Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, tetra­kis[μ3-2-(5-hydr­oxy-2-oxido­benz­yl­ideneamino)-2-methyl­propanolato]tetra­copper(II) meth­anol tetra­solvate, [Cu4(C11H13NO3)4]·4CH3OH, two Cu2 cores are linked by two μ3-bridging alkoxo O atoms to form a centrosymmetric dimer of dicopper(II) units. Two Cu atoms coordinate to the NO2 (a phenolic O atom, an alcoholic O atom and an imine N atom) chelator unit of one ligand and an alcohol O atom of the other ligand, forming a distorted planar coordination configure. The remaining Cu atoms coordinate in a pyramidal geometry. The distorted basal plane is also formed by the N2O unit and the alcohol O atom from the second ligand, while an alcohol O atom from a third ligand occupies the axial position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050891/av3116sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050891/av3116Isup2.hkl
Contains datablock I

CCDC reference: 660426

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.094
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT147_ALERT_1_C su on Symmetry Constrained Cell Angle(s) ....... ? PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O2 .. 5.55 su PLAT320_ALERT_2_C Check Hybridisation of C6 in Main Residue . ? PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C5 - C6 ... 1.36 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 O2 -CU2 -O3 -C9 -108.70 1.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 O2 -CU2 -O3 -CU1 20.50 1.80 1.555 1.555 1.555 3.556 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 O3 -CU2 -O2 -C3 98.10 1.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 O5 -CU1 -O6 -C20 -80.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 O5 -CU1 -O6 -CU2 50.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 O5 -CU1 -O6 -CU2 150.00 4.00 1.555 1.555 1.555 3.556 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 43 O6 -CU1 -O5 -C12 75.00 4.00 1.555 1.555 1.555 1.555 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C H4 O
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.20 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.22
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 10 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

There has been continuous interest in high-nuclearity transition-metal complexes in order to elucidate the fundamentals of magnetic interactions (Kahn O., 1993; Kahn O., 1995; Gatteschi D., 1994). Especially, polynuclear metal complexes including O-bridges arising from O-alkoxo moieties have attracted intense interest (Paap et al., 1981; Atkins et al., 1993). Generally, the flexibility of the coordination sphere around CuII with varied distortions due to a pseudo-Jahn-Teller effect leads to its tremendous structral diversity. It has been exemplied that contruction of the polynuclear CuII complexes from the polydentate Schiff-based ligands represents a promising route, because the ligands can function in both bridging and chelating modes (Liu et al., 2005; Xie et al., 2007). Here we report a new tetranuclear CuII complex constructed from the salen ligand with alkoxo moieties, N-(2,5-dihyroxyphenylmethylene)-1-amino-1-methylpropanol.

As shown in Fig. 1, X-ray single-crystal analysis reveals the existance of a tetranulear CuII molecular skeleton in compound. In an ansymmetry unit, there are two CuII atoms, two ligands and two solvent methanol molecules. The tetranuclear complex contains two kinds of CuII center. Two Cu1 atoms each coordinate to the NO2 (a phenolic oxygen atom, an alcoholic oxygen atom and an imine N atom) chelator unit in one ligand and an alcohol oxygen atom from the other ligand, forming a distorted planar coordination sphere. While two Cu2 each coordinate in a pyramidal geometry. Its distorted basal plane is also formed by the N2O unit and the alcohol oxygen atom from the second ligand, and an alcohol oxygen atom from the third ligand occupies the axial position with the Cu—O distance as 2.34 Å. Two of the four alcohol oxygen atoms O3 in the ligands act as one µ2 bridged atom and the other two O6 act as µ3 bridge to link to Cu atoms together, resulting in the tetranuclear structure. Such structure can be described as two Cu—Cu cores (separated in 3.05 Å) linked by two µ3 bridged alcohol oxygen O6 and O6A atoms to form a centrosymmetric dimer of dicopper(II) moieties.

Related literature top

For related literature, see: Atkins et al. (1993); Gatteschi (1994); Kahn (1993, 1995); Liu et al. (2005); Xie et al. (2007); Paap et al. (1985).

Experimental top

1-Amino-1-methylpropanol (0.285 g, 3.20 mmol) was added to the solution of ethyl acetate containing 4-hydroxybenzaldehyde (0.345 g, 2.50 mmol). After keeping stirred at room temperature for 1 h, the precipitated yellow solid was then filtrated. Recrystallization from the mixture solvents (methanol:ethtyl acetate = 1:4) provided a yellow needle as the salen compound. Yield: 85%. 1H NMR (300 MHz, CDCl3) δ: 8.20 (s, 1H), 7.13 (d, J = 7.9 Hz, 1H), 6.12 (d, J = 7.9 Hz, 1H), 6.05 (s, 1H), 4.45 (s, 1H), 3.53 (s, 2H), 3.32 (s, 1H), 1.40 (s, 6H). 13C NMR (75 MHz, CDCl3) δ: 177.27, 166.35, 135.76, 110.06, 106.62, 68.86, 58.14, 22.52. IR (KBr, cm-1): 3061, 2972, 2900, 1636, 1229, 1072. Analysis found: C 63.41, H 7.50, N 6.72%; C11H15NO3 requires: C 63.14, H 7.23, N 6.69%.

The salen ligand (0.230 g, 1.1 mmol) was dissolved in 10 ml me thanol. The other 10 ml of methanol solution containing 0.20 g copper acetate (1.0 mmol) was then slowly added when keeping stirred at room temperature. After two hours, the resulting green solid was filtrated and washed by methanol for 4–6 times. Drying in vacuum provied the tetranuclear CuII complex. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared. Analysis found: C 47.56, H 5.52, N 4.17%; C48H68N4O16Cu4 requires: C 47.60, H 5.66, N 4.63%.

Refinement top

H atoms were visible in diference maps and were subsequently treated as riding atoms with distances C—H = 0.98 (CH3), 0.99 (CH2) or 1.00 Å (CH) and O—H = 0.84 Å.

Computing details top

Data collection: SMART; cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the tetranuclear CuII complex, showing the non-hydrogen atoms as 50% probability thermal ellipsoids. The hydrogen atoms and solvent molecules are omitted for clarity. (Symmetry code (A): -x, -y, 1 - z).
tetrakis[µ3-2-(5-hydroxy-2-oxidobenzylideneamino)-2- methylpropanolato]tetracopper(II) methanol tetrasolvate top
Crystal data top
[Cu4(C11H13NO3)4]·4CH4OF(000) = 1252
Mr = 1211.27Dx = 1.496 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 13.260 (1) ÅCell parameters from 198 reflections
b = 15.3170 (11) Åθ = 2.8–23.6°
c = 13.266 (1) ŵ = 1.63 mm1
β = 94.936 (1)°T = 293 K
V = 2684.4 (3) Å3Block, green
Z = 20.27 × 0.21 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5500 independent reflections
Radiation source: fine-focus sealed tube4143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.667, Tmax = 0.747k = 1619
15163 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.7871P]
where P = (Fo2 + 2Fc2)/3
5500 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu4(C11H13NO3)4]·4CH4OV = 2684.4 (3) Å3
Mr = 1211.27Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.260 (1) ŵ = 1.63 mm1
b = 15.3170 (11) ÅT = 293 K
c = 13.266 (1) Å0.27 × 0.21 × 0.19 mm
β = 94.936 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4143 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.747Rint = 0.032
15163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
5500 reflectionsΔρmin = 0.31 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03362 (3)0.14760 (2)0.40100 (2)0.03335 (10)
Cu20.10141 (2)0.02196 (2)0.43998 (3)0.03326 (11)
N10.23637 (17)0.06909 (14)0.43062 (18)0.0355 (5)
N20.06058 (17)0.13685 (14)0.25524 (17)0.0343 (5)
O10.35289 (19)0.33567 (14)0.3623 (2)0.0738 (8)
H10.30340.36270.37860.111*
O20.14247 (14)0.09726 (11)0.42952 (15)0.0395 (5)
O30.06112 (14)0.14255 (11)0.45695 (14)0.0336 (4)
O40.1033 (2)0.55741 (12)0.27462 (17)0.0581 (6)
H40.08640.56980.33380.087*
O50.02680 (16)0.27247 (12)0.39976 (14)0.0412 (5)
O60.03814 (13)0.01988 (11)0.40057 (14)0.0329 (4)
O70.08781 (19)0.65603 (14)0.44334 (18)0.0563 (6)
H7A0.04790.67580.48830.084*
O80.1988 (2)0.43416 (18)0.4108 (3)0.0982 (11)
H80.16420.41670.45500.147*
C10.3369 (2)0.2493 (2)0.3721 (3)0.0483 (8)
C20.2451 (2)0.21476 (18)0.3931 (2)0.0404 (7)
H20.19070.25230.39860.048*
C30.2311 (2)0.12554 (17)0.4062 (2)0.0342 (6)
C40.3151 (2)0.06916 (18)0.3953 (2)0.0368 (6)
C50.4071 (2)0.1072 (2)0.3714 (3)0.0511 (8)
H50.46180.07080.36290.061*
C60.4190 (3)0.1945 (2)0.3605 (3)0.0571 (9)
H60.48080.21740.34540.068*
C70.3133 (2)0.02352 (18)0.4083 (2)0.0397 (7)
H70.37280.05370.39990.048*
C80.2431 (2)0.16499 (17)0.4481 (2)0.0411 (7)
C90.1356 (2)0.19766 (18)0.4189 (2)0.0407 (7)
H9A0.12420.20050.34570.049*
H9B0.12850.25620.44520.049*
C100.2748 (3)0.1798 (2)0.5603 (3)0.0549 (9)
H10A0.34330.16040.57540.082*
H10B0.27020.24080.57560.082*
H10C0.23090.14740.60030.082*
C110.3168 (3)0.2113 (2)0.3827 (3)0.0659 (11)
H11A0.30520.19160.31400.099*
H11B0.30630.27320.38540.099*
H11C0.38510.19800.40790.099*
C120.0571 (2)0.32373 (17)0.3224 (2)0.0341 (6)
C130.0653 (2)0.41317 (17)0.3394 (2)0.0386 (7)
H130.05010.43510.40430.046*
C140.0956 (2)0.46972 (18)0.2615 (2)0.0406 (7)
C150.1183 (3)0.43913 (19)0.1646 (2)0.0475 (8)
H150.13810.47760.11240.057*
C160.1115 (2)0.35204 (19)0.1458 (2)0.0454 (7)
H160.12700.33180.08020.055*
C170.0816 (2)0.29170 (17)0.2229 (2)0.0354 (6)
C180.0791 (2)0.20114 (18)0.1946 (2)0.0373 (6)
H180.09210.18810.12620.045*
C190.0595 (2)0.04485 (17)0.2171 (2)0.0406 (7)
C200.0882 (2)0.01003 (18)0.3081 (2)0.0422 (7)
H20A0.16080.00700.31210.051*
H20B0.07040.07060.29770.051*
C210.0475 (3)0.0259 (2)0.1897 (3)0.0572 (9)
H21A0.06200.06130.13300.086*
H21B0.05300.03460.17240.086*
H21C0.09490.03920.24640.086*
C220.1361 (3)0.0277 (2)0.1279 (3)0.0657 (10)
H22A0.20110.04950.14270.098*
H22B0.14070.03400.11540.098*
H22C0.11520.05670.06900.098*
C230.1332 (3)0.7280 (2)0.3820 (3)0.0661 (10)
H23A0.14800.77560.42540.099*
H23B0.19450.70830.34540.099*
H23C0.08660.74720.33510.099*
C240.1820 (3)0.5212 (3)0.3951 (4)0.0832 (13)
H24A0.21040.55350.45280.125*
H24B0.11050.53190.38540.125*
H24C0.21340.53950.33600.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0420 (2)0.02276 (17)0.0347 (2)0.00045 (14)0.00022 (15)0.00095 (14)
Cu20.03172 (18)0.02416 (18)0.0440 (2)0.00098 (13)0.00402 (15)0.00292 (14)
N10.0353 (13)0.0261 (12)0.0450 (14)0.0032 (10)0.0037 (11)0.0022 (10)
N20.0388 (13)0.0281 (12)0.0351 (13)0.0046 (10)0.0017 (10)0.0032 (10)
O10.0655 (17)0.0387 (14)0.121 (2)0.0166 (11)0.0278 (17)0.0148 (14)
O20.0327 (10)0.0263 (10)0.0598 (13)0.0008 (8)0.0068 (9)0.0032 (9)
O30.0392 (10)0.0250 (9)0.0367 (11)0.0015 (8)0.0044 (8)0.0006 (8)
O40.0942 (19)0.0263 (11)0.0519 (15)0.0109 (11)0.0045 (14)0.0002 (9)
O50.0641 (13)0.0240 (10)0.0337 (11)0.0001 (9)0.0068 (10)0.0023 (8)
O60.0331 (10)0.0240 (9)0.0408 (11)0.0002 (8)0.0017 (8)0.0014 (8)
O70.0670 (16)0.0447 (13)0.0548 (15)0.0046 (11)0.0084 (12)0.0100 (11)
O80.089 (2)0.0605 (19)0.151 (3)0.0021 (16)0.043 (2)0.0052 (18)
C10.0504 (19)0.0382 (17)0.058 (2)0.0107 (15)0.0113 (16)0.0073 (15)
C20.0427 (17)0.0323 (16)0.0465 (18)0.0005 (12)0.0065 (14)0.0049 (13)
C30.0345 (15)0.0329 (15)0.0349 (16)0.0060 (12)0.0014 (12)0.0000 (12)
C40.0350 (15)0.0362 (16)0.0400 (16)0.0024 (12)0.0070 (13)0.0013 (12)
C50.0402 (18)0.052 (2)0.063 (2)0.0013 (15)0.0153 (16)0.0037 (16)
C60.049 (2)0.052 (2)0.073 (3)0.0119 (16)0.0196 (18)0.0070 (17)
C70.0341 (15)0.0399 (17)0.0455 (18)0.0033 (13)0.0060 (13)0.0051 (13)
C80.0414 (17)0.0262 (15)0.056 (2)0.0068 (12)0.0070 (14)0.0037 (13)
C90.0479 (17)0.0268 (15)0.0480 (18)0.0004 (13)0.0081 (14)0.0084 (13)
C100.052 (2)0.0418 (18)0.068 (2)0.0065 (15)0.0090 (17)0.0088 (16)
C110.058 (2)0.0398 (19)0.103 (3)0.0079 (16)0.025 (2)0.0133 (19)
C120.0356 (15)0.0281 (14)0.0388 (16)0.0028 (11)0.0044 (12)0.0043 (12)
C130.0509 (18)0.0282 (15)0.0360 (16)0.0023 (13)0.0010 (13)0.0017 (12)
C140.0476 (18)0.0290 (15)0.0454 (18)0.0059 (13)0.0052 (14)0.0027 (13)
C150.069 (2)0.0336 (17)0.0382 (18)0.0074 (15)0.0038 (16)0.0078 (13)
C160.061 (2)0.0393 (17)0.0344 (17)0.0060 (15)0.0024 (15)0.0018 (13)
C170.0431 (16)0.0282 (15)0.0349 (16)0.0041 (12)0.0025 (13)0.0014 (12)
C180.0421 (16)0.0369 (16)0.0328 (16)0.0031 (13)0.0020 (13)0.0020 (12)
C190.0521 (18)0.0269 (15)0.0420 (17)0.0067 (13)0.0013 (14)0.0084 (12)
C200.0442 (17)0.0297 (15)0.0508 (19)0.0040 (13)0.0064 (14)0.0055 (13)
C210.071 (2)0.0448 (19)0.058 (2)0.0162 (17)0.0179 (18)0.0056 (16)
C220.090 (3)0.046 (2)0.056 (2)0.0023 (19)0.023 (2)0.0132 (16)
C230.076 (3)0.054 (2)0.065 (3)0.0069 (19)0.008 (2)0.0059 (18)
C240.075 (3)0.069 (3)0.107 (4)0.002 (2)0.018 (3)0.018 (2)
Geometric parameters (Å, º) top
Cu1—O51.9150 (18)C8—C101.528 (4)
Cu1—N21.943 (2)C8—C91.530 (4)
Cu1—O3i1.9515 (18)C8—C111.535 (4)
Cu1—O61.9572 (17)C9—H9A0.9700
Cu1—Cu2i3.0477 (5)C9—H9B0.9700
Cu2—O21.9139 (18)C10—H10A0.9600
Cu2—O31.9414 (17)C10—H10B0.9600
Cu2—N11.944 (2)C10—H10C0.9600
Cu2—O61.9853 (17)C11—H11A0.9600
Cu2—O6i2.3419 (18)C11—H11B0.9600
Cu2—Cu1i3.0477 (5)C11—H11C0.9600
N1—C71.291 (3)C12—C131.394 (4)
N2—C181.282 (3)C13—H130.9300
N2—C191.498 (3)C14—C151.377 (4)
O1—C11.348 (3)C14—C131.382 (4)
O1—H10.8200C15—H150.9300
O2—C31.314 (3)C16—C151.361 (4)
O3—C91.424 (3)C16—H160.9300
O3—Cu1i1.9515 (18)C17—C161.410 (4)
O4—C141.359 (3)C17—C121.420 (4)
O4—H40.8200C17—C181.438 (4)
O5—C121.327 (3)C18—H180.9300
O6—C201.420 (3)C19—C221.515 (4)
O6—Cu2i2.3419 (18)C19—C201.546 (4)
O7—C231.468 (4)C20—H20A0.9700
O7—H7A0.8200C20—H20B0.9700
O8—C241.365 (4)C21—C191.522 (4)
O8—H80.8200C21—H21A0.9600
C1—C21.378 (4)C21—H21B0.9600
C1—C61.393 (5)C21—H21C0.9600
C2—H20.9300C22—H22A0.9600
C3—C21.392 (4)C22—H22B0.9600
C3—C41.427 (4)C22—H22C0.9600
C4—C51.411 (4)C23—H23A0.9600
C5—H50.9300C23—H23B0.9600
C6—C51.356 (4)C23—H23C0.9600
C6—H60.9300C24—H24A0.9600
C7—C41.430 (4)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—N11.488 (3)
O5—Cu1—N294.64 (8)C7—N1—C8122.1 (2)
O5—Cu1—O3i93.48 (8)C7—N1—Cu2124.30 (19)
N2—Cu1—O3i157.52 (9)C8—N1—Cu2113.59 (17)
O5—Cu1—O6178.80 (8)O5—C12—C13118.6 (2)
N2—Cu1—O684.80 (8)O5—C12—C17123.0 (2)
O3i—Cu1—O687.42 (7)C13—C12—C17118.4 (2)
O5—Cu1—Cu2i130.81 (6)C8—C10—H10A109.5
N2—Cu1—Cu2i126.54 (7)C8—C10—H10B109.5
O3i—Cu1—Cu2i38.36 (5)H10A—C10—H10B109.5
O6—Cu1—Cu2i50.21 (5)C8—C10—H10C109.5
O2—Cu2—O3177.49 (8)H10A—C10—H10C109.5
O2—Cu2—N194.62 (8)H10B—C10—H10C109.5
O3—Cu2—N185.30 (8)O1—C1—C2123.1 (3)
O2—Cu2—O686.42 (8)O1—C1—C6116.8 (3)
O3—Cu2—O694.48 (7)C2—C1—C6120.2 (3)
N1—Cu2—O6161.01 (9)N2—C19—C22113.7 (2)
O2—Cu2—O6i100.30 (7)N2—C19—C21107.2 (2)
O3—Cu2—O6i77.56 (7)C22—C19—C21110.9 (3)
N1—Cu2—O6i117.78 (8)N2—C19—C20103.7 (2)
O6—Cu2—O6i80.52 (7)C22—C19—C20108.8 (3)
O2—Cu2—Cu1i139.05 (6)C21—C19—C20112.3 (3)
O3—Cu2—Cu1i38.59 (5)C5—C6—C1118.9 (3)
N1—Cu2—Cu1i97.91 (7)C5—C6—H6120.5
O6—Cu2—Cu1i93.57 (5)C1—C6—H6120.5
O6i—Cu2—Cu1i39.95 (4)C16—C15—C14119.5 (3)
C9—O3—Cu2108.47 (16)C16—C15—H15120.3
C9—O3—Cu1i120.79 (17)C14—C15—H15120.3
Cu2—O3—Cu1i103.05 (8)C14—C13—C12121.1 (3)
C14—O4—H4109.5C14—C13—H13119.4
C3—O2—Cu2126.69 (17)C12—C13—H13119.4
C20—O6—Cu1109.69 (15)O6—C20—C19111.8 (2)
C20—O6—Cu2118.65 (16)O6—C20—H20A109.3
Cu1—O6—Cu2107.11 (8)C19—C20—H20A109.3
C20—O6—Cu2i127.42 (16)O6—C20—H20B109.3
Cu1—O6—Cu2i89.83 (7)C19—C20—H20B109.3
Cu2—O6—Cu2i99.48 (7)H20A—C20—H20B107.9
C1—O1—H1109.5N1—C7—C4125.9 (3)
C12—O5—Cu1125.90 (17)N1—C7—H7117.0
C18—N2—C19121.1 (2)C4—C7—H7117.0
C18—N2—Cu1124.65 (19)C5—C4—C3118.1 (3)
C19—N2—Cu1114.20 (17)C5—C4—C7117.4 (3)
C16—C17—C12118.4 (2)C3—C4—C7124.5 (2)
C16—C17—C18117.0 (3)C1—C2—C3122.2 (3)
C12—C17—C18124.6 (2)C1—C2—H2118.9
O2—C3—C2119.0 (2)C3—C2—H2118.9
O2—C3—C4123.1 (2)C6—C5—C4122.8 (3)
C2—C3—C4117.9 (2)C6—C5—H5118.6
O4—C14—C15116.3 (3)C4—C5—H5118.6
O4—C14—C13122.9 (3)C19—C22—H22A109.5
C15—C14—C13120.7 (3)C19—C22—H22B109.5
N1—C8—C10107.8 (2)H22A—C22—H22B109.5
N1—C8—C9104.0 (2)C19—C22—H22C109.5
C10—C8—C9111.7 (3)H22A—C22—H22C109.5
N1—C8—C11113.6 (3)H22B—C22—H22C109.5
C10—C8—C11110.3 (3)C8—C11—H11A109.5
C9—C8—C11109.3 (3)C8—C11—H11B109.5
C19—C21—H21A109.5H11A—C11—H11B109.5
C19—C21—H21B109.5C8—C11—H11C109.5
H21A—C21—H21B109.5H11A—C11—H11C109.5
C19—C21—H21C109.5H11B—C11—H11C109.5
H21A—C21—H21C109.5C23—O7—H7A109.5
H21B—C21—H21C109.5C24—O8—H8109.5
N2—C18—C17125.8 (3)O7—C23—H23A109.5
N2—C18—H18117.1O7—C23—H23B109.5
C17—C18—H18117.1H23A—C23—H23B109.5
O3—C9—C8112.1 (2)O7—C23—H23C109.5
O3—C9—H9A109.2H23A—C23—H23C109.5
C8—C9—H9A109.2H23B—C23—H23C109.5
O3—C9—H9B109.2O8—C24—H24A109.5
C8—C9—H9B109.2O8—C24—H24B109.5
H9A—C9—H9B107.9H24A—C24—H24B109.5
C15—C16—C17121.9 (3)O8—C24—H24C109.5
C15—C16—H16119.1H24A—C24—H24C109.5
C17—C16—H16119.1H24B—C24—H24C109.5
O2—Cu2—O3—C9108.5 (17)C11—C8—C9—O3164.9 (3)
N1—Cu2—O3—C920.22 (18)C12—C17—C16—C150.7 (5)
O6—Cu2—O3—C9140.72 (17)C18—C17—C16—C15178.8 (3)
O6i—Cu2—O3—C9140.02 (18)C10—C8—N1—C788.9 (3)
Cu1i—Cu2—O3—C9129.2 (2)C9—C8—N1—C7152.4 (3)
O2—Cu2—O3—Cu1i20.7 (18)C11—C8—N1—C733.6 (4)
N1—Cu2—O3—Cu1i108.93 (10)C10—C8—N1—Cu293.2 (2)
O6—Cu2—O3—Cu1i90.12 (9)C9—C8—N1—Cu225.5 (3)
O6i—Cu2—O3—Cu1i10.87 (7)C11—C8—N1—Cu2144.3 (2)
O3—Cu2—O2—C397.8 (17)O2—Cu2—N1—C79.0 (2)
N1—Cu2—O2—C39.8 (2)O3—Cu2—N1—C7173.5 (2)
O6—Cu2—O2—C3151.2 (2)O6—Cu2—N1—C783.4 (3)
O6i—Cu2—O2—C3129.1 (2)O6i—Cu2—N1—C7113.2 (2)
Cu1i—Cu2—O2—C3117.5 (2)Cu1i—Cu2—N1—C7150.0 (2)
O5—Cu1—O6—C2081 (4)O2—Cu2—N1—C8173.09 (19)
N2—Cu1—O6—C2018.51 (17)O3—Cu2—N1—C84.39 (19)
O3i—Cu1—O6—C20140.38 (17)O6—Cu2—N1—C894.5 (3)
Cu2i—Cu1—O6—C20130.12 (18)O6i—Cu2—N1—C868.9 (2)
O5—Cu1—O6—Cu249 (4)Cu1i—Cu2—N1—C832.17 (19)
N2—Cu1—O6—Cu2111.50 (10)Cu1—O5—C12—C13167.74 (19)
O3i—Cu1—O6—Cu289.61 (9)Cu1—O5—C12—C1712.3 (4)
Cu2i—Cu1—O6—Cu299.87 (9)C16—C17—C12—O5179.0 (3)
O5—Cu1—O6—Cu2i149 (4)C18—C17—C12—O51.6 (4)
N2—Cu1—O6—Cu2i148.62 (8)C16—C17—C12—C131.0 (4)
O3i—Cu1—O6—Cu2i10.26 (7)C18—C17—C12—C13178.4 (3)
O2—Cu2—O6—C20116.44 (18)C18—N2—C19—C2234.7 (4)
O3—Cu2—O6—C2065.91 (18)Cu1—N2—C19—C22144.6 (2)
N1—Cu2—O6—C2022.7 (3)C18—N2—C19—C2188.3 (3)
O6i—Cu2—O6—C20142.5 (2)Cu1—N2—C19—C2192.4 (2)
Cu1i—Cu2—O6—C20104.59 (17)C18—N2—C19—C20152.7 (3)
O2—Cu2—O6—Cu18.30 (9)Cu1—N2—C19—C2026.6 (3)
O3—Cu2—O6—Cu1169.35 (9)O1—C1—C6—C5178.9 (3)
N1—Cu2—O6—Cu1102.1 (2)C2—C1—C6—C50.9 (5)
O6i—Cu2—O6—Cu192.77 (9)C17—C16—C15—C140.1 (5)
Cu1i—Cu2—O6—Cu1130.67 (7)O4—C14—C15—C16179.6 (3)
O2—Cu2—O6—Cu2i101.07 (8)C13—C14—C15—C160.5 (5)
O3—Cu2—O6—Cu2i76.58 (7)O4—C14—C13—C12179.2 (3)
N1—Cu2—O6—Cu2i165.1 (2)C15—C14—C13—C120.2 (5)
O6i—Cu2—O6—Cu2i0.0O5—C12—C13—C14179.4 (3)
Cu1i—Cu2—O6—Cu2i37.90 (5)C17—C12—C13—C140.5 (4)
N2—Cu1—O5—C1213.6 (2)Cu1—O6—C20—C1939.3 (3)
O3i—Cu1—O5—C12145.4 (2)Cu2—O6—C20—C1984.1 (2)
O6—Cu1—O5—C1276 (4)Cu2i—O6—C20—C19145.01 (18)
Cu2i—Cu1—O5—C12135.60 (19)N2—C19—C20—O642.4 (3)
O5—Cu1—N2—C188.0 (2)C22—C19—C20—O6163.7 (2)
O3i—Cu1—N2—C18102.8 (3)C21—C19—C20—O673.1 (3)
O6—Cu1—N2—C18173.0 (2)C8—N1—C7—C4176.7 (3)
Cu2i—Cu1—N2—C18143.2 (2)Cu2—N1—C7—C45.7 (4)
O5—Cu1—N2—C19172.70 (19)O2—C3—C4—C5179.2 (3)
O3i—Cu1—N2—C1976.5 (3)C2—C3—C4—C50.3 (4)
O6—Cu1—N2—C196.23 (18)O2—C3—C4—C70.1 (4)
Cu2i—Cu1—N2—C1936.1 (2)C2—C3—C4—C7178.8 (3)
Cu2—O2—C3—C2174.26 (19)N1—C7—C4—C5179.7 (3)
Cu2—O2—C3—C46.9 (4)N1—C7—C4—C30.6 (5)
C19—N2—C18—C17179.7 (3)O1—C1—C2—C3177.9 (3)
Cu1—N2—C18—C171.1 (4)C6—C1—C2—C31.9 (5)
C16—C17—C18—N2175.0 (3)O2—C3—C2—C1177.7 (3)
C12—C17—C18—N24.4 (5)C4—C3—C2—C11.3 (4)
Cu2—O3—C9—C841.2 (3)C1—C6—C5—C40.7 (5)
Cu1i—O3—C9—C877.2 (3)C3—C4—C5—C61.2 (5)
N1—C8—C9—O343.3 (3)C7—C4—C5—C6177.9 (3)
C10—C8—C9—O372.7 (3)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu4(C11H13NO3)4]·4CH4O
Mr1211.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.260 (1), 15.3170 (11), 13.266 (1)
β (°) 94.936 (1)
V3)2684.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.27 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.667, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15163, 5500, 4143
Rint0.032
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.01
No. of reflections5500
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.31

Computer programs: SMART, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds