Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Cu3(C9H17N3O3)2(NCS)2(CH3CN)2], contains two square-pyramidal CuII units chelated by a transoid asymmetrical N-[3-(dimethyl­amino)­propyl]-N′-(2-hy­droxy­ethyl)­oxamidate (dmapheoxd) dianion {H2dmapheoxd is N-[3-(dimethyl­amino)­propyl]-N′-(2-hydroxy­ethyl)­ox­am­ide}, which coordinates to another CuII ion in a square-planar environment lying on a crystallographic inversion center. Thus, the trans-oxamide ligand bridges two CuII ions with different coordination numbers, and this is the first instance of such a zero-dimensional oxamide-bridged complex. The activated methyl group in the coordinated acetonitrile mol­ecule is involved in a strong nonclassical C—H...O hydrogen bond, which contributes to a one-dimensional chain extending in the b direction. Considering the presence of weak bonding between the Cu atom and the uncoordinated hydroxyl O atoms, a two-dimensional structure is formed parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108003296/av3136sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003296/av3136Isup2.hkl
Contains datablock I

CCDC reference: 686413

Comment top

Symmetrical N,N'-bis(substituent)oxamides have been fully studied and are known to be versatile organic ligands which can both chelate and bridge metal ions to construct discrete and extended structures (Bencini et al., 1986; Dominguez-Vera et al., 1996; Real et al., 1994; Sanz et al., 1996). Compared with the large number of complexes bridged by symmetrical N,N'-bis(substituted)oxamides, only 11 complexes bridged by asymmetrical N,N'-bis(substituted)oxamides have been characterized to date by single-crystal X-ray diffraction (Table 3) [Cambridge Structural Database (CSD), Version 5.28; Allen, 2002]. In these complexes, all the asymmetrical ligands contain aromatic structure moieties as terminal groups, while no asymmetrical N,N'-bis(aminoalkyl)oxamide has been found. Taking the above facts into account, we synthesized a novel asymmetrical ligand, N-[3-(dimethylamino)propyl]-N'-(2-hydroxyethyl)oxamide (H2dmapheoxd), and its tricopper complex, the title compound, [Cu3(dmapheoxd)2(MeCN)2(NCS)2] (I), and report the crystal structure of the complex here.

The molecular structure of complex (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. Compound (I), a trinuclear CuII complex, is formed by two trans-oxamidate-chelated [Cu(dmapheoxd)(MeCN)(NCS)]- units as ligands coordinating another CuII ion (Cu1) sitting on a crystallographic inversion center. The central CuII atom (Cu1) is in a square-planar environment, while in the complex ligand the CuII ion (Cu2) has a slightly distorted [CuN4O] square-pyramidal coordination geometry. The basal plane is defined by the atom N4 of the SCN- ligand and three atoms (O2, N2 and N3) from the dmapheoxd ligand, with a maximum deviation of 0.013 (3) Å for atom O2 from the least-squares plane. The apical position is occupied by atom N5 of a coordinated acetonitrile molecule. In the basal plane, the Cu2—N2(amide) bond [1.972 (6) Å] is shorter than the Cu2—N3(amine) bond [2.052 (9) Å], which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the amine N atom (Jubert et al., 2002). The axial Cu—N bond length [Cu2—N5 = 2.390 (9) Å] is significantly longer than those in the basal plane, from which atom Cu2 is displaced by 0.177 (3) Å towards the apex. The Cu1···Cu2 distance is 5.248 (3) Å.

Although several examples have been observed of cis-oxamide bridging ligands chelating two metal ions with different coordination numbers (Cronin et al., 1999; Sun et al., 2007; Tao, Zang, Cheng et al., 2003), for transoid ligands the metal ions usually have equal ligancy, such as both five or four in general (denoted [5 + 5] or [4 + 4], respectively). Among the reported crystal structures of trans-oxamide bridging complexes, only two two-dimensional complexes have the styles of [4 + 5] (Chen et al., 1998) and [5 + 6] (Chen et al., 1994). The title compound also has the style of [4 + 5], and this is the first instance of this for a zero-dimensional complex with different ligancies. The hydroxyl group in the dmapheoxd ligand acts as a donor of the intramolecular hydrogen bond O1—H1···O3i [symmetry code: (i) -x, -y, -z; Table 2] and a seven-membered hydrogen-bonding circuit is formed (Fig. 1), folding at C2—O3i with a dihedral angle of 59.2 (3)°.

The distances C3—N1 [1.307 (9) Å] and C4—N2 [1.275 (9) Å] have typical values for CN. Whereas the bond lengths of C3—O2 [1.262 (9) Å] and C4—O3 [1.291 (8) Å] are well in accordance with those of (O)C—O- fragments in many complexes (Berg et al., 2002; Delgado et al., 2006; Nash & Schaefer, 1969), the oximade fragment is best described as N C—O- rather than delocalized.

The dimethylaminopropyl group in the dmapheoxd ligand is disordered over two positions (C6A–C9A and C6B–C9B), with occupancy factors of 0.55 and 0.45, respectively (Fig. 2). The puckering parameters (Cremer & Pople, 1975) of the corresponding six-membered chelating rings around Cu2 are Q = 0.575 (19) Å, θ = 142.7 (14)° and ϕ = 26 (2)°, and Q = 0.698 (15) Å, θ = 68.5 (10)° and ϕ = 196.5 (11)°, respectively.

In the crystal structure, only one classical hydrogen bond is observed, as noted above (Table 2). For all that, due to the activation of the methyl group by the cyano group of the acetonitrile ligand, the methyl interacts with the O atom of the hydroxyl group of a neighboring molecule, forming a non-classical C—H···O hydrogen bond (Fig. 3), via which a one-dimensional chain extending in the b direction is formed.

Related literature top

For related literature, see: Allen (2002); Bencini et al. (1986); Berg et al. (2002); Chen et al. (1994, 1998); Cremer & Pople (1975); Cronin et al. (1999); Delgado et al. (2006); Dominguez-Vera, Gulvez, Colacio, Cuesta, Costes & Laurent (1996); Jubert et al. (2002); Nash & Schaefer (1969); Real et al. (1994); Sanz et al. (1996); Sun et al. (2007); Tao, Zang, Cheng, Wang, Hu, Niu & Liao (2003).

Experimental top

All reagents were of AR grade and were used without further purification. The H2dmapheoxd ligand was synthesized as follows. An ethanol solution (10 ml) of 3-dimethylamino-1-propylamine (1.26 ml, 10 mmol) was added very slowly, via a dropping funnel, to an ethanol solution (10 ml) of diethyl oxalate (1.36 ml, 10 mmol) with continuous stirring. The mixture was stirred quickly for 30 min, and then an ethanol solution (10 ml) containing enthanolamine (0.60 ml) was added dropwise. The reaction solution was kept at room temperature with stirring for 3 h. The resulting solution was concentrated under vacuum and H2dmapheoxd precipitated as a white powder (yield 78%).

[Cu3(dmapheoxd)2(MeCN)2(NCS)2] was obtained according to the following procedure. To a solution of H2dmapheoxd (0.0217 g, 0.1 mmol) in acetonitrile (5 ml) were added successively piperidine (0.2 mmol) and a solution of CuCl2·2H2O (0.0256 g, 0.15 mmol) in acetonitrile (5 ml). The mixture was stirred quickly for 30 min, and then an acetonitrile solution (5 ml) containing KSCN (0.0098 g, 0.1 mmol) was added dropwise. The reaction solution was stirred continuously at 333 K for a further 5 h. Green crystals of the title complex suitable for X-ray analysis were obtained from the solution by slow evaporation at room temperature for 7 d (yield 70%). Elemental analysis for C24H40Cu3N10O6S2, calculated: C 35.18, H 4.92, N 17.09%; found: C 35.28, H 4.99, N 17.04%.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and treated as riding, with O—H = 0.85 Å and with a fixed Uiso(H) = 0.08 Å2. The remaining H atoms were placed in calculated positions, with C—H distances of 0.96 (methyl) or 0.97 Å (methylene), and refined in riding mode, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The CH3 groups were allowed to rotate freely around the C—N or C—C bond. Atoms C6, C7, C8 and C9 in the N-[3-(dimethylamino)propyl] moiety appeared to be disordered, and were refined as two parts (occupancy factors 0.55 and 0.45).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dotted lines. Disordered atoms C6B–C9B and C6Bi–C9Bi have been omitted for clarity. [Symmetry code: (i) -x, -y, -z.]
[Figure 2] Fig. 2. The positional disorder of the dimethylaminopropyl group in the dmapheoxd ligand. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The one-dimensional chain extending in the b direction. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 1, -z.]
Diacetonitrile-1κN,3κN-bis{µ-trans-N-[3-(dimethylamino)propyl]-N'- (2-hydroxyethyl)oxamidato(2-)}-1:2κ5N,N',O:O',N'';2:3κ5O',N'':N,N',O- dithiocyanato-1κN,3κN-tricopper(II) top
Crystal data top
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2]Z = 1
Mr = 819.45F(000) = 421
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.040 (5) ÅCell parameters from 1007 reflections
b = 8.262 (6) Åθ = 2.4–25.2°
c = 17.256 (13) ŵ = 2.04 mm1
α = 91.999 (10)°T = 298 K
β = 97.831 (10)°Prism, green
γ = 96.185 (10)°0.19 × 0.12 × 0.08 mm
V = 847.1 (11) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2987 independent reflections
Radiation source: fine-focus sealed tube1649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 67
Tmin = 0.698, Tmax = 0.854k = 99
4458 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
2987 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.63 e Å3
19 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2]γ = 96.185 (10)°
Mr = 819.45V = 847.1 (11) Å3
Triclinic, P1Z = 1
a = 6.040 (5) ÅMo Kα radiation
b = 8.262 (6) ŵ = 2.04 mm1
c = 17.256 (13) ÅT = 298 K
α = 91.999 (10)°0.19 × 0.12 × 0.08 mm
β = 97.831 (10)°
Data collection top
Bruker APEX area-detector
diffractometer
2987 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1649 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.854Rint = 0.048
4458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06319 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
2987 reflectionsΔρmin = 0.49 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.0445 (4)
Cu20.26972 (16)0.31187 (12)0.27230 (6)0.0438 (4)
S10.0488 (5)0.7658 (3)0.40289 (15)0.0693 (8)
O10.5675 (10)0.1578 (7)0.0271 (4)0.0637 (17)
H10.47160.12490.05400.080*
O20.0379 (9)0.3276 (6)0.1780 (3)0.0516 (15)
O30.1903 (9)0.0347 (6)0.0983 (3)0.0455 (14)
N10.0662 (10)0.1953 (7)0.0556 (4)0.0392 (15)
N20.3151 (10)0.1090 (8)0.2160 (4)0.0406 (16)
N30.4609 (10)0.2646 (7)0.3749 (4)0.0506 (18)
N40.1577 (12)0.4950 (9)0.3228 (4)0.0522 (18)
N50.5423 (14)0.4881 (10)0.2179 (5)0.071 (2)
C10.4541 (14)0.2754 (10)0.0318 (5)0.053 (2)
H1A0.46720.23270.08290.064*
H1B0.52930.37340.02830.064*
C20.2050 (13)0.3211 (9)0.0260 (5)0.046 (2)
H2A0.18730.33760.02830.055*
H2B0.15280.42310.05570.055*
C30.0407 (13)0.2147 (9)0.1270 (5)0.0389 (18)
C40.1922 (13)0.0833 (9)0.1496 (5)0.0388 (19)
C50.4874 (16)0.0004 (11)0.2370 (5)0.065 (3)
H5A0.62410.03970.21680.078*0.454 (18)
H5B0.43580.10800.21270.078*0.454 (18)
H5C0.41830.10100.25510.078*0.546 (18)
H5D0.55530.02710.19110.078*0.546 (18)
C6A0.539 (4)0.013 (2)0.3246 (7)0.058 (7)0.454 (18)
H6A0.40140.04910.34560.070*0.454 (18)
H6B0.64370.09270.33630.070*0.454 (18)
C6B0.669 (2)0.080 (2)0.3005 (7)0.056 (6)0.546 (18)
H6C0.79010.01220.30990.067*0.546 (18)
H6D0.73020.18480.28410.067*0.546 (18)
C7A0.638 (3)0.1507 (19)0.3619 (18)0.059 (9)0.454 (18)
H7A0.73980.20240.32890.070*0.454 (18)
H7B0.72560.13480.41200.070*0.454 (18)
C7B0.566 (4)0.1034 (19)0.3741 (12)0.056 (7)0.546 (18)
H7C0.68130.10370.41930.067*0.546 (18)
H7D0.45160.01330.37770.067*0.546 (18)
C8A0.338 (6)0.201 (4)0.439 (2)0.044 (7)0.454 (18)
H8A0.26530.28710.46040.066*0.454 (18)
H8B0.44220.16350.47950.066*0.454 (18)
H8C0.22670.11300.41840.066*0.454 (18)
C8B0.301 (5)0.251 (3)0.4347 (17)0.045 (6)0.546 (18)
H8D0.38220.23400.48500.067*0.546 (18)
H8E0.18690.16150.41970.067*0.546 (18)
H8F0.23190.35040.43770.067*0.546 (18)
C9A0.585 (3)0.425 (2)0.406 (2)0.039 (7)0.454 (18)
H9A0.68540.40970.45300.059*0.454 (18)
H9B0.47960.49810.41850.059*0.454 (18)
H9C0.67030.47160.36780.059*0.454 (18)
C9B0.648 (3)0.398 (2)0.400 (2)0.049 (7)0.546 (18)
H9D0.73290.37100.44830.073*0.546 (18)
H9E0.58540.49830.40840.073*0.546 (18)
H9F0.74390.40990.36050.073*0.546 (18)
C100.1182 (14)0.6088 (10)0.3561 (5)0.047 (2)
C110.6791 (16)0.5777 (11)0.1996 (5)0.053 (2)
C120.8580 (16)0.6906 (10)0.1797 (6)0.063 (2)
H12A0.98140.63260.16960.094*
H12B0.90730.76950.22240.094*
H12C0.80500.74520.13370.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0654 (10)0.0367 (8)0.0301 (9)0.0107 (7)0.0001 (7)0.0075 (6)
Cu20.0410 (6)0.0498 (6)0.0389 (7)0.0093 (4)0.0004 (5)0.0146 (5)
S10.0906 (19)0.0505 (14)0.0660 (18)0.0188 (13)0.0055 (15)0.0176 (12)
O10.061 (4)0.071 (4)0.056 (4)0.005 (3)0.002 (3)0.012 (3)
O20.052 (4)0.057 (3)0.045 (4)0.022 (3)0.004 (3)0.022 (3)
O30.058 (4)0.042 (3)0.036 (3)0.012 (3)0.004 (3)0.008 (3)
N10.045 (4)0.042 (4)0.031 (4)0.011 (3)0.002 (3)0.000 (3)
N20.039 (4)0.052 (4)0.028 (4)0.010 (3)0.007 (3)0.007 (3)
N30.052 (4)0.054 (4)0.045 (5)0.009 (4)0.005 (4)0.011 (3)
N40.056 (5)0.060 (5)0.038 (5)0.008 (4)0.002 (4)0.016 (4)
N50.073 (6)0.069 (5)0.070 (6)0.003 (5)0.020 (5)0.005 (4)
C10.059 (6)0.057 (5)0.046 (6)0.017 (4)0.011 (4)0.005 (4)
C20.049 (5)0.040 (4)0.046 (6)0.002 (4)0.003 (4)0.006 (4)
C30.035 (4)0.046 (5)0.036 (5)0.004 (4)0.006 (4)0.001 (4)
C40.037 (5)0.037 (4)0.043 (5)0.003 (4)0.013 (4)0.006 (4)
C50.089 (7)0.066 (6)0.039 (6)0.036 (6)0.009 (5)0.018 (5)
C6A0.065 (15)0.063 (14)0.051 (15)0.034 (12)0.004 (11)0.009 (11)
C6B0.067 (12)0.078 (13)0.022 (10)0.028 (10)0.011 (8)0.006 (9)
C7A0.050 (15)0.066 (17)0.05 (2)0.009 (14)0.011 (13)0.010 (14)
C7B0.069 (16)0.047 (11)0.047 (13)0.012 (11)0.014 (11)0.002 (11)
C8A0.056 (15)0.019 (16)0.060 (18)0.015 (11)0.012 (13)0.009 (11)
C8B0.068 (16)0.029 (15)0.037 (11)0.008 (10)0.001 (10)0.017 (11)
C9A0.008 (10)0.064 (14)0.044 (13)0.003 (10)0.007 (12)0.027 (12)
C9B0.027 (11)0.071 (13)0.052 (13)0.016 (10)0.013 (12)0.011 (10)
C100.051 (5)0.050 (5)0.035 (5)0.004 (4)0.009 (4)0.012 (4)
C110.060 (6)0.057 (5)0.046 (6)0.017 (5)0.008 (5)0.006 (4)
C120.073 (6)0.050 (5)0.064 (7)0.002 (5)0.008 (5)0.005 (5)
Geometric parameters (Å, º) top
Cu1—N11.954 (6)C5—C6A1.511 (11)
Cu1—N1i1.954 (6)C5—C6B1.520 (11)
Cu1—O31.964 (5)C5—H5A0.9700
Cu1—O3i1.964 (5)C5—H5B0.9700
Cu2—N21.972 (6)C5—H5C0.9700
Cu2—N32.052 (7)C5—H5D0.9700
Cu2—N41.948 (7)C6A—C7A1.506 (11)
Cu2—N52.390 (9)C6A—H6A0.9700
Cu2—O22.015 (6)C6A—H6B0.9700
S1—C101.626 (8)C7A—H7A0.9700
O1—C11.430 (9)C7A—H7B0.9700
O1—H10.8499C8A—H8A0.9600
O2—C31.262 (9)C8A—H8B0.9600
O3—C41.291 (8)C8A—H8C0.9600
N1—C31.307 (9)C9A—H9A0.9600
N1—C21.467 (9)C9A—H9B0.9600
N2—C41.275 (9)C9A—H9C0.9600
N2—C51.467 (10)C6B—C7B1.502 (11)
N3—C7A1.533 (14)C6B—H6C0.9700
N3—C7B1.537 (13)C6B—H6D0.9700
N3—C8A1.494 (10)C7B—H7C0.9700
N3—C8B1.506 (9)C7B—H7D0.9700
N3—C9A1.500 (10)C8B—H8D0.9600
N3—C9B1.496 (10)C8B—H8E0.9600
N4—C101.148 (9)C8B—H8F0.9600
N5—C111.134 (11)C9B—H9D0.9600
C1—C21.529 (11)C9B—H9E0.9600
C1—H1A0.9700C9B—H9F0.9600
C1—H1B0.9700C11—C121.436 (13)
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—C41.522 (10)C12—H12C0.9600
O3—Cu1—O3i180N2—C5—H5D109.4
N1i—Cu1—N1180C6A—C5—C6B45.4 (9)
N1i—Cu1—O395.2 (2)C6A—C5—H5A109.2
N1—Cu1—O384.8 (2)C6A—C5—H5B109.2
N1i—Cu1—O3i84.8 (2)C6A—C5—H5C67.0
N1—Cu1—O3i95.2 (2)C6A—C5—H5D137.4
O2—Cu2—N3169.2 (2)C6B—C5—H5A67.3
O2—Cu2—N591.4 (3)C6B—C5—H5B139.0
N2—Cu2—N395.0 (3)C6B—C5—H5C109.8
N2—Cu2—N597.0 (3)C6B—C5—H5D109.2
N2—Cu2—O282.7 (2)H5A—C5—H5B107.9
N3—Cu2—N599.3 (3)H5A—C5—H5C138.9
N4—Cu2—N2167.9 (3)H5A—C5—H5D45.3
N4—Cu2—N391.5 (3)H5B—C5—H5C45.8
N4—Cu2—N592.1 (3)H5B—C5—H5D65.2
N4—Cu2—O289.1 (2)H5C—C5—H5D108.1
N4—Cu2—N391.5 (3)C5—C6A—H6A109.8
C1—O1—H1108.8C5—C6A—H6B109.8
C3—O2—Cu2111.5 (5)C7A—C6A—C5109.5 (18)
C4—O3—Cu1111.4 (5)C7A—C6A—H6A109.8
C2—N1—Cu1128.6 (5)C7A—C6A—H6B109.8
C3—N1—C2118.6 (6)C7A—C6A—H5C146.2
C3—N1—Cu1112.7 (5)H5C—C6A—H6A82.1
C4—N2—C5118.0 (6)H5C—C6A—H6B95.2
C4—N2—Cu2113.6 (5)H6A—C6A—H6B108.2
C5—N2—Cu2127.9 (5)N3—C7A—H7A108.9
C7A—N3—Cu2112.5 (12)N3—C7A—H7B108.9
C7B—N3—Cu2115.4 (9)C6A—C7A—N3113.3 (13)
C8A—N3—C7A108.3 (8)C6A—C7A—H7A108.9
C8A—N3—C7B87.7 (12)C6A—C7A—H7B108.9
C8A—N3—C9A106 (2)H7A—C7A—H7B107.7
C8A—N3—C9B115 (2)N3—C8A—H8A109.5
C8A—N3—Cu2117.0 (18)N3—C8A—H8B109.5
C8B—N3—C7A127.2 (13)N3—C8A—H8C109.5
C8B—N3—C7B106.5 (7)N3—C9A—H9A109.5
C8B—N3—Cu2105.4 (14)N3—C9A—H9B109.5
C9A—N3—C7A107.1 (8)N3—C9A—H9C109.5
C9A—N3—C7B124.4 (15)C5—C6B—H6C110.0
C9A—N3—C8B96.1 (19)C5—C6B—H6D110.0
C9A—N3—Cu2105.7 (17)C6B—C7B—N3110.8 (12)
C9B—N3—C7A88.7 (12)C6B—C7B—H7C109.5
C9B—N3—C7B107.3 (8)C6B—C7B—H7D109.5
C9B—N3—C8B109.9 (19)C7B—C6B—C5108.6 (15)
C9B—N3—Cu2112.1 (15)C7B—C6B—H6C110.0
C10—N4—Cu2171.7 (7)C7B—C6B—H6D110.0
C11—N5—Cu2173.1 (8)H6C—C6B—H6D108.3
O1—C1—C2114.3 (6)N3—C7B—H7C109.5
O1—C1—H1A108.7N3—C7B—H7D109.5
O1—C1—H1B108.7H7C—C7B—H7D108.1
C2—C1—H1A108.7N3—C8B—H8D109.5
C2—C1—H1B108.7N3—C8B—H8E109.5
H1A—C1—H1B107.6N3—C8B—H8F109.5
N1—C2—C1112.2 (7)H8D—C8B—H8E109.5
N1—C2—H2A109.2H8D—C8B—H8F109.5
N1—C2—H2B109.2H8E—C8B—H8F109.5
C1—C2—H2A109.2N3—C9B—H9D109.5
C1—C2—H2B109.2N3—C9B—H9E109.5
H2A—C2—H2B107.9N3—C9B—H9F109.5
O2—C3—N1129.0 (7)H9D—C9B—H9E109.5
O2—C3—C4116.8 (7)H9D—C9B—H9F109.5
N1—C3—C4114.2 (6)H9E—C9B—H9F109.5
O3—C4—C3116.9 (7)N4—C10—S1177.0 (8)
N2—C4—O3128.0 (7)N5—C11—C12177.5 (10)
N2—C4—C3115.0 (6)C11—C12—H12A109.5
N2—C5—C6A111.8 (9)C11—C12—H12B109.5
N2—C5—C6B110.6 (8)C11—C12—H12C109.5
N2—C5—H5A109.2H12A—C12—H12B109.5
N2—C5—H5B109.2H12A—C12—H12C109.5
N2—C5—H5C109.7H12B—C12—H12C109.5
N2—Cu2—O2—C34.9 (5)C3—N1—C2—C198.3 (8)
N3—Cu2—O2—C382.7 (13)Cu1—N1—C2—C185.7 (8)
N4—Cu2—O2—C3175.9 (5)O1—C1—C2—N177.0 (9)
N5—Cu2—O2—C392.0 (5)Cu2—O2—C3—N1171.8 (6)
N1i—Cu1—O3—C4177.2 (5)Cu2—O2—C3—C46.7 (8)
N1—Cu1—O3—C42.8 (5)C2—N1—C3—O22.6 (12)
O3—Cu1—N1—C31.1 (5)Cu1—N1—C3—O2179.2 (7)
O3i—Cu1—N1—C3178.9 (5)C2—N1—C3—C4175.9 (6)
O3—Cu1—N1—C2177.3 (6)Cu1—N1—C3—C40.7 (8)
O3i—Cu1—N1—C22.7 (6)C5—N2—C4—O34.2 (12)
N4—Cu2—N2—C449.5 (16)Cu2—N2—C4—O3177.0 (6)
O2—Cu2—N2—C41.8 (5)C5—N2—C4—C3171.7 (7)
N3—Cu2—N2—C4171.2 (5)Cu2—N2—C4—C31.1 (8)
N5—Cu2—N2—C488.7 (6)Cu1—O3—C4—N2171.9 (7)
N4—Cu2—N2—C5138.5 (13)Cu1—O3—C4—C33.9 (8)
O2—Cu2—N2—C5173.8 (7)O2—C3—C4—N25.6 (10)
N3—Cu2—N2—C516.8 (7)N1—C3—C4—N2173.2 (6)
N5—Cu2—N2—C583.3 (7)O2—C3—C4—O3178.1 (6)
N4—Cu2—N3—C8A68.7 (15)N1—C3—C4—O33.2 (10)
N2—Cu2—N3—C8A101.0 (15)C4—N2—C5—C6A152.1 (10)
O2—Cu2—N3—C8A24 (2)Cu2—N2—C5—C6A36.2 (13)
N5—Cu2—N3—C8A161.0 (15)C4—N2—C5—C6B159.0 (9)
N4—Cu2—N3—C9B66.9 (10)Cu2—N2—C5—C6B12.7 (12)
N2—Cu2—N3—C9B123.4 (10)N2—C5—C6A—C7A63.9 (16)
O2—Cu2—N3—C9B159.8 (13)C6B—C5—C6A—C7A33.9 (11)
N5—Cu2—N3—C9B25.5 (10)C5—C6A—C7A—N382 (2)
N4—Cu2—N3—C9A48.5 (11)C8A—N3—C7A—C6A71 (3)
N2—Cu2—N3—C9A141.8 (11)C9B—N3—C7A—C6A173 (2)
O2—Cu2—N3—C9A141.4 (14)C9A—N3—C7A—C6A176 (3)
N5—Cu2—N3—C9A43.8 (11)C8B—N3—C7A—C6A72 (3)
N4—Cu2—N3—C8B52.6 (12)C7B—N3—C7A—C6A42 (3)
N2—Cu2—N3—C8B117.1 (12)Cu2—N3—C7A—C6A60 (2)
O2—Cu2—N3—C8B40.3 (18)N2—C5—C6B—C7B65.9 (14)
N5—Cu2—N3—C8B145.0 (12)C6A—C5—C6B—C7B34.9 (11)
N4—Cu2—N3—C7A165.0 (8)C5—C6B—C7B—N386.4 (18)
N2—Cu2—N3—C7A25.3 (8)C8A—N3—C7B—C6B164 (2)
O2—Cu2—N3—C7A102.0 (14)C9B—N3—C7B—C6B80.6 (19)
N5—Cu2—N3—C7A72.7 (8)C9A—N3—C7B—C6B88 (3)
N4—Cu2—N3—C7B169.8 (8)C8B—N3—C7B—C6B162 (2)
N2—Cu2—N3—C7B0.1 (8)C7A—N3—C7B—C6B43 (3)
O2—Cu2—N3—C7B76.9 (15)Cu2—N3—C7B—C6B45.2 (18)
N5—Cu2—N3—C7B97.8 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.852.152.985 (8)168
C12—H12C···O1ii0.962.393.320 (11)163
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu3(C9H17N3O3)2(NCS)2(C2H3N)2]
Mr819.45
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.040 (5), 8.262 (6), 17.256 (13)
α, β, γ (°)91.999 (10), 97.831 (10), 96.185 (10)
V3)847.1 (11)
Z1
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.19 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.698, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
4458, 2987, 1649
Rint0.048
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.175, 1.00
No. of reflections2987
No. of parameters247
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.49

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—N11.954 (6)Cu2—N41.948 (7)
Cu1—O31.964 (5)Cu2—N52.390 (9)
Cu2—N21.972 (6)Cu2—O22.015 (6)
Cu2—N32.052 (7)
O3—Cu1—O3i180N4—Cu2—N391.5 (3)
N1i—Cu1—N1180N4—Cu2—N592.1 (3)
N1i—Cu1—O395.2 (2)N4—Cu2—O289.1 (2)
N1—Cu1—O384.8 (2)N4—Cu2—N391.5 (3)
O2—Cu2—N3169.2 (2)C2—N1—Cu1128.6 (5)
O2—Cu2—N591.4 (3)C3—N1—C2118.6 (6)
N2—Cu2—N395.0 (3)C3—N1—Cu1112.7 (5)
N2—Cu2—N597.0 (3)C4—N2—C5118.0 (6)
N2—Cu2—O282.7 (2)C4—N2—Cu2113.6 (5)
N3—Cu2—N599.3 (3)C5—N2—Cu2127.9 (5)
N4—Cu2—N2167.9 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.852.152.985 (8)168
C12—H12C···O1ii0.962.393.320 (11)163
Symmetry codes: (i) x, y, z; (ii) x, y+1, z.
The 11 previously reported complexes bridged by asymmetrical N,N'-bis(substituted)oxamides top
ComplexCSD refcodeSubstituent 1 of the oxamide ligandSubstituent 2 of the oxamide ligand
[MnCu(obzp)(H2O)3]n.nH2O (a)JASNOGbenzoatepropionate
[MnCu(obze)(H2O)4].2H2O (b)KOCYUWbenzoateethanoate
[CoCu(obze)(H2O)4].2H2O (c)PIWZOKbenzoateethanoate
{[Cu2(oxbe)2(DMF)]Mn(H2O)}n.nDMF.nH2O (d)TUSWOTbenzoate2-aminoethyl
{[Cu(oxbe)]2Co(H2O)2}.2DMF.DMA (e)BAZDIQbenzoate2-aminoethyl
{[Ni(oxbe)]2Ni(H2O)2}.2.5DMF (f)ULOQIVbenzoate2-aminoethyl
{[Cu(oxbe)(py)]2Ni(py)2}.2DMF (g)ABOCAWbenzoate2-aminoethyl
{[Ni(oxbe)]2Cu(H2O)2}.2.5DMF (h)OBUCIYbenzoate2-aminoethyl
{[Cu(oxbp)]2Co(H2O)2}.1.5DMF.0.5H2O (i)IYEWISbenzoate3-aminopropyl
{Na2[Cu(oxbp)]2(H2O)}n.nH2O (j)NAQWAEbenzoate3-aminopropyl
[Sn2(oxhh)(phenyl)4] (k)QEHNIB2-hydroxy-phenyl2-hydroxy-1-methyl-2-phenyl-ethyl
Notes: (a) Pei et al. (1989) (obzp is Oxamido-N-benzoato-N'-propionate); (b) Pei et al. (1991) (obze is Oxamido-N-benzoato-N'-ethanoate); (c) Larionova et al. (1997); (d) Zang et al. (2003) [oxbe is N-benzoato-N'-(2-aminoethyl)oxamide, DMF is dimethylformamide]; (e) Tao, Zang, Hu et al. (2003) (DMA is dimethylamine); (f) Tao, Zang, Cheng et al. (2003); (g) Tao, Zang et al. (2004) (py is pyridine); (h) Tao, Mei et al. (2004); (i) Tao, Zang, Mei et al. (2003) [oxbp is N-benzoato-N'-(3-aminopropyl)oxamide]; (j) Matović et al. (2005); (k) Jiménez-Pérez et al. (2006) {H4oxhh is (1S,2R)-(-)-[N-(2-hydroxy-1-methyl-2-phenylethyl)-N'-(2-hydroxyphenyl)oxamide}.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds