Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Norfloxacin and ciprofloxacin crystallize with phosphoric acid in aqueous solution to give the salts 4-(3-carb­oxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinol­yl)piperazinium dihydrogen­phosphate monohydrate, C16H19FN3O3+·H2PO4-·H2O, and 4-(3-carb­oxy-1-cyclo­propyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolyl)­piperazinium dihydrogenphosphate monohydrate, C17H19FN3O3+·H2PO4-·H2O, respectively. In the crystal structures, the phosphate anions and the piperazine rings of norfloxacin or ciprofloxacin form a 12-membered supra­molecular synthon, viz. R44(12). The synthons R44(12) and R22(8) formed between adjacent phosphate anions result in the three-dimensional structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107053218/av3114sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053218/av3114Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053218/av3114IIsup3.hkl
Contains datablock II

CCDC references: 672552; 672553

Comment top

The design and synthesis of multicomponent crystals of active pharmaceutical ingredients (APIs) has attracted considerable attention in recent years (Almarsson & Zaworotko, 2004; Childs et al., 2007). Many types of supramolecular synthons have been exploited for generating multicomponent crystals by the use of suitable guest molecules with complementary functional groups to APIs (Trask et al., 2005; Wenger & Bernstein, 2006). Although an organic acid is preferable to a basic drug molecule, an inorganic acid, such as phosphoric acid, displays its uniqueness in the formation of multicomponent crystals [pelase clarify; what is meant by `displays its uniqueness'] (Chen et al., 2007). We treated norfloxacin and ciprofloxacin with phosphoric acid in aqueous solution and prepared the title compounds, (I) and (II), respectively, in which phosporic acid participates in different supramolecular synthons.

The crystal structure of (I) contains one norfloxacin, one phosphoric acid and one water molecule in the asymmetric unit. Difference Fourier maps show that phosphoric acid transfers one H atom to the piperazinyl ring N atom of norfloxacin, thus forming the dihydrogen phosphate salt of norfloxacin. The carboxylic acid group of norfloxacin is involved in intramolecular hydrogen bonding with the quinolone O atom (O2—H2···O3; Table 1). The piperazinyl ring N atom of norfloxacin is hydrogen-bonded to two symmetry-dependent phosphate anions (N1+—H1A···O4iv and N1+—H1B··· O5; symmetry code as in Table 1), and this results in a neutral tetramer based on a 12-membered supramolecular synthon, R44(12) (Fig.1). The solvent water molecule interacts with the phosphate anion through two types of hydrogen bonds (O8—H8A ···O5 and O7—H7···O8iii; Table 1) to give rise to another 12-membered supramolecular synthon, R44(12). Two adjacent phosphate anions also form a homosynthon, R22(8), through hydrogen bonding (O6—H6···O4ii; Table 1). Along the (110) direction, the two synthons result in a one-dimensional hydrogen-bonded chain containing phosphate anions and solvent water moleucles (Fig. 2). the water molecule is also hydrogen bonded to the carboxylic acid group of norfloxacin (O8—H8B···O2i; Table 1). As a result, phosphoric acid and water molecules link norfloxacin into a three-dimensional structure through three types of supramolecular synthon (Fig. 3).

The structure of (II) is very similar to that of (I). It contains one ciprofloxacin, one phosphoric acid and one water molecule in the asymmetric unit (Fig. 4). In the crystal structure, phosphoric acid again transfers one H atom to the piperazinyl ring N atom of ciprofloxacin, forming a similar 12-membered supramolecular synthon, R44(12). A similar one-dimensional chain along the (110) direction, including phosphate anions and water molecules, is formed. Three similar supramolecular synthons result in the three-dimensional structure (Fig. 5). The hydrogen-bond geometry in (II) is given in Table 2.

Several dicarboxylate salts of norfloxacin have been reported recently (Basavoju, et al., 2006). For example, in the structure of the succinate salt of norfloxacin, the carboxylate group of succinic acid and the piperazinyl rings of norfloxacin form a supramolecular R44(12) synthon. In the structure of the hydrated lactate salt of ciprofloxacin (Prasanna & Guru Row, 2001), centrosymmetrically related lactate and water molecules form a two-dimensional hydrogen-bonded sheet which links ciprofloxacin into a three-dimensional network. Compared with these organic salt formers, phosphoric acid displays more flexible hydrogen-bonding patterns through participating in three kinds of supramolecular synthons in (I) and (II).

In conclusion, norfloxacin and ciprofloxacin crystallize with phosphoric acid in aqueous solution to give rise to their dihydrogen phosphate monohydrate salts. In the structures, the phosphate anion and water molecule link norfloxacin or ciprofloxacin into three-dimensional structures through three types of supramolecular synthons. The structures show that phosphoric acid could be a good candidate for forming multicomponent crystals of APIs, as it can provide various hydrogen-bonding interactions.

Related literature top

For related literature, see: Almarsson & Zaworotko (2004); Basavoju et al. (2006); Chen et al. (2007); Childs et al. (2007); Prasanna & Guru Row (2001); Trask et al. (2005); Wenger & Bernstein (2006).

Experimental top

For the preparation of (I), a mixture of norfloxacin (0.032 g, 0.1 mmol) and phosphoric acid (0.020 g, 0.2 mmol) in water (10 ml) was heated until dissolved. The solution was kept in a fume hood and colorless crystals were obtained after several days. Differential scanning calorimetry showed two endothermic peaks at 405 and 543 K, respectively. Compound (II) was prepared as (I) except that ciprofloxacin was used instead of norfloxacin. Differential scanning calorimetry showed two endothermic peaks at 406 and 529 K, respectively.

Refinement top

For both structures, H atoms bonded to N and O(water) atoms were located in difference maps and were refined as riding with N,O—H distances of 0.84–0.88 Å [Uiso(H) = 1.2Ueq(parent atom) please check; this statement does not agree with values given in CIF]. All other H atoms were positioned geometrically (C—H = 0.95–1.00 Å and O—H = 0.84 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(C). The maximum residual electron density in (II) is larger than normally expected. The nearest atom to this maximum is atom P1 and its distance from the maximum is 0.951 Å.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), with 30% probablity displacement ellipsoids. Dashed lines indicate hydrogen bonds. H atoms on C atoms have been omitted for clarity. Atoms labeled with the suffic A are at the symmetry position (1 - x, -y, 2 - z).
[Figure 2] Fig. 2. The one-dimensional chain of phosphate anions and water molecules along the [110] direction. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The three-dimensional structure of (I), viewed along the [110] direction. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. The structure of (II), with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. H atoms on C atoms have been omitted for clarity.
[Figure 5] Fig. 5. The three-dimensional structure of (II), viewed along the [110] direction. Dashed lines indicate hydrogen bonds.
(I) 4-(3-carboxy-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-quinolyl)piperazinium dihydrogen phosphate monohydrate top
Crystal data top
C16H19FN3O3+·H2PO4·H2OZ = 2
Mr = 435.34F(000) = 456
Triclinic, P1Dx = 1.546 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.1918 (14) ÅCell parameters from 58178 reflections
b = 8.9400 (18) Åθ = 2.6–30.0°
c = 15.792 (3) ŵ = 0.21 mm1
α = 103.81 (3)°T = 100 K
β = 94.01 (3)°Plate, colorless
γ = 106.51 (3)°0.25 × 0.20 × 0.08 mm
V = 934.9 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
4398 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 30.0°, θmin = 2.7°
ϕ and ω scansh = 910
10002 measured reflectionsk = 1212
5425 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.5378P]
where P = (Fo2 + 2Fc2)/3
5425 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C16H19FN3O3+·H2PO4·H2Oγ = 106.51 (3)°
Mr = 435.34V = 934.9 (4) Å3
Triclinic, P1Z = 2
a = 7.1918 (14) ÅMo Kα radiation
b = 8.9400 (18) ŵ = 0.21 mm1
c = 15.792 (3) ÅT = 100 K
α = 103.81 (3)°0.25 × 0.20 × 0.08 mm
β = 94.01 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4398 reflections with I > 2σ(I)
10002 measured reflectionsRint = 0.030
5425 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.10Δρmax = 0.65 e Å3
5425 reflectionsΔρmin = 0.94 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.26619 (6)0.19362 (5)1.03625 (3)0.01445 (12)
F10.63740 (17)0.05683 (12)0.58606 (7)0.0201 (2)
O10.8875 (2)0.86360 (17)0.37912 (10)0.0248 (3)
O20.8116 (2)0.60851 (17)0.29690 (9)0.0244 (3)
H20.77750.51560.30500.029*
O30.7211 (2)0.37859 (16)0.36427 (9)0.0228 (3)
O40.23844 (18)0.01377 (15)1.00534 (9)0.0180 (3)
O50.33740 (19)0.28479 (16)0.96982 (9)0.0191 (3)
O60.07364 (19)0.22224 (16)1.06646 (9)0.0207 (3)
H60.01460.19031.02260.025*
O70.4173 (2)0.26902 (16)1.12405 (9)0.0207 (3)
H70.52760.26131.11360.025*
O80.27395 (19)0.49945 (16)0.88775 (9)0.0201 (3)
H8A0.28260.43140.91500.022*
H8B0.22680.43730.83730.022*
N10.6274 (2)0.17217 (19)0.90820 (10)0.0170 (3)
H1A0.66210.11930.94260.022*
H1B0.53800.21710.92690.022*
N20.6833 (2)0.26701 (17)0.74962 (10)0.0152 (3)
N30.7932 (2)0.70539 (17)0.60544 (10)0.0150 (3)
C10.8381 (3)0.7199 (2)0.37381 (12)0.0186 (3)
C20.8012 (2)0.6508 (2)0.45008 (12)0.0154 (3)
C30.7468 (3)0.4804 (2)0.43895 (12)0.0159 (3)
C40.7246 (2)0.4285 (2)0.51906 (11)0.0147 (3)
C50.6831 (2)0.2631 (2)0.51488 (12)0.0158 (3)
H50.66670.18520.45990.019*
C60.6666 (2)0.2159 (2)0.59061 (12)0.0156 (3)
C70.6881 (2)0.3247 (2)0.67461 (11)0.0142 (3)
C80.7269 (2)0.4880 (2)0.67830 (12)0.0150 (3)
H80.73940.56460.73330.018*
C90.7480 (2)0.5408 (2)0.60124 (11)0.0141 (3)
C100.8209 (2)0.7549 (2)0.53215 (12)0.0164 (3)
H100.85600.86780.53730.020*
C110.8203 (3)0.8283 (2)0.69051 (12)0.0187 (3)
H11A0.71910.78700.72590.022*
H11B0.80230.92800.67930.022*
C121.0220 (3)0.8693 (2)0.74262 (13)0.0232 (4)
H12A1.12270.90840.70740.035*
H12B1.03750.77220.75680.035*
H12C1.03620.95390.79730.035*
C130.7605 (3)0.3864 (2)0.83513 (12)0.0167 (3)
H13A0.66230.44070.85420.020*
H13B0.88070.46980.83020.020*
C140.8071 (3)0.3015 (2)0.90225 (12)0.0184 (3)
H14A0.91090.25270.88480.022*
H14B0.85640.38110.96060.022*
C150.4997 (3)0.1452 (2)0.75467 (12)0.0178 (3)
H15A0.44720.06740.69590.021*
H15B0.40080.19930.77280.021*
C160.5384 (3)0.0558 (2)0.82058 (12)0.0183 (3)
H16A0.41380.02190.82610.022*
H16B0.62820.00620.79960.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0158 (2)0.0127 (2)0.0153 (2)0.00331 (16)0.00235 (15)0.00589 (16)
F10.0294 (6)0.0098 (5)0.0207 (5)0.0040 (4)0.0020 (4)0.0060 (4)
O10.0320 (7)0.0198 (7)0.0225 (7)0.0025 (6)0.0022 (6)0.0128 (6)
O20.0345 (8)0.0216 (7)0.0165 (6)0.0046 (6)0.0044 (5)0.0089 (5)
O30.0339 (7)0.0180 (6)0.0152 (6)0.0063 (6)0.0047 (5)0.0041 (5)
O40.0180 (6)0.0127 (6)0.0237 (7)0.0046 (5)0.0014 (5)0.0064 (5)
O50.0219 (6)0.0199 (6)0.0198 (6)0.0072 (5)0.0049 (5)0.0118 (5)
O60.0193 (6)0.0170 (6)0.0242 (7)0.0046 (5)0.0055 (5)0.0034 (5)
O70.0199 (6)0.0221 (7)0.0182 (6)0.0014 (5)0.0009 (5)0.0091 (5)
O80.0219 (6)0.0172 (6)0.0196 (6)0.0027 (5)0.0010 (5)0.0074 (5)
N10.0193 (7)0.0173 (7)0.0173 (7)0.0062 (6)0.0045 (6)0.0092 (6)
N20.0174 (7)0.0121 (6)0.0147 (7)0.0008 (5)0.0014 (5)0.0060 (5)
N30.0181 (7)0.0115 (6)0.0155 (7)0.0036 (5)0.0029 (5)0.0053 (5)
C10.0181 (8)0.0212 (8)0.0169 (8)0.0033 (7)0.0025 (6)0.0092 (7)
C20.0154 (7)0.0158 (8)0.0161 (8)0.0035 (6)0.0020 (6)0.0083 (6)
C30.0166 (7)0.0161 (8)0.0154 (8)0.0042 (6)0.0031 (6)0.0056 (6)
C40.0151 (7)0.0141 (7)0.0158 (8)0.0040 (6)0.0033 (6)0.0062 (6)
C50.0176 (8)0.0129 (7)0.0153 (8)0.0028 (6)0.0016 (6)0.0032 (6)
C60.0166 (8)0.0098 (7)0.0195 (8)0.0023 (6)0.0012 (6)0.0050 (6)
C70.0149 (7)0.0135 (7)0.0154 (8)0.0039 (6)0.0022 (6)0.0066 (6)
C80.0172 (8)0.0122 (7)0.0156 (8)0.0029 (6)0.0036 (6)0.0056 (6)
C90.0143 (7)0.0113 (7)0.0172 (8)0.0029 (6)0.0021 (6)0.0059 (6)
C100.0156 (7)0.0156 (8)0.0199 (8)0.0039 (6)0.0039 (6)0.0089 (7)
C110.0285 (9)0.0114 (7)0.0165 (8)0.0059 (7)0.0056 (7)0.0041 (6)
C120.0302 (10)0.0175 (8)0.0172 (9)0.0008 (7)0.0006 (7)0.0049 (7)
C130.0204 (8)0.0126 (7)0.0161 (8)0.0025 (6)0.0015 (6)0.0056 (6)
C140.0181 (8)0.0179 (8)0.0184 (8)0.0022 (6)0.0013 (6)0.0080 (7)
C150.0180 (8)0.0145 (8)0.0196 (8)0.0004 (6)0.0016 (6)0.0079 (6)
C160.0234 (8)0.0138 (8)0.0183 (8)0.0035 (6)0.0035 (7)0.0080 (6)
Geometric parameters (Å, º) top
P1—O51.5077 (14)C3—C41.452 (2)
P1—O41.5142 (14)C4—C91.404 (2)
P1—O61.5641 (14)C4—C51.407 (2)
P1—O71.5762 (16)C5—C61.362 (2)
F1—C61.3607 (19)C5—H50.9500
O1—C11.212 (2)C6—C71.414 (2)
O2—C11.336 (2)C7—C81.392 (2)
O2—H20.8400C8—C91.409 (2)
O3—C31.271 (2)C8—H80.9500
O6—H60.8400C10—H100.9500
O7—H70.8400C11—C121.518 (3)
O8—H8A0.8377C11—H11A0.9900
O8—H8B0.8384C11—H11B0.9900
N1—C161.489 (2)C12—H12A0.9800
N1—C141.495 (2)C12—H12B0.9800
N1—H1A0.8659C12—H12C0.9800
N1—H1B0.8828C13—C141.514 (2)
N2—C71.399 (2)C13—H13A0.9900
N2—C131.463 (2)C13—H13B0.9900
N2—C151.474 (2)C14—H14A0.9900
N3—C101.343 (2)C14—H14B0.9900
N3—C91.398 (2)C15—C161.511 (2)
N3—C111.479 (2)C15—H15A0.9900
C1—C21.487 (2)C15—H15B0.9900
C2—C101.375 (3)C16—H16A0.9900
C2—C31.424 (2)C16—H16B0.9900
O5—P1—O4113.91 (8)C7—C8—H8119.7
O5—P1—O6111.52 (8)C9—C8—H8119.7
O4—P1—O6110.10 (8)N3—C9—C4119.04 (15)
O5—P1—O7108.89 (8)N3—C9—C8120.61 (16)
O4—P1—O7108.97 (8)C4—C9—C8120.35 (15)
O6—P1—O7102.84 (8)N3—C10—C2123.42 (16)
C1—O2—H2109.5N3—C10—H10118.3
P1—O6—H6109.5C2—C10—H10118.3
P1—O7—H7109.5N3—C11—C12111.90 (16)
H8A—O8—H8B99.8N3—C11—H11A109.2
C16—N1—C14111.85 (14)C12—C11—H11A109.2
C16—N1—H1A108.3N3—C11—H11B109.2
C14—N1—H1A107.6C12—C11—H11B109.2
C16—N1—H1B106.6H11A—C11—H11B107.9
C14—N1—H1B109.2C11—C12—H12A109.5
H1A—N1—H1B113.4C11—C12—H12B109.5
C7—N2—C13117.46 (14)H12A—C12—H12B109.5
C7—N2—C15116.64 (14)C11—C12—H12C109.5
C13—N2—C15110.71 (14)H12A—C12—H12C109.5
C10—N3—C9120.08 (15)H12B—C12—H12C109.5
C10—N3—C11118.82 (15)N2—C13—C14109.17 (14)
C9—N3—C11121.04 (14)N2—C13—H13A109.8
O1—C1—O2121.88 (17)C14—C13—H13A109.8
O1—C1—C2124.22 (18)N2—C13—H13B109.8
O2—C1—C2113.90 (16)C14—C13—H13B109.8
C10—C2—C3120.35 (16)H13A—C13—H13B108.3
C10—C2—C1118.62 (16)N1—C14—C13110.14 (15)
C3—C2—C1121.03 (16)N1—C14—H14A109.6
O3—C3—C2122.92 (16)C13—C14—H14A109.6
O3—C3—C4121.27 (16)N1—C14—H14B109.6
C2—C3—C4115.80 (16)C13—C14—H14B109.6
C9—C4—C5119.16 (15)H14A—C14—H14B108.1
C9—C4—C3121.21 (15)N2—C15—C16109.76 (15)
C5—C4—C3119.61 (16)N2—C15—H15A109.7
C6—C5—C4119.17 (16)C16—C15—H15A109.7
C6—C5—H5120.4N2—C15—H15B109.7
C4—C5—H5120.4C16—C15—H15B109.7
F1—C6—C5118.39 (16)H15A—C15—H15B108.2
F1—C6—C7117.99 (15)N1—C16—C15110.35 (14)
C5—C6—C7123.54 (16)N1—C16—H16A109.6
C8—C7—N2123.20 (16)C15—C16—H16A109.6
C8—C7—C6117.09 (15)N1—C16—H16B109.6
N2—C7—C6119.56 (15)C15—C16—H16B109.6
C7—C8—C9120.67 (16)H16A—C16—H16B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.692.482 (2)156
O8—H8A···O50.841.852.6783 (19)172
O8—H8B···O2i0.842.042.807 (2)151
O6—H6···O4ii0.841.992.566 (2)125
O7—H7···O8iii0.842.212.623 (2)110
N1—H1B···O50.881.832.706 (2)172
N1—H1A···O4iv0.871.862.714 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z+2.
(II) 4-(3-carboxy-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-quinolyl)piperazinium dihydrogen phosphate monohydrate top
Crystal data top
C17H19FN3O3+·H2PO4·H2OZ = 2
Mr = 447.35F(000) = 468
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2582 (15) ÅCell parameters from 26945 reflections
b = 8.9979 (18) Åθ = 2.6–30.0°
c = 15.712 (3) ŵ = 0.21 mm1
α = 100.93 (3)°T = 100 K
β = 96.00 (3)°Plate, colorless
γ = 105.74 (3)°0.26 × 0.22 × 0.05 mm
V = 956.4 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
4311 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 30.1°, θmin = 2.7°
ϕ and ω scansh = 910
9764 measured reflectionsk = 1212
5568 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.242H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1168P)2 + 1.9184P]
where P = (Fo2 + 2Fc2)/3
5568 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C17H19FN3O3+·H2PO4·H2Oγ = 105.74 (3)°
Mr = 447.35V = 956.4 (4) Å3
Triclinic, P1Z = 2
a = 7.2582 (15) ÅMo Kα radiation
b = 8.9979 (18) ŵ = 0.21 mm1
c = 15.712 (3) ÅT = 100 K
α = 100.93 (3)°0.26 × 0.22 × 0.05 mm
β = 96.00 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4311 reflections with I > 2σ(I)
9764 measured reflectionsRint = 0.041
5568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.242H-atom parameters constrained
S = 1.12Δρmax = 1.22 e Å3
5568 reflectionsΔρmin = 0.84 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.74080 (11)0.34080 (9)0.02097 (5)0.0169 (2)
F10.9155 (3)1.0576 (2)0.59692 (12)0.0257 (4)
O10.5798 (4)0.0738 (3)0.38840 (17)0.0325 (6)
O20.5449 (4)0.2442 (3)0.30680 (16)0.0319 (6)
H20.56950.34300.31430.038*
O30.6576 (4)0.5387 (3)0.37474 (15)0.0274 (5)
O40.7689 (3)0.4975 (3)0.00437 (14)0.0194 (4)
O50.6253 (3)0.1970 (3)0.04980 (15)0.0223 (5)
O60.6379 (4)0.3480 (3)0.10412 (16)0.0295 (6)
H60.62010.26180.11990.035*
O70.9441 (3)0.3229 (3)0.05363 (16)0.0238 (5)
H71.01100.32680.01310.029*
O80.3778 (3)0.0970 (3)0.12570 (14)0.0216 (4)
H8A0.40420.11290.18190.027*
H8B0.36450.00050.10240.027*
N11.2762 (4)1.2361 (3)0.90427 (17)0.0191 (5)
H1A1.38781.21930.91170.027*
H1B1.28551.32340.94140.027*
N21.0552 (4)0.9981 (3)0.75344 (16)0.0172 (5)
N30.8167 (4)0.4364 (3)0.61033 (16)0.0173 (5)
C10.5987 (5)0.2085 (4)0.3828 (2)0.0260 (7)
C20.6847 (4)0.3490 (4)0.4574 (2)0.0202 (6)
C30.7068 (4)0.5066 (4)0.44717 (19)0.0204 (6)
C40.7915 (4)0.6310 (3)0.52628 (18)0.0170 (5)
C50.8179 (4)0.7906 (4)0.52491 (19)0.0194 (6)
H50.77690.81860.47230.023*
C60.9023 (4)0.9056 (3)0.59912 (19)0.0191 (6)
C70.9731 (4)0.8740 (3)0.67940 (18)0.0163 (5)
C80.9424 (4)0.7157 (3)0.68102 (18)0.0161 (5)
H80.98490.68890.73370.019*
C90.8495 (4)0.5939 (3)0.60621 (18)0.0163 (5)
C100.7384 (4)0.3195 (4)0.5376 (2)0.0204 (6)
H100.71970.21270.54190.024*
C110.8632 (5)0.3979 (4)0.6945 (2)0.0216 (6)
H111.00400.41910.71720.026*
C120.7370 (5)0.4255 (4)0.7617 (2)0.0262 (7)
H12A0.62760.46600.74530.031*
H12B0.79960.46450.82410.031*
C130.7251 (5)0.2590 (4)0.7169 (2)0.0255 (6)
H13A0.78040.19590.75180.031*
H13B0.60840.19740.67290.031*
C141.0918 (4)0.9543 (3)0.83737 (18)0.0181 (5)
H14A1.20990.91920.84030.022*
H14B0.98100.86530.84230.022*
C151.1187 (4)1.0959 (4)0.91233 (19)0.0198 (6)
H15A0.99561.12350.91260.024*
H15B1.15071.06780.96880.024*
C161.2206 (5)1.1288 (3)0.7446 (2)0.0213 (6)
H16A1.19721.15430.68660.026*
H16B1.34041.09620.74830.026*
C171.2458 (5)1.2738 (4)0.8169 (2)0.0223 (6)
H17A1.35871.36060.81170.027*
H17B1.12901.31010.81090.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0156 (4)0.0118 (3)0.0205 (4)0.0009 (3)0.0030 (3)0.0014 (2)
F10.0367 (11)0.0143 (9)0.0256 (9)0.0071 (8)0.0009 (8)0.0067 (7)
O10.0322 (13)0.0219 (12)0.0333 (13)0.0034 (10)0.0025 (10)0.0091 (10)
O20.0330 (13)0.0296 (13)0.0234 (11)0.0042 (11)0.0018 (9)0.0060 (9)
O30.0306 (12)0.0288 (12)0.0185 (10)0.0063 (10)0.0022 (9)0.0024 (9)
O40.0177 (10)0.0137 (9)0.0261 (10)0.0032 (8)0.0043 (8)0.0044 (8)
O50.0182 (10)0.0146 (10)0.0283 (11)0.0016 (8)0.0004 (8)0.0022 (8)
O60.0374 (14)0.0154 (11)0.0321 (12)0.0003 (10)0.0191 (10)0.0006 (9)
O70.0182 (10)0.0221 (11)0.0305 (11)0.0030 (9)0.0004 (8)0.0115 (9)
O80.0253 (11)0.0153 (10)0.0227 (10)0.0046 (8)0.0046 (8)0.0026 (8)
N10.0174 (11)0.0154 (11)0.0208 (11)0.0033 (9)0.0003 (9)0.0012 (9)
N20.0204 (12)0.0116 (10)0.0168 (11)0.0008 (9)0.0021 (9)0.0029 (8)
N30.0166 (11)0.0118 (11)0.0205 (11)0.0022 (9)0.0001 (9)0.0012 (8)
C10.0176 (14)0.0266 (16)0.0261 (15)0.0038 (12)0.0018 (11)0.0072 (12)
C20.0149 (13)0.0183 (13)0.0225 (13)0.0021 (10)0.0018 (10)0.0024 (10)
C30.0163 (13)0.0231 (15)0.0177 (13)0.0033 (11)0.0013 (10)0.0011 (10)
C40.0149 (12)0.0170 (13)0.0171 (12)0.0038 (10)0.0015 (9)0.0010 (10)
C50.0201 (14)0.0210 (14)0.0171 (12)0.0060 (11)0.0017 (10)0.0051 (10)
C60.0218 (14)0.0135 (12)0.0211 (13)0.0041 (11)0.0022 (10)0.0047 (10)
C70.0154 (12)0.0129 (12)0.0179 (12)0.0008 (10)0.0029 (9)0.0023 (9)
C80.0151 (12)0.0123 (12)0.0184 (12)0.0014 (10)0.0004 (9)0.0027 (9)
C90.0125 (12)0.0142 (12)0.0199 (13)0.0021 (10)0.0018 (9)0.0020 (10)
C100.0171 (13)0.0148 (13)0.0259 (14)0.0037 (10)0.0029 (10)0.0013 (10)
C110.0231 (14)0.0135 (13)0.0250 (14)0.0031 (11)0.0034 (11)0.0042 (10)
C120.0367 (18)0.0166 (14)0.0219 (14)0.0026 (13)0.0040 (12)0.0045 (11)
C130.0293 (16)0.0144 (13)0.0285 (15)0.0007 (12)0.0030 (12)0.0058 (11)
C140.0211 (13)0.0157 (13)0.0162 (12)0.0047 (11)0.0017 (10)0.0024 (10)
C150.0211 (14)0.0155 (13)0.0196 (13)0.0027 (11)0.0021 (10)0.0011 (10)
C160.0250 (15)0.0122 (12)0.0215 (13)0.0024 (11)0.0053 (11)0.0024 (10)
C170.0283 (15)0.0143 (13)0.0209 (13)0.0020 (11)0.0032 (11)0.0025 (10)
Geometric parameters (Å, º) top
P1—O41.504 (2)C4—C51.401 (4)
P1—O51.511 (2)C4—C91.411 (4)
P1—O61.571 (2)C5—C61.362 (4)
P1—O71.571 (2)C5—H50.9500
F1—C61.352 (3)C6—C71.420 (4)
O1—C11.203 (5)C7—C81.386 (4)
O2—C11.340 (5)C8—C91.408 (4)
O2—H20.8400C8—H80.9500
O3—C31.265 (4)C10—H100.9500
O6—H60.8400C11—C121.498 (5)
O7—H70.8400C11—C131.500 (4)
O8—H8A0.8588C11—H111.0000
O8—H8B0.8593C12—C131.505 (5)
N1—C171.484 (4)C12—H12A0.9900
N1—C151.491 (4)C12—H12B0.9900
N1—H1A0.8634C13—H13A0.9900
N1—H1B0.8663C13—H13B0.9900
N2—C71.399 (4)C14—C151.516 (4)
N2—C141.465 (4)C14—H14A0.9900
N2—C161.475 (4)C14—H14B0.9900
N3—C101.349 (4)C15—H15A0.9900
N3—C91.387 (4)C15—H15B0.9900
N3—C111.458 (4)C16—C171.514 (4)
C1—C21.490 (4)C16—H16A0.9900
C2—C101.374 (4)C16—H16B0.9900
C2—C31.426 (5)C17—H17A0.9900
C3—C41.454 (4)C17—H17B0.9900
O4—P1—O5115.33 (13)N3—C9—C4119.5 (3)
O4—P1—O6107.28 (13)C8—C9—C4120.3 (3)
O5—P1—O6109.59 (14)N3—C10—C2122.6 (3)
O4—P1—O7109.39 (13)N3—C10—H10118.7
O5—P1—O7109.91 (13)C2—C10—H10118.7
O6—P1—O7104.78 (15)N3—C11—C12116.9 (3)
C1—O2—H2109.5N3—C11—C13118.5 (3)
P1—O6—H6109.5C12—C11—C1360.3 (2)
P1—O7—H7109.5N3—C11—H11116.5
H8A—O8—H8B109.3C12—C11—H11116.5
C17—N1—C15111.7 (2)C13—C11—H11116.5
C17—N1—H1A108.2C11—C12—C1360.0 (2)
C15—N1—H1A110.7C11—C12—H12A117.8
C17—N1—H1B104.3C13—C12—H12A117.8
C15—N1—H1B114.6C11—C12—H12B117.8
H1A—N1—H1B106.9C13—C12—H12B117.8
C7—N2—C14116.9 (2)H12A—C12—H12B114.9
C7—N2—C16117.3 (2)C11—C13—C1259.8 (2)
C14—N2—C16110.4 (2)C11—C13—H13A117.8
C10—N3—C9120.4 (3)C12—C13—H13A117.8
C10—N3—C11120.2 (3)C11—C13—H13B117.8
C9—N3—C11119.4 (2)C12—C13—H13B117.8
O1—C1—O2121.9 (3)H13A—C13—H13B114.9
O1—C1—C2124.0 (3)N2—C14—C15109.5 (2)
O2—C1—C2114.1 (3)N2—C14—H14A109.8
C10—C2—C3121.2 (3)C15—C14—H14A109.8
C10—C2—C1116.8 (3)N2—C14—H14B109.8
C3—C2—C1122.0 (3)C15—C14—H14B109.8
O3—C3—C2123.2 (3)H14A—C14—H14B108.2
O3—C3—C4121.4 (3)N1—C15—C14111.6 (2)
C2—C3—C4115.5 (3)N1—C15—H15A109.3
C5—C4—C9118.4 (3)C14—C15—H15A109.3
C5—C4—C3120.8 (3)N1—C15—H15B109.3
C9—C4—C3120.8 (3)C14—C15—H15B109.3
C6—C5—C4119.9 (3)H15A—C15—H15B108.0
C6—C5—H5120.1N2—C16—C17109.7 (2)
C4—C5—H5120.1N2—C16—H16A109.7
F1—C6—C5118.3 (3)C17—C16—H16A109.7
F1—C6—C7118.2 (3)N2—C16—H16B109.7
C5—C6—C7123.5 (3)C17—C16—H16B109.7
C8—C7—N2123.2 (3)H16A—C16—H16B108.2
C8—C7—C6116.4 (3)N1—C17—C16110.3 (3)
N2—C7—C6120.2 (3)N1—C17—H17A109.6
C7—C8—C9121.4 (3)C16—C17—H17A109.6
C7—C8—H8119.3N1—C17—H17B109.6
C9—C8—H8119.3C16—C17—H17B109.6
N3—C9—C8120.1 (3)H17A—C17—H17B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.742.529 (4)155
O6—H6···O80.841.992.625 (3)131
O7—H7···O4i0.841.962.556 (3)128
O8—H8A···O20.862.082.881 (3)154
O8—H8B···O5ii0.861.832.681 (3)171
N1—H1A···O5iii0.861.842.695 (3)169
N1—H1B···O4iv0.871.892.726 (3)163
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H19FN3O3+·H2PO4·H2OC17H19FN3O3+·H2PO4·H2O
Mr435.34447.35
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)100100
a, b, c (Å)7.1918 (14), 8.9400 (18), 15.792 (3)7.2582 (15), 8.9979 (18), 15.712 (3)
α, β, γ (°)103.81 (3), 94.01 (3), 106.51 (3)100.93 (3), 96.00 (3), 105.74 (3)
V3)934.9 (4)956.4 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.210.21
Crystal size (mm)0.25 × 0.20 × 0.080.26 × 0.22 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10002, 5425, 4398 9764, 5568, 4311
Rint0.0300.041
(sin θ/λ)max1)0.7040.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.10 0.075, 0.242, 1.12
No. of reflections54255568
No. of parameters263271
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.941.22, 0.84

Computer programs: COLLECT (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.692.482 (2)156
O8—H8A···O50.841.852.6783 (19)172
O8—H8B···O2i0.842.042.807 (2)151
O6—H6···O4ii0.841.992.566 (2)125
O7—H7···O8iii0.842.212.623 (2)110
N1—H1B···O50.881.832.706 (2)172
N1—H1A···O4iv0.871.862.714 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.742.529 (4)155
O6—H6···O80.841.992.625 (3)131
O7—H7···O4i0.841.962.556 (3)128
O8—H8A···O20.862.082.881 (3)154
O8—H8B···O5ii0.861.832.681 (3)171
N1—H1A···O5iii0.861.842.695 (3)169
N1—H1B···O4iv0.871.892.726 (3)163
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds