Download citation
Download citation
link to html
The crystal structures of 9-[(E)-2-(4-fluoro­phen­yl)vin­yl]-9H-carbazole, C20H14FN, (I), 9-[(E)-2-(4-chloro­phen­yl)vin­yl]-9H-carbazole, C20H14ClN, (II), and 9-[(E)-2-(4-bromo­phen­yl)vin­yl]-9H-carbazole, C20H14BrN, (III), are determined mainly by van der Waals forces. The chloro and bromo derivatives are highly isomorphous, while the fluoro derivative has a different packing mode. Weak C—H...X inter­actions are also involved in the crystal packing. The mol­ecular structures of the three compounds are similar, with relatively large twist angles of ca 55° between the carbazole and benzene planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107054571/av3120sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054571/av3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054571/av3120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107054571/av3120IIIsup4.hkl
Contains datablock III

CCDC references: 672563; 672564; 672565

Comment top

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. Some carbazole alkaloids have been isolated from Murraya euchrestifolia (Ito et al., 1991), Murraya koenigii (e.g. Ito et al., 2006, and references therein) and Micromelum minutum (Nakahara et al., 2002). It has been reported that carbazole derivatives possess various biological activities, such as antitumor (Itoigawa et al., 2000), anti-oxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999). On the other hand, carbazole and its derivatives are very attractive compounds because of their electroactivity and luminescence properties and are also considered to be potential candidates for electronic devices, such as colour displays, organic semiconductor lasers and solar cells (Friend et al., 1999, and references therein). This molecule with a π-conjugated system is widely used as a good hole-transporting material in polymeric light-emitting diodes (PLEDs) (e.g. Zhang et al., 2006) or as an organic light-emitting diode (OLED) (Pan et al., 2005). Carbazole derivatives with N-halogenostyryl- substituents have important applications in photochemistry, possess an extended π-conjugated double-bond system and can easy undergo further modification (Prukała et al., 2007).

We report here the crystal and molecular structures of three N-halogenostyryl-carbazoles: 9-[(E)-2-(4-fluorophenyl)vinyl]-9H-carbazole, (I), 9-[(E)-2-(4-chlorophenyl)vinyl]-9H-carbazole, (II), and 9-[(E)-2-(4-bromophenyl)vinyl]-9H-carbazole, (III). Comparison of these structures is interesting also from the point of view of crystal engineering; it has been shown that in this aspect (intermolecular interactions) fluorine has different properties from the other halogens.

The bond angles within the phenyl ring are influenced by the presence of substituents (cf. Domenicano, 1988), and the final bond-angles patterns are close to additive combinations of their effects (Table 1); we have observed a similar influence in two nitrovinylcarbazoles (Kubicki et al., 2007).

The conformation of the molecules (Figs. 1–3) can be described by the dihedral angles between three approximately planar fragments, viz. the carbazole system, the bridging vinyl group and the phenyl ring (Table 2). The maximum deviations from the least-squares planes do not exceed 0.070 (2) Å for the carbazole ring system and 0.012 (1) Å for the benzene ring. In contrast to the m- and p-nitro derivatives (Kubicki et al., 2007), in which these angles are small, in halogen derivatives the twist is significant, up to almost 60° between the carbazole and phenyl ring planes. A similarly large value, 64.29 (4)°, was observed in the structure of 9-[(E)-2-(4-methoxyphenyl)vinyl]-9H-carbazole (Prukała et al., 2007).

In the crystal structures, van der Waals forces and some weak C—H···π and C—H···X interactions (Table 3) seem to be the most important factors determining the packing. Interestingly, contrary to the nitro-derivatives, there are no short ππ stacking interactions between the phenyl and carbazole ring systems.

The crystal structures of (II) and (III) are highly isomorphous; they crystallize in the same space group, and the unit cells and the packing modes are similar (Fig. 4). To obtain some insight into the degree of isomorphism, we have used the descriptors introduced by Kálmán et al. (1991). The unit-cell similarity index, Π, defined as the difference between unity and the ratio of the sums of the orthogonalized unit-cell parameters, is almost ideal (0.01). The isostructurality index, which shows how close are the positions of the atoms in the unit cells, is defined by the sum of the differences between the positions of the analogous atoms. In the case of (II) and (III) the value of this index is also close to the ideal value (99.5%). Kubicki & Szafrański (1998) proposed a modification of this latter parameter, which takes into account the point-group symmetry and gives a more absolute measure of the degree of isostructurality (it should be 1 for ideally isomorphous compounds and 0 for randomly distributed atoms). The value of this modified index is 98.5%.

In all three structures the crystal packing is determined mainly by van der Waals forces, weak C—H···π interactions and some C—H···X interactions. The role of relatively short and directional C—H···X contacts in the crystal packing can be important in the absence of other stronger interactions (cf. Desiraju & Steiner, 1999). In isomorphous (II) and (III), C—H···Cl and C—H···Br hydrogen bonds (Table 3) connect the molecules into infinite chains of 21 screw-related molecules along the [010] direction.

In (I), there are also chains of molecules along [010] – it can be stressed that the unit-cell b parameters are very similar in all three structures. Additionally, in (I), C—H···F interactions close centrosymmetric dimers (Table 3; cf. Chopra & Guru Row, 2005; Chan et al., 2006). The uniqueness of fluorine among the halogenes in crystal engineering has often been stressed (e.g. Lommerse et al., 1996; Valerio et al., 2000); the differences in the crystal packing of closely related structures described here are just another proof of this phenomenon.

Related literature top

For related literature, see: Chan et al. (2006); Chopra & Guru Row (2005); Desiraju & Steiner (1999); Domenicano (1988); Friend et al. (1999); Ito et al. (1991, 2006); Itoigawa et al. (2000); Kálmán et al. (1991); Kubicki & Szafrański (1998); Kubicki et al. (2007); Lommerse et al. (1996); Nakahara et al. (2002); Pan et al. (2005); Prukała et al. (2007); Ramsewak et al. (1999); Tachibana et al. (2001); Valerio et al. (2000); Zhang et al. (2006).

Experimental top

The syntheses of the title compounds were described elsewhere (Prukała et al., 2007). Crystals suitable for X-ray analysis were obtained by slow evaporation from methanol solutions.

Refinement top

The positions of H atoms in the structures of (I) and (II) were found in difference Fourier maps, and their positional and – in the case of (I) – isotropic displacement parameters were refined. For (III), H atoms were placed in ideal positions and refined as riding. The displacement parameters were set at 1.2Ueq of the carrier atoms in (II) and (III).

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. An anisotropic ellipsoid representation of (I), together with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. An anisotropic ellipsoid representation of (II), together with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as spheres with arbitrary radii.
[Figure 3] Fig. 3. An anisotropic ellipsoid representation of (III), together with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as spheres with arbitrary radii.
[Figure 4] Fig. 4. The crystal packing of (a) (II) and (b) (III), as seen along the b axis. The C—H···X contacts are depicted as dashed lines.
[Figure 5] Fig. 5. The crystal packing of (I), as seen along the b axis.
(I) 9-[(E)-2-(4-fluorophenyl)vinyl]-9H-carbazole top
Crystal data top
C20H14FNF(000) = 600
Mr = 287.32Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3035 reflections
a = 10.6715 (5) Åθ = 2.4–29.4°
b = 5.9502 (3) ŵ = 0.09 mm1
c = 22.9870 (11) ÅT = 100 K
β = 100.953 (5)°Block, colourless
V = 1433.03 (12) Å30.3 × 0.15 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.1929 pixels mm-1θmax = 29.5°, θmin = 2.9°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 58
Tmin = 0.89, Tmax = 0.98l = 2931
9484 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.018P)2]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H14FNV = 1433.03 (12) Å3
Mr = 287.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6715 (5) ŵ = 0.09 mm1
b = 5.9502 (3) ÅT = 100 K
c = 22.9870 (11) Å0.3 × 0.15 × 0.15 mm
β = 100.953 (5)°
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1963 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.98Rint = 0.040
9484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.060All H-atom parameters refined
S = 1.01Δρmax = 0.19 e Å3
3593 reflectionsΔρmin = 0.21 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35874 (12)0.0862 (2)0.58145 (5)0.0251 (3)
H10.3265 (10)0.0553 (18)0.5632 (4)0.021 (3)*
C20.43819 (13)0.2227 (2)0.55620 (6)0.0278 (3)
H20.4591 (11)0.1740 (18)0.5193 (5)0.032 (4)*
C30.48874 (13)0.4210 (2)0.58281 (6)0.0285 (3)
H30.5460 (11)0.518 (2)0.5643 (5)0.032 (4)*
C40.46118 (12)0.4868 (2)0.63668 (6)0.0254 (3)
H40.4954 (11)0.6212 (19)0.6565 (5)0.027 (3)*
C50.38248 (11)0.3508 (2)0.66349 (5)0.0202 (3)
C60.34288 (11)0.36184 (19)0.72057 (5)0.0206 (3)
C70.36399 (12)0.5165 (2)0.76690 (5)0.0246 (3)
H70.4139 (11)0.6532 (18)0.7635 (5)0.024 (3)*
C80.31127 (12)0.4752 (2)0.81633 (6)0.0277 (3)
H80.3259 (11)0.5816 (19)0.8491 (5)0.033 (4)*
C90.23703 (13)0.2845 (2)0.81938 (6)0.0272 (3)
H90.2012 (11)0.2563 (18)0.8537 (5)0.030 (4)*
C100.21406 (12)0.1297 (2)0.77383 (5)0.0250 (3)
H100.1608 (11)0.007 (2)0.7768 (4)0.025 (3)*
C110.26898 (11)0.1690 (2)0.72473 (5)0.0218 (3)
N120.26027 (9)0.04211 (16)0.67258 (4)0.0226 (3)
C130.33080 (11)0.1533 (2)0.63549 (5)0.0219 (3)
C140.17437 (11)0.1369 (2)0.65848 (5)0.0228 (3)
H140.1633 (10)0.2333 (17)0.6922 (5)0.021 (3)*
C150.10788 (12)0.1806 (2)0.60484 (5)0.0238 (3)
H150.1137 (10)0.0788 (18)0.5721 (5)0.027 (3)*
C160.01508 (11)0.3629 (2)0.59106 (5)0.0211 (3)
C170.08124 (12)0.3482 (2)0.54044 (5)0.0244 (3)
H170.0844 (10)0.2117 (18)0.5155 (5)0.026 (3)*
C180.17277 (12)0.5132 (2)0.52629 (5)0.0259 (3)
H180.2389 (11)0.5127 (18)0.4894 (5)0.036 (4)*
C190.16668 (12)0.6942 (2)0.56326 (5)0.0245 (3)
F190.25577 (7)0.86206 (11)0.54919 (3)0.0354 (2)
C200.07454 (12)0.7187 (2)0.61346 (6)0.0253 (3)
H200.0760 (11)0.8490 (19)0.6387 (5)0.034 (4)*
C210.01673 (12)0.5523 (2)0.62692 (5)0.0236 (3)
H210.0822 (11)0.5666 (18)0.6636 (5)0.033 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0247 (8)0.0267 (8)0.0234 (7)0.0024 (7)0.0035 (6)0.0010 (6)
C20.0250 (8)0.0362 (9)0.0234 (7)0.0068 (7)0.0077 (6)0.0032 (7)
C30.0232 (8)0.0341 (9)0.0287 (8)0.0013 (7)0.0060 (6)0.0091 (7)
C40.0212 (7)0.0249 (8)0.0287 (8)0.0004 (6)0.0006 (6)0.0020 (7)
C50.0171 (7)0.0202 (7)0.0228 (7)0.0020 (6)0.0025 (5)0.0037 (6)
C60.0160 (7)0.0215 (7)0.0234 (7)0.0025 (6)0.0018 (5)0.0017 (6)
C70.0195 (7)0.0244 (8)0.0284 (7)0.0001 (6)0.0007 (6)0.0020 (6)
C80.0247 (8)0.0326 (9)0.0248 (8)0.0023 (7)0.0022 (6)0.0081 (7)
C90.0247 (8)0.0364 (9)0.0219 (7)0.0026 (7)0.0079 (6)0.0002 (7)
C100.0239 (7)0.0276 (8)0.0239 (7)0.0015 (7)0.0053 (6)0.0008 (6)
C110.0204 (7)0.0244 (8)0.0202 (6)0.0031 (6)0.0029 (6)0.0000 (6)
N120.0254 (6)0.0219 (6)0.0206 (6)0.0021 (5)0.0052 (5)0.0008 (5)
C130.0191 (7)0.0238 (7)0.0222 (7)0.0017 (6)0.0027 (6)0.0043 (6)
C140.0236 (7)0.0205 (7)0.0250 (7)0.0021 (6)0.0066 (6)0.0016 (6)
C150.0246 (7)0.0244 (8)0.0231 (7)0.0029 (6)0.0059 (6)0.0024 (6)
C160.0196 (7)0.0233 (7)0.0213 (6)0.0021 (6)0.0062 (5)0.0036 (6)
C170.0261 (7)0.0270 (8)0.0206 (7)0.0050 (7)0.0055 (6)0.0017 (6)
C180.0213 (8)0.0338 (9)0.0229 (7)0.0025 (7)0.0048 (6)0.0042 (7)
C190.0181 (7)0.0282 (8)0.0285 (7)0.0045 (6)0.0081 (6)0.0090 (6)
F190.0288 (4)0.0407 (5)0.0363 (4)0.0096 (4)0.0052 (3)0.0081 (4)
C200.0248 (8)0.0237 (8)0.0280 (8)0.0015 (6)0.0061 (6)0.0015 (6)
C210.0207 (7)0.0252 (8)0.0236 (7)0.0034 (6)0.0010 (6)0.0000 (6)
Geometric parameters (Å, º) top
C1—C21.3793 (17)C10—H101.002 (12)
C1—C131.3901 (17)C11—N121.4050 (14)
C1—H10.974 (11)N12—C141.4026 (15)
C2—C31.3902 (18)N12—C131.4054 (15)
C2—H20.963 (11)C14—C151.3261 (15)
C3—C41.3826 (17)C14—H140.988 (11)
C3—H30.992 (12)C15—C161.4625 (17)
C4—C51.3914 (17)C15—H150.978 (11)
C4—H40.958 (11)C16—C211.3943 (16)
C5—C131.4018 (15)C16—C171.4013 (16)
C5—C61.4543 (16)C17—C181.3792 (17)
C6—C71.3932 (16)C17—H170.992 (10)
C6—C111.4055 (16)C18—C191.3659 (16)
C7—C81.3825 (17)C18—H180.995 (11)
C7—H70.983 (11)C19—C201.3743 (16)
C8—C91.3931 (18)C19—F191.3744 (13)
C8—H80.974 (11)C20—C211.3822 (17)
C9—C101.3813 (17)C20—H200.970 (11)
C9—H90.954 (12)C21—H210.991 (11)
C10—C111.3870 (17)
C2—C1—C13117.40 (12)N12—C11—C6109.13 (10)
C2—C1—H1121.5 (6)C14—N12—C11122.68 (10)
C13—C1—H1121.0 (6)C14—N12—C13128.26 (10)
C1—C2—C3122.20 (13)C11—N12—C13107.96 (9)
C1—C2—H2117.3 (7)C1—C13—C5121.25 (12)
C3—C2—H2120.5 (7)C1—C13—N12129.60 (11)
C4—C3—C2120.23 (13)C5—C13—N12108.99 (10)
C4—C3—H3118.3 (7)C15—C14—N12125.06 (12)
C2—C3—H3121.5 (7)C15—C14—H14119.5 (6)
C3—C4—C5118.77 (13)N12—C14—H14115.5 (6)
C3—C4—H4122.4 (7)C14—C15—C16124.57 (12)
C5—C4—H4118.8 (7)C14—C15—H15119.6 (7)
C4—C5—C13120.12 (11)C16—C15—H15115.6 (7)
C4—C5—C6132.59 (11)C21—C16—C17117.78 (12)
C13—C5—C6107.20 (10)C21—C16—C15122.64 (11)
C7—C6—C11119.90 (11)C17—C16—C15119.57 (11)
C7—C6—C5133.38 (12)C18—C17—C16121.76 (12)
C11—C6—C5106.72 (10)C18—C17—H17120.1 (6)
C8—C7—C6118.61 (13)C16—C17—H17118.1 (6)
C8—C7—H7121.6 (6)C19—C18—C17117.82 (12)
C6—C7—H7119.8 (6)C19—C18—H18118.4 (7)
C7—C8—C9120.69 (13)C17—C18—H18123.7 (7)
C7—C8—H8119.3 (7)C18—C19—C20123.23 (12)
C9—C8—H8120.0 (7)C18—C19—F19118.53 (11)
C10—C9—C8121.73 (13)C20—C19—F19118.23 (11)
C10—C9—H9117.9 (7)C19—C20—C21118.24 (12)
C8—C9—H9120.4 (7)C19—C20—H20119.8 (7)
C9—C10—C11117.55 (13)C21—C20—H20122.0 (7)
C9—C10—H10120.8 (6)C20—C21—C16121.16 (12)
C11—C10—H10121.6 (6)C20—C21—H21118.8 (7)
C10—C11—N12129.33 (12)C16—C21—H21120.0 (7)
C10—C11—C6121.51 (11)
C13—C1—C2—C30.40 (19)C2—C1—C13—N12175.61 (11)
C1—C2—C3—C40.7 (2)C4—C5—C13—C11.43 (18)
C2—C3—C4—C50.09 (19)C6—C5—C13—C1175.55 (11)
C3—C4—C5—C131.12 (18)C4—C5—C13—N12177.32 (11)
C3—C4—C5—C6174.96 (12)C6—C5—C13—N120.35 (13)
C4—C5—C6—C73.9 (2)C14—N12—C13—C117.3 (2)
C13—C5—C6—C7179.68 (12)C11—N12—C13—C1174.66 (12)
C4—C5—C6—C11176.23 (12)C14—N12—C13—C5167.27 (11)
C13—C5—C6—C110.22 (13)C11—N12—C13—C50.79 (13)
C11—C6—C7—C80.17 (18)C11—N12—C14—C15139.70 (13)
C5—C6—C7—C8179.94 (13)C13—N12—C14—C1526.78 (19)
C6—C7—C8—C90.93 (19)N12—C14—C15—C16177.64 (12)
C7—C8—C9—C100.5 (2)C14—C15—C16—C2122.22 (19)
C8—C9—C10—C110.71 (19)C14—C15—C16—C17156.80 (12)
C9—C10—C11—N12179.22 (12)C21—C16—C17—C180.63 (18)
C9—C10—C11—C61.49 (18)C15—C16—C17—C18178.44 (12)
C7—C6—C11—C101.07 (18)C16—C17—C18—C190.30 (19)
C5—C6—C11—C10178.85 (11)C17—C18—C19—C200.16 (19)
C7—C6—C11—N12179.21 (10)C17—C18—C19—F19178.81 (10)
C5—C6—C11—N120.71 (13)C18—C19—C20—C210.37 (19)
C10—C11—N12—C1410.01 (19)F19—C19—C20—C21178.61 (11)
C6—C11—N12—C14167.94 (10)C19—C20—C21—C160.71 (19)
C10—C11—N12—C13178.88 (12)C17—C16—C21—C200.84 (18)
C6—C11—N12—C130.93 (13)C15—C16—C21—C20178.20 (12)
C2—C1—C13—C50.65 (18)
(II) 9-[(E)-2-(4-chlorophenyl)vinyl]-9H-carbazole top
Crystal data top
C20H14ClNF(000) = 632
Mr = 303.77Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5665 reflections
a = 14.3190 (11) Åθ = 2.4–29.9°
b = 5.6943 (5) ŵ = 0.25 mm1
c = 18.6247 (18) ÅT = 100 K
β = 102.730 (7)°Block, colourless
V = 1481.3 (2) Å30.45 × 0.15 × 0.08 mm
Z = 4
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3382 independent reflections
Radiation source: fine-focus sealed tube2241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1818
Tmin = 0.85, Tmax = 0.98k = 57
12780 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080Only H-atom coordinates refined
S = 1.02 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
3382 reflections(Δ/σ)max = 0.003
241 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H14ClNV = 1481.3 (2) Å3
Mr = 303.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3190 (11) ŵ = 0.25 mm1
b = 5.6943 (5) ÅT = 100 K
c = 18.6247 (18) Å0.45 × 0.15 × 0.08 mm
β = 102.730 (7)°
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3382 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2241 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.98Rint = 0.039
12780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.080Only H-atom coordinates refined
S = 1.02Δρmax = 0.27 e Å3
3382 reflectionsΔρmin = 0.29 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06071 (11)0.7169 (3)0.08097 (9)0.0220 (3)
H10.0282 (10)0.576 (3)0.0618 (8)0.024*
C20.09982 (11)0.8623 (3)0.03547 (10)0.0258 (4)
H20.0876 (11)0.819 (3)0.0143 (9)0.031*
C30.14861 (11)1.0680 (3)0.06184 (10)0.0268 (4)
H30.1750 (11)1.164 (3)0.0270 (9)0.032*
C40.16037 (11)1.1320 (3)0.13475 (9)0.0240 (4)
H40.1940 (11)1.270 (3)0.1544 (8)0.029*
C50.12167 (10)0.9885 (2)0.18185 (8)0.0200 (3)
C60.12583 (10)0.9950 (2)0.26021 (8)0.0197 (3)
C70.16602 (11)1.1519 (3)0.31622 (9)0.0237 (4)
H70.1983 (11)1.291 (3)0.3037 (8)0.024*
C80.15803 (11)1.1040 (3)0.38746 (9)0.0257 (4)
H80.1865 (11)1.210 (3)0.4273 (9)0.031*
C90.11018 (11)0.9026 (3)0.40359 (9)0.0249 (4)
H90.1075 (11)0.874 (3)0.4558 (9)0.030*
C100.06864 (11)0.7459 (3)0.34907 (8)0.0210 (3)
H100.0376 (11)0.616 (3)0.3614 (8)0.025*
C110.07787 (10)0.7923 (2)0.27766 (8)0.0194 (3)
N120.04314 (9)0.6646 (2)0.21250 (7)0.0196 (3)
C130.07097 (10)0.7825 (2)0.15426 (8)0.0197 (3)
C140.02501 (11)0.4834 (2)0.20733 (9)0.0198 (3)
H140.0159 (10)0.384 (3)0.2517 (8)0.024*
C150.09655 (11)0.4494 (2)0.14920 (9)0.0201 (3)
H150.1036 (11)0.556 (2)0.1092 (8)0.024*
C160.17044 (10)0.2663 (2)0.14205 (8)0.0188 (3)
C170.25505 (11)0.2971 (3)0.08903 (9)0.0226 (4)
H170.2595 (11)0.431 (3)0.0572 (9)0.027*
C180.32980 (12)0.1378 (3)0.08031 (9)0.0249 (4)
H180.3940 (11)0.154 (3)0.0401 (9)0.030*
C190.31942 (11)0.0586 (3)0.12567 (9)0.0228 (4)
Cl190.41367 (3)0.26053 (7)0.11498 (2)0.02892 (13)
C200.23636 (11)0.0970 (3)0.17828 (9)0.0242 (4)
H200.2302 (11)0.233 (3)0.2079 (9)0.029*
C210.16189 (11)0.0642 (3)0.18604 (9)0.0215 (4)
H210.1045 (11)0.033 (2)0.2237 (8)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0181 (8)0.0227 (8)0.0250 (9)0.0007 (7)0.0046 (7)0.0025 (7)
C20.0209 (9)0.0322 (9)0.0247 (9)0.0051 (7)0.0061 (8)0.0016 (8)
C30.0209 (9)0.0284 (9)0.0324 (11)0.0028 (7)0.0089 (8)0.0083 (8)
C40.0185 (8)0.0195 (8)0.0342 (10)0.0001 (7)0.0059 (7)0.0025 (7)
C50.0153 (8)0.0178 (7)0.0263 (9)0.0029 (6)0.0033 (7)0.0010 (6)
C60.0127 (7)0.0192 (8)0.0268 (9)0.0023 (6)0.0033 (7)0.0008 (6)
C70.0176 (8)0.0191 (8)0.0335 (10)0.0005 (7)0.0035 (7)0.0029 (7)
C80.0202 (9)0.0269 (9)0.0281 (10)0.0011 (7)0.0010 (7)0.0088 (7)
C90.0203 (8)0.0307 (9)0.0232 (9)0.0050 (7)0.0036 (7)0.0012 (7)
C100.0180 (7)0.0219 (8)0.0235 (8)0.0003 (7)0.0051 (6)0.0016 (7)
C110.0125 (7)0.0202 (8)0.0244 (9)0.0020 (6)0.0013 (6)0.0024 (6)
N120.0178 (7)0.0187 (6)0.0222 (7)0.0012 (5)0.0041 (6)0.0007 (5)
C130.0146 (7)0.0193 (7)0.0250 (9)0.0034 (6)0.0040 (7)0.0022 (6)
C140.0180 (8)0.0172 (8)0.0252 (9)0.0005 (6)0.0071 (7)0.0002 (6)
C150.0208 (8)0.0174 (7)0.0235 (9)0.0022 (6)0.0079 (7)0.0016 (6)
C160.0183 (7)0.0191 (7)0.0209 (8)0.0000 (6)0.0086 (6)0.0039 (6)
C170.0221 (8)0.0240 (8)0.0225 (9)0.0007 (7)0.0065 (7)0.0010 (7)
C180.0207 (9)0.0281 (8)0.0263 (9)0.0010 (7)0.0058 (7)0.0021 (7)
C190.0193 (8)0.0221 (8)0.0301 (10)0.0040 (6)0.0119 (7)0.0073 (7)
Cl190.0235 (2)0.0258 (2)0.0403 (3)0.00755 (17)0.01306 (18)0.00714 (18)
C200.0253 (9)0.0192 (8)0.0299 (10)0.0010 (7)0.0100 (8)0.0002 (7)
C210.0186 (8)0.0202 (8)0.0257 (9)0.0026 (6)0.0045 (7)0.0015 (7)
Geometric parameters (Å, º) top
C1—C21.388 (2)C10—H100.916 (16)
C1—C131.391 (2)C11—N121.4081 (18)
C1—H10.958 (15)N12—C131.4060 (19)
C2—C31.396 (2)N12—C141.4085 (18)
C2—H20.937 (16)C14—C151.330 (2)
C3—C41.380 (2)C14—H140.985 (15)
C3—H30.986 (16)C15—C161.470 (2)
C4—C51.400 (2)C15—H150.949 (15)
C4—H40.952 (16)C16—C171.395 (2)
C5—C131.4154 (19)C16—C211.402 (2)
C5—C61.448 (2)C17—C181.385 (2)
C6—C71.397 (2)C17—H170.960 (15)
C6—C111.417 (2)C18—C191.390 (2)
C7—C81.384 (2)C18—H181.053 (16)
C7—H70.971 (15)C19—C201.382 (2)
C8—C91.402 (2)C19—Cl191.7506 (15)
C8—H80.974 (16)C20—C211.390 (2)
C9—C101.384 (2)C20—H200.946 (15)
C9—H90.996 (16)C21—H210.972 (15)
C10—C111.391 (2)
C2—C1—C13118.01 (15)N12—C11—C6108.66 (13)
C2—C1—H1120.1 (9)C13—N12—C14127.35 (13)
C13—C1—H1121.9 (9)C13—N12—C11108.19 (12)
C1—C2—C3121.55 (16)C14—N12—C11123.01 (13)
C1—C2—H2115.8 (10)C1—C13—N12129.97 (13)
C3—C2—H2122.5 (10)C1—C13—C5120.88 (14)
C4—C3—C2120.73 (16)N12—C13—C5109.00 (13)
C4—C3—H3121.3 (9)C15—C14—N12124.04 (14)
C2—C3—H3117.9 (9)C15—C14—H14122.4 (9)
C3—C4—C5118.88 (15)N12—C14—H14113.6 (9)
C3—C4—H4122.6 (9)C14—C15—C16125.91 (14)
C5—C4—H4118.5 (9)C14—C15—H15118.4 (9)
C4—C5—C13119.92 (14)C16—C15—H15115.6 (9)
C4—C5—C6133.06 (14)C17—C16—C21117.85 (14)
C13—C5—C6106.91 (13)C17—C16—C15118.06 (13)
C7—C6—C11119.35 (14)C21—C16—C15124.09 (13)
C7—C6—C5133.43 (14)C18—C17—C16121.93 (15)
C11—C6—C5107.22 (12)C18—C17—H17120.2 (9)
C8—C7—C6118.85 (15)C16—C17—H17117.8 (9)
C8—C7—H7122.3 (9)C17—C18—C19118.65 (15)
C6—C7—H7118.8 (9)C17—C18—H18124.0 (8)
C7—C8—C9120.94 (15)C19—C18—H18117.4 (8)
C7—C8—H8120.0 (9)C20—C19—C18121.22 (14)
C9—C8—H8119.1 (9)C20—C19—Cl19119.90 (12)
C10—C9—C8121.44 (16)C18—C19—Cl19118.88 (12)
C10—C9—H9120.4 (9)C19—C20—C21119.35 (15)
C8—C9—H9118.1 (9)C19—C20—H20119.9 (10)
C9—C10—C11117.59 (15)C21—C20—H20120.7 (10)
C9—C10—H10119.3 (10)C20—C21—C16120.99 (15)
C11—C10—H10123.1 (10)C20—C21—H21117.4 (9)
C10—C11—N12129.51 (13)C16—C21—H21121.6 (9)
C10—C11—C6121.81 (14)
C13—C1—C2—C30.3 (2)C2—C1—C13—C51.4 (2)
C1—C2—C3—C40.7 (2)C14—N12—C13—C119.3 (2)
C2—C3—C4—C50.7 (2)C11—N12—C13—C1174.23 (14)
C3—C4—C5—C130.4 (2)C14—N12—C13—C5165.16 (13)
C3—C4—C5—C6175.43 (15)C11—N12—C13—C51.30 (16)
C4—C5—C6—C73.5 (3)C4—C5—C13—C11.5 (2)
C13—C5—C6—C7179.71 (15)C6—C5—C13—C1175.36 (13)
C4—C5—C6—C11176.00 (16)C4—C5—C13—N12177.48 (13)
C13—C5—C6—C110.23 (15)C6—C5—C13—N120.66 (16)
C11—C6—C7—C80.2 (2)C13—N12—C14—C1524.4 (2)
C5—C6—C7—C8179.22 (15)C11—N12—C14—C15140.21 (15)
C6—C7—C8—C90.3 (2)N12—C14—C15—C16178.56 (13)
C7—C8—C9—C100.5 (2)C14—C15—C16—C17160.69 (15)
C8—C9—C10—C111.4 (2)C14—C15—C16—C2118.2 (2)
C9—C10—C11—N12179.90 (14)C21—C16—C17—C181.3 (2)
C9—C10—C11—C61.5 (2)C15—C16—C17—C18177.63 (14)
C7—C6—C11—C100.7 (2)C16—C17—C18—C190.3 (2)
C5—C6—C11—C10179.71 (13)C17—C18—C19—C200.4 (2)
C7—C6—C11—N12179.40 (12)C17—C18—C19—Cl19179.95 (12)
C5—C6—C11—N121.03 (15)C18—C19—C20—C210.1 (2)
C10—C11—N12—C13179.99 (15)Cl19—C19—C20—C21179.75 (12)
C6—C11—N12—C131.45 (15)C19—C20—C21—C160.9 (2)
C10—C11—N12—C1412.8 (2)C17—C16—C21—C201.6 (2)
C6—C11—N12—C14165.73 (13)C15—C16—C21—C20177.27 (14)
C2—C1—C13—N12176.48 (14)
(III) 9-[(E)-2-(4-bromophenyl)vinyl]-9H-carbazole top
Crystal data top
C20H14BrNF(000) = 704
Mr = 348.23Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2826 reflections
a = 14.5152 (5) Åθ = 2.8–29.2°
b = 5.6485 (2) ŵ = 2.74 mm1
c = 18.8260 (6) ÅT = 100 K
β = 103.605 (3)°Block, colourless
V = 1500.22 (9) Å30.3 × 0.12 × 0.1 mm
Z = 4
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.1929 pixels mm-1θmax = 29.0°, θmin = 2.9°
ω scanh = 1819
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 76
Tmin = 0.44, Tmax = 0.77l = 2420
9787 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.031P)2]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C20H14BrNV = 1500.22 (9) Å3
Mr = 348.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5152 (5) ŵ = 2.74 mm1
b = 5.6485 (2) ÅT = 100 K
c = 18.8260 (6) Å0.3 × 0.12 × 0.1 mm
β = 103.605 (3)°
Data collection top
Kuma KM-4 CCD four-circle
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2839 reflections with I > 2σ(I)
Tmin = 0.44, Tmax = 0.77Rint = 0.030
9787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.08Δρmax = 0.56 e Å3
3714 reflectionsΔρmin = 0.57 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.05920 (14)0.7145 (3)0.08078 (11)0.0191 (4)
H10.02610.57370.06270.023*
C20.09773 (14)0.8590 (4)0.03575 (11)0.0213 (4)
H20.09040.81670.01410.026*
C30.14720 (14)1.0660 (3)0.06207 (11)0.0235 (5)
H30.17251.16230.02990.028*
C40.15959 (13)1.1315 (3)0.13433 (10)0.0199 (4)
H40.19331.27180.15220.024*
C50.12176 (13)0.9880 (3)0.18066 (10)0.0167 (4)
X10.10952 (13)0.9168 (3)0.10834 (10)0.020*0.00
X20.08631 (13)0.8487 (3)0.21419 (10)0.020*0.00
X30.11896 (13)0.9556 (3)0.32800 (10)0.020*0.00
C60.12728 (13)0.9944 (3)0.25859 (10)0.0168 (4)
C70.16865 (13)1.1515 (3)0.31410 (11)0.0202 (4)
H70.20071.28890.30350.024*
C80.16222 (14)1.1040 (3)0.38472 (11)0.0220 (4)
H80.19011.20980.42300.026*
C90.11512 (14)0.9020 (3)0.40060 (11)0.0211 (4)
H90.11240.87170.44970.025*
C100.07213 (13)0.7446 (3)0.34608 (10)0.0191 (4)
H100.03900.60930.35680.023*
C110.07947 (13)0.7928 (3)0.27533 (10)0.0161 (4)
N120.04381 (11)0.6642 (3)0.21092 (8)0.0161 (3)
C130.07051 (13)0.7824 (3)0.15321 (10)0.0159 (4)
C140.02351 (13)0.4834 (3)0.20561 (10)0.0162 (4)
H140.01800.37950.24610.019*
C150.09497 (14)0.4475 (3)0.14735 (10)0.0172 (4)
H150.09860.55020.10680.021*
C160.16824 (13)0.2646 (3)0.13998 (10)0.0168 (4)
X40.24202 (13)0.1007 (3)0.13133 (10)0.020*0.00
C170.25092 (14)0.2920 (3)0.08539 (10)0.0213 (4)
H170.25650.42460.05360.026*
C180.32524 (14)0.1326 (4)0.07583 (11)0.0228 (4)
H180.38090.15430.03810.027*
C190.31630 (14)0.0591 (3)0.12261 (11)0.0196 (4)
Br190.419658 (14)0.27550 (3)0.111363 (11)0.02423 (7)
C200.23509 (14)0.0956 (3)0.17672 (11)0.0225 (4)
H200.23010.22910.20810.027*
C210.16088 (14)0.0643 (3)0.18495 (10)0.0188 (4)
H210.10440.03790.22150.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (10)0.0188 (9)0.0214 (10)0.0011 (8)0.0011 (8)0.0033 (8)
C20.0191 (11)0.0272 (10)0.0180 (10)0.0044 (8)0.0050 (8)0.0005 (8)
C30.0179 (11)0.0253 (11)0.0279 (11)0.0023 (8)0.0067 (9)0.0099 (9)
C40.0153 (11)0.0153 (9)0.0275 (11)0.0000 (7)0.0015 (8)0.0032 (8)
C50.0134 (10)0.0140 (9)0.0214 (10)0.0025 (7)0.0015 (8)0.0004 (8)
C60.0127 (10)0.0160 (9)0.0204 (10)0.0029 (7)0.0011 (8)0.0006 (8)
C70.0146 (10)0.0168 (9)0.0269 (11)0.0006 (7)0.0005 (8)0.0027 (8)
C80.0157 (10)0.0229 (10)0.0241 (11)0.0006 (8)0.0015 (8)0.0078 (8)
C90.0181 (11)0.0253 (11)0.0184 (10)0.0050 (8)0.0014 (8)0.0020 (8)
C100.0167 (10)0.0199 (10)0.0203 (10)0.0007 (8)0.0033 (8)0.0008 (8)
C110.0120 (9)0.0152 (9)0.0189 (9)0.0028 (7)0.0007 (7)0.0021 (7)
N120.0165 (9)0.0152 (8)0.0155 (8)0.0021 (6)0.0014 (6)0.0004 (6)
C130.0119 (9)0.0154 (9)0.0200 (9)0.0018 (7)0.0027 (7)0.0015 (8)
C140.0161 (10)0.0128 (9)0.0207 (10)0.0013 (7)0.0066 (8)0.0000 (7)
C150.0179 (10)0.0143 (9)0.0194 (10)0.0004 (7)0.0047 (8)0.0001 (7)
C160.0161 (9)0.0171 (10)0.0179 (9)0.0006 (7)0.0052 (7)0.0045 (7)
C170.0224 (11)0.0213 (10)0.0193 (10)0.0013 (8)0.0028 (8)0.0038 (8)
C180.0183 (11)0.0262 (10)0.0229 (11)0.0015 (8)0.0031 (8)0.0011 (9)
C190.0175 (10)0.0189 (10)0.0245 (11)0.0034 (7)0.0091 (8)0.0069 (8)
Br190.02019 (11)0.02325 (11)0.03118 (12)0.00704 (9)0.00994 (8)0.00681 (9)
C200.0240 (11)0.0202 (10)0.0240 (11)0.0007 (8)0.0070 (9)0.0015 (8)
C210.0169 (10)0.0177 (10)0.0209 (10)0.0021 (7)0.0024 (8)0.0012 (8)
Geometric parameters (Å, º) top
C1—C21.386 (3)C10—H100.9500
C1—C131.388 (3)C11—N121.404 (2)
C1—H10.9500N12—C141.401 (2)
C2—C31.400 (3)N12—C131.405 (2)
C2—H20.9500C14—C151.336 (2)
C3—C41.380 (3)C14—H140.9500
C3—H30.9500C15—C161.465 (2)
C4—C51.395 (3)C15—H150.9500
C4—H40.9500C16—C171.393 (3)
C5—C131.410 (2)C16—C211.402 (2)
C5—C61.451 (3)C17—C181.384 (3)
C6—C71.394 (3)C17—H170.9500
C6—C111.408 (3)C18—C191.382 (3)
C7—C81.381 (3)C18—H180.9500
C7—H70.9500C19—C201.380 (3)
C8—C91.398 (3)C19—Br191.9079 (19)
C8—H80.9500C20—C211.386 (3)
C9—C101.390 (3)C20—H200.9500
C9—H90.9500C21—H210.9500
C10—C111.388 (3)
C2—C1—C13117.82 (18)N12—C11—C6109.03 (16)
C2—C1—H1121.1C14—N12—C11123.23 (16)
C13—C1—H1121.1C14—N12—C13127.30 (15)
C1—C2—C3121.49 (18)C11—N12—C13108.03 (14)
C1—C2—H2119.3C1—C13—N12129.63 (17)
C3—C2—H2119.3C1—C13—C5121.17 (17)
C4—C3—C2120.65 (18)N12—C13—C5109.01 (16)
C4—C3—H3119.7C15—C14—N12124.28 (17)
C2—C3—H3119.7C15—C14—H14117.9
C3—C4—C5118.79 (18)N12—C14—H14117.9
C3—C4—H4120.6C14—C15—C16126.21 (17)
C5—C4—H4120.6C14—C15—H15116.9
C4—C5—C13120.06 (17)C16—C15—H15116.9
C4—C5—C6132.99 (17)C17—C16—C21117.72 (17)
C13—C5—C6106.86 (16)C17—C16—C15118.14 (16)
C7—C6—C11119.67 (18)C21—C16—C15124.13 (17)
C7—C6—C5133.27 (18)C18—C17—C16122.25 (18)
C11—C6—C5107.06 (16)C18—C17—H17118.9
C8—C7—C6118.91 (18)C16—C17—H17118.9
C8—C7—H7120.5C19—C18—C17118.25 (18)
C6—C7—H7120.5C19—C18—H18120.9
C7—C8—C9120.77 (18)C17—C18—H18120.9
C7—C8—H8119.6C20—C19—C18121.53 (18)
C9—C8—H8119.6C20—C19—Br19119.94 (15)
C10—C9—C8121.42 (19)C18—C19—Br19118.53 (15)
C10—C9—H9119.3C19—C20—C21119.45 (18)
C8—C9—H9119.3C19—C20—H20120.3
C11—C10—C9117.44 (18)C21—C20—H20120.3
C11—C10—H10121.3C20—C21—C16120.76 (18)
C9—C10—H10121.3C20—C21—H21119.6
C10—C11—N12129.19 (17)C16—C21—H21119.6
C10—C11—C6121.78 (17)
C13—C1—C2—C30.5 (3)C2—C1—C13—C51.7 (3)
C1—C2—C3—C40.4 (3)C14—N12—C13—C119.6 (3)
C2—C3—C4—C50.1 (3)C11—N12—C13—C1173.86 (19)
C3—C4—C5—C131.1 (3)C14—N12—C13—C5165.56 (17)
C3—C4—C5—C6174.84 (19)C11—N12—C13—C51.0 (2)
C4—C5—C6—C73.4 (4)C4—C5—C13—C12.1 (3)
C13—C5—C6—C7179.68 (19)C6—C5—C13—C1174.82 (17)
C4—C5—C6—C11176.2 (2)C4—C5—C13—N12177.40 (16)
C13—C5—C6—C110.1 (2)C6—C5—C13—N120.5 (2)
C11—C6—C7—C80.5 (3)C11—N12—C14—C15140.91 (19)
C5—C6—C7—C8179.05 (19)C13—N12—C14—C1523.7 (3)
C6—C7—C8—C90.0 (3)N12—C14—C15—C16178.47 (17)
C7—C8—C9—C101.0 (3)C14—C15—C16—C17162.37 (19)
C8—C9—C10—C111.4 (3)C14—C15—C16—C2117.0 (3)
C9—C10—C11—N12179.51 (18)C21—C16—C17—C181.5 (3)
C9—C10—C11—C60.9 (3)C15—C16—C17—C18177.85 (18)
C7—C6—C11—C100.0 (3)C16—C17—C18—C190.2 (3)
C5—C6—C11—C10179.61 (17)C17—C18—C19—C201.3 (3)
C7—C6—C11—N12179.66 (16)C17—C18—C19—Br19178.47 (15)
C5—C6—C11—N120.7 (2)C18—C19—C20—C210.5 (3)
C10—C11—N12—C1413.5 (3)Br19—C19—C20—C21179.23 (15)
C6—C11—N12—C14166.16 (16)C19—C20—C21—C161.3 (3)
C10—C11—N12—C13179.31 (18)C17—C16—C21—C202.3 (3)
C6—C11—N12—C131.0 (2)C15—C16—C21—C20177.04 (18)
C2—C1—C13—N12176.00 (19)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H14FNC20H14ClNC20H14BrN
Mr287.32303.77348.23
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100100
a, b, c (Å)10.6715 (5), 5.9502 (3), 22.9870 (11)14.3190 (11), 5.6943 (5), 18.6247 (18)14.5152 (5), 5.6485 (2), 18.8260 (6)
β (°) 100.953 (5) 102.730 (7) 103.605 (3)
V3)1433.03 (12)1481.3 (2)1500.22 (9)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.252.74
Crystal size (mm)0.3 × 0.15 × 0.150.45 × 0.15 × 0.080.3 × 0.12 × 0.1
Data collection
DiffractometerKuma KM-4 CCD four-circle
diffractometer
Kuma KM-4 CCD four-circle
diffractometer
Kuma KM-4 CCD four-circle
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.89, 0.980.85, 0.980.44, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
9484, 3593, 1963 12780, 3382, 2241 9787, 3714, 2839
Rint0.0400.0390.030
(sin θ/λ)max1)0.6920.6500.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.060, 1.01 0.035, 0.080, 1.02 0.029, 0.066, 1.08
No. of reflections359333823714
No. of parameters255241199
H-atom treatmentAll H-atom parameters refinedOnly H-atom coordinates refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.210.27, 0.290.56, 0.57

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1989).

Table 1. The influence of the substituents on the endocyclic bond angles in the benzene ring. The 'calc' values are taken from Domenicano (1988) and (for Br) from a Cambridge Structural Database analysis (Allen, 2002). top
angle1(exp)1(calc)2(exp)2(calc)3(exp)3(calc)
C21—C16—C17117.8 (1)117.8117.8 (1)118.0117.7 (2)117.9
C16—C17—C18121.8 (1)121.3121.9 (2)121.4122.3 (2)121.4
C17—C18—C19117.8 (1)118.3118.7 (2)118.9118.3 (2)119.3
C18—C19—C20123.2 (1)123.0121.2 (1)121.5121.5 (2)120.7
C19—C20—C21118.2 (1)118.3119.4 (2)118.9119.5 (2)119.3
C20—C21—C16121.2 (1)121.3121.0 (2)121.4120.8 (2)121.4
Table 2. Selected torsion angles (°) and the angles between mean planes of the planar fragments (°): (A) carbazole, (B) phenyl; (C) N—CC—C bridge, with s.u.'s in parentheses. top
123
C13—N12—C14—C15-26.8 (2)-24.4 (2)-23.8 (3)
N12—C14—C15—C16-177.6 (1)-178.6 (1)-178.4 (2)
C14—C15—C16—C17156.8 (1)160.7 (1)162.3 (2)
A/B58.28 (3)53.57 (4)54.04 (6)
A/C36.36 (9)35.46 (8)34.62 (10)
B/C22.22 (13)18.5 (2)16.9 (3)
Table 3. Hydrogen-bond data (Å, °). Cg3 and Cg4 denote the mid-point of the C6–C11 and C16–C21 rings. top
DHAD-HH···AD···AD-H···A
Compound 1
C1H1F19i0.974 (11)2.597 (10)3.2788 (14)127.2 (8)
C8H8F19ii0.974 (11)2.608 (11)3.3970 (15)138.2 (9)
C4H4Cg3iii0.958 (11)2.839 (16)3.671 (12)145.8 (9)
C9H9Cg4iv0.954 (12)2.834 (16)3.698 (11)151.0 (9)
Compound 2
C10H10Cl19v0.916 (16)2.879 (16)3.7871 (16)171.1 (12)
C14H14Cl19v0.985 (15)2.995 (15)3.8644 (17)147.9 (11)
C4H4Cg3vi0.952 (16)2.870 (16)3.624 (2)136.9 (12)
Compound 3
C10H10Br19v0.952.933.8738 (19)174
C14H14Br19v0.953.154.0036 (19)150
C4H4Cg3vi0.952.863.621 (3)138
Symmetry codes: (i) -x, -y-1, -z+1; (ii) -x, y+3/2, -z+3/2; (iii) -x+1, y+1/2, -z+3/2; (iv) -x, y+1/2, -z+3/2; (v) -x-1/2, y+1/2, -z+1/2; (vi) x, y-1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds