 reflections
b = 8.670 (3) Åθ = 2.5–26.4°
c = 23.811 (7) ŵ = 0.10 mm1
β = 94.364 (10)°T = 298 K
V = 1974.1 (11) Å3Rectangular plates, colourless
Z = 80.31 × 0.31 × 0.03 mm
F(000) = 816
Data collection top
Bruker SMART APEXII CCD
diffractometer
4019 independent reflections
Radiation source: sealed tube2413 reflections with I > 2σ(I)
Detector resolution: CCD pixels mm-1Rint = 0.095
φ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1111
Tmin = 0.970, Tmax = 0.997k = 1010
46748 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.6696P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4019 reflectionsΔρmax = 0.22 e Å3
272 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.41603 (16)0.55182 (18)0.07757 (6)0.0490 (4)
H1A0.509 (3)0.575 (3)0.0767 (12)0.102 (10)*
O2A0.42402 (13)0.69175 (17)0.00177 (6)0.0489 (4)
O3A0.31008 (14)0.40957 (17)0.06907 (6)0.0525 (4)
N1A0.16422 (18)0.5815 (2)0.02682 (7)0.0436 (5)
H4A0.102 (2)0.651 (3)0.0297 (9)0.055 (7)*
C1A0.3629 (2)0.6070 (2)0.03182 (9)0.0377 (5)
C2A0.2158 (2)0.5504 (2)0.02739 (8)0.0442 (5)
H2A0.1546530.5994890.0564120.053*
H3A0.2127630.4400450.0341800.053*
C3A0.21786 (19)0.5081 (2)0.07295 (9)0.0410 (5)
C4A0.16457 (19)0.5458 (2)0.12847 (9)0.0420 (5)
C5A0.2249 (2)0.4715 (3)0.17611 (10)0.0523 (6)
H5A0.2944010.3984180.1720880.063*
C6A0.1842 (2)0.5037 (3)0.22902 (10)0.0596 (7)
H6A0.2274980.4526210.2599640.072*
C7A0.0811 (2)0.6097 (3)0.23724 (10)0.0597 (7)
C8A0.0198 (3)0.6815 (3)0.18972 (10)0.0707 (8)
H7A0.0514330.7524780.1938130.085*
C9A0.0606 (2)0.6517 (3)0.13640 (10)0.0611 (7)
H8A0.0176460.7035490.1055640.073*
C10A0.0392 (3)0.6469 (4)0.29573 (10)0.0859 (9)
H9A0.0932830.5852270.3228830.129*
H10A0.0583660.6249060.2978210.129*
H11A0.0561460.7541490.3036030.129*
O1B0.93657 (17)0.9188 (2)0.07612 (6)0.0606 (5)
H1B1.026 (3)0.906 (4)0.0719 (13)0.114 (12)*
O2B0.93440 (13)0.80226 (17)0.00767 (6)0.0507 (4)
O3B0.78581 (13)1.09458 (17)0.06821 (6)0.0473 (4)
N1B0.66341 (17)0.9100 (2)0.01986 (7)0.0405 (4)
H4B0.597 (2)0.843 (2)0.0197 (9)0.049 (6)*
C1B0.8778 (2)0.8775 (2)0.03010 (8)0.0371 (5)
C2B0.73181 (19)0.9378 (2)0.03122 (8)0.0421 (5)
H2B0.7335131.0480350.0380820.051*
H3B0.6768040.8904890.0624850.051*
C3B0.69173 (18)0.9959 (2)0.06611 (8)0.0375 (5)
C4B0.60166 (18)0.9766 (2)0.11392 (8)0.0370 (5)
C5B0.5782 (2)1.1050 (3)0.14675 (9)0.0451 (5)
H5B0.6226581.1974730.1396000.054*
C6B0.4898 (2)1.0975 (3)0.18989 (9)0.0518 (6)
H6B0.4743851.1859330.2106510.062*
C7B0.4242 (2)0.9627 (3)0.20284 (9)0.0534 (6)
C8B0.4499 (2)0.8348 (3)0.17056 (10)0.0610 (7)
H7B0.4076180.7417390.1786770.073*
C9B0.5361 (2)0.8404 (3)0.12659 (9)0.0522 (6)
H8B0.5499960.7521840.1054950.063*
C10B0.3293 (3)0.9573 (4)0.25101 (11)0.0856 (9)
H9B0.3850250.9584970.2862390.128*
H10B0.2743030.8647010.2483350.128*
H11B0.2684141.0453910.2488960.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0458 (9)0.0544 (10)0.0478 (9)0.0025 (8)0.0103 (7)0.0046 (7)
O2A0.0428 (8)0.0517 (10)0.0523 (9)0.0061 (7)0.0030 (7)0.0066 (8)
O3A0.0405 (8)0.0488 (10)0.0691 (10)0.0102 (7)0.0088 (7)0.0021 (8)
N1A0.0358 (9)0.0453 (12)0.0503 (12)0.0057 (9)0.0072 (8)0.0014 (9)
C1A0.0389 (11)0.0335 (12)0.0404 (12)0.0045 (9)0.0018 (10)0.0046 (10)
C2A0.0434 (11)0.0426 (13)0.0467 (13)0.0041 (10)0.0048 (10)0.0027 (10)
C3A0.0293 (10)0.0377 (12)0.0565 (14)0.0038 (9)0.0051 (9)0.0031 (11)
C4A0.0341 (10)0.0421 (13)0.0496 (13)0.0010 (9)0.0024 (9)0.0038 (10)
C5A0.0440 (12)0.0505 (15)0.0626 (16)0.0021 (11)0.0048 (11)0.0109 (12)
C6A0.0573 (14)0.0695 (17)0.0512 (15)0.0044 (13)0.0017 (12)0.0152 (13)
C7A0.0557 (14)0.0748 (18)0.0487 (15)0.0045 (13)0.0041 (11)0.0018 (13)
C8A0.0685 (16)0.090 (2)0.0540 (16)0.0303 (15)0.0069 (13)0.0033 (15)
C9A0.0584 (14)0.0780 (18)0.0464 (14)0.0272 (13)0.0018 (11)0.0026 (13)
C10A0.090 (2)0.121 (3)0.0477 (15)0.0066 (19)0.0129 (14)0.0029 (16)
O1B0.0432 (9)0.0934 (14)0.0461 (10)0.0017 (9)0.0090 (8)0.0090 (9)
O2B0.0402 (8)0.0568 (10)0.0552 (9)0.0113 (7)0.0037 (7)0.0113 (8)
O3B0.0366 (7)0.0495 (9)0.0560 (9)0.0084 (7)0.0045 (6)0.0017 (7)
N1B0.0311 (9)0.0445 (11)0.0464 (11)0.0034 (8)0.0057 (8)0.0023 (9)
C1B0.0365 (10)0.0383 (12)0.0371 (12)0.0048 (9)0.0054 (9)0.0063 (10)
C2B0.0389 (11)0.0462 (13)0.0410 (12)0.0043 (10)0.0014 (9)0.0003 (10)
C3B0.0278 (10)0.0389 (12)0.0453 (12)0.0033 (9)0.0009 (9)0.0044 (10)
C4B0.0304 (9)0.0405 (13)0.0393 (11)0.0007 (9)0.0024 (8)0.0016 (10)
C5B0.0447 (11)0.0410 (13)0.0501 (13)0.0024 (10)0.0077 (10)0.0046 (11)
C6B0.0518 (13)0.0516 (15)0.0530 (14)0.0092 (11)0.0112 (11)0.0023 (11)
C7B0.0456 (12)0.0636 (17)0.0522 (14)0.0018 (12)0.0116 (10)0.0097 (13)
C8B0.0675 (15)0.0585 (17)0.0582 (15)0.0232 (13)0.0125 (13)0.0071 (13)
C9B0.0637 (14)0.0419 (14)0.0515 (14)0.0104 (11)0.0077 (11)0.0007 (11)
C10B0.0763 (18)0.101 (2)0.084 (2)0.0021 (17)0.0392 (15)0.0106 (18)
Geometric parameters (Å, º) top
O1A—C1A1.326 (2)O1B—C1B1.319 (2)
O2A—C1A1.205 (2)O2B—C1B1.206 (2)
O3A—C3A1.238 (2)O3B—C3B1.241 (2)
N1A—C3A1.338 (3)N1B—C3B1.340 (3)
N1A—C2A1.442 (3)N1B—C2B1.445 (2)
C1A—C2A1.506 (3)C1B—C2B1.493 (3)
C3A—C4A1.490 (3)C3B—C4B1.490 (3)
C4A—C9A1.379 (3)C4B—C9B1.382 (3)
C4A—C5A1.391 (3)C4B—C5B1.388 (3)
C5A—C6A1.376 (3)C5B—C6B1.382 (3)
C6A—C7A1.374 (3)C6B—C7B1.374 (3)
C7A—C8A1.383 (3)C7B—C8B1.381 (3)
C7A—C10A1.514 (3)C7B—C10B1.519 (3)
C8A—C9A1.381 (3)C8B—C9B1.384 (3)
O1A—H1A0.910 (3)O1B—H1B0.860 (3)
N1A—H4A0.850 (2)N1B—H4B0.862 (2)
C2A—H2A0.970C2B—H2B0.970
C2A—H3A0.970C2B—H3B0.970
C5A—H5A0.930C5B—H5B0.930
C6A—H6A0.930C6B—H6B0.930
C8A—H7A0.930C8B—H7B0.930
C9A—H8A0.930C9B—H8B0.930
C10A—H9A0.960C10B—H9B0.960
C10A—H10A0.960C10B—H10B0.960
C10A—H11A0.960C10B—H11B0.960
C3A—N1A—C2A120.61 (19)C3B—N1B—C2B121.50 (18)
O2A—C1A—O1A124.58 (18)O2B—C1B—O1B124.74 (19)
C1A—O1A—H1A109.7 (2)C1B—O1B—H1B111.0 (2)
O2A—C1A—C2A124.29 (18)O2B—C1B—C2B124.81 (18)
O1A—C1A—C2A111.13 (18)O1B—C1B—C2B110.45 (18)
N1A—C2A—C1A112.87 (17)N1B—C2B—C1B114.32 (16)
C2A—N1A—H4A119.5 (2)C2B—N1B—H4B119.4 (1)
C3A—N1A—H4A119.8 (2)C3B—N1B—H4B118.8 (1)
O3A—C3A—N1A119.9 (2)O3B—C3B—N1B121.14 (18)
O3A—C3A—C4A120.85 (19)O3B—C3B—C4B120.57 (18)
N1A—C3A—C4A119.20 (18)N1B—C3B—C4B118.19 (17)
C9A—C4A—C5A117.2 (2)C9B—C4B—C5B117.79 (18)
C9A—C4A—C3A124.61 (19)C9B—C4B—C3B124.24 (19)
C5A—C4A—C3A118.21 (19)C5B—C4B—C3B117.94 (18)
C6A—C5A—C4A121.6 (2)C6B—C5B—C4B121.1 (2)
C7A—C6A—C5A121.6 (2)C7B—C6B—C5B121.6 (2)
C6A—C7A—C8A116.8 (2)C6B—C7B—C8B117.0 (2)
C6A—C7A—C10A121.2 (2)C6B—C7B—C10B120.4 (2)
C8A—C7A—C10A122.1 (2)C8B—C7B—C10B122.5 (2)
C9A—C8A—C7A122.4 (2)C7B—C8B—C9B122.3 (2)
C4A—C9A—C8A120.6 (2)C4B—C9B—C8B120.2 (2)
C1A—C2A—H2A109.0N1B—C2B—H2B109.0
N1A—C2A—H2A109.0N1B—C2B—H3B109.0
N1A—C2A—H3A109.0C1B—C2B—H2B109.0
H2A—C2A—H3A108.0C1B—C2B—H3B109.0
C1A—C2A—H3A109.0H2B—C2B—H3B108.0
C6A—C5A—H5A119.0C4B—C5B—H5B120.0
C4A—C5A—H5A119.0C6B—C5B—H5B120.0
C7A—C6A—H6A119.0C5B—C6B—H6B119.0
C5A—C6A—H6A119.0C7B—C6B—H6B119.0
C9A—C8A—H7A119.0C7B—C8B—H7B119.0
C7A—C8A—H7A119.0C9B—C8B—H7B119.0
C4A—C9A—H8A120.0C4B—C9B—H8B120.0
C8A—C9A—H8A120.0C8B—C9B—H8B120.0
C7A—C10A—H10A109.0C7B—C10B—H9B109.0
C7A—C10A—H9A109.0C7B—C10B—H10B109.0
H9A—C10A—H11A109.0C7B—C10B—H11B109.0
H9A—C10A—H10A109.0H9B—C10B—H10B109.0
C7A—C10A—H11A109.0H9B—C10B—H11B109.0
H10A—C10A—H11A109.0H10B—C10B—H11B110.0
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds