Download citation
Download citation
link to html
In the title compound, [Zn(C7H6NO2)(NO3)(H2O)]n, the Zn atom is coordinated by two nitrate ions, one aqua mol­ecule and two 4-amino­benzoate ions in a distorted octa­hedral geometry. The structure of the compound exhibits a two-dimensional layer, which is formed by the inter­connection of [Zn(C7H6NO2)(H2O)]n chains via μ2-nitrate bridges or by the inter­connection of [Zn(NO3)(H2O)]n chains via μ2-4-amino­benzoate bridges.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107036256/av3098sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107036256/av3098Isup2.hkl
Contains datablock I

CCDC reference: 295874

Comment top

Metal–organic framework materials have made rapid progress in recent years because this class of materials may have interesting physicochemical properties and potential applications such as adsorption, ion exchange and shape-selective catalysis, and as non-linear optical and magnetic materials. A number of rigid or flexible bridging ligands have been employed to construct metal–organic materials, including one-, two- or three-dimensional frameworks. Generally, the construction of frameworks can be achieved using either covalent bonds or weaker intermolecular forces, e.g. hydrogen bonds, aryl–aryl interactions etc.

As a bifunctional organic ligand, 4-aminobenzoic acid (4-abaH) has been reported in coordination chemistry because of the richness of its coordination modes. Firstly, 4-abaH can act as a carboxylic acid synthon and also as a good monodentate ligand through the amine group (Le Fur & Masse, 1996; Chen & Chen, 2002). Secondly, deprotonated 4-aminobenzoic acid can act as a monodentate ligand through a carboxylate O atom (Sundberg et al., 1998; Chandrasekhar et al., 1988; Amiraslanov et al., 1979), chelating and/or bridging ligands through its amide and/or carboxylate groups (Zheng et al., 2001; Rzaezynska & Belskii, 1994; Hauptmann et al., 2000). Finally, 4-abaH may be protonated to form organic cation templating agents (Wang et al., 2002). Recently, a compound containing mixed 4-aminobenzoate and another nitrogen-donor ligand has been synthesized in our group (Zhang & Lu, 2005). As a part of our continuing investigation of this type of compound, we report here the synthesis and characterization of the title complex, (I).

As shown in Fig. 1, the Zn atom of (I) is coordinated by two chelating carboxylate O atoms from one 4-aminobenzoate ion, two bridging nitrate O atoms, an N atom from the other 4-aminobenzoate ion and one coordinated water molecule in a distorted octahedral geometry. The two nitrate O atoms [O4 and O5ii; symmetry code: (ii) 1/2 + x, 1/2 - y, 1/2 + z] are at the apical positions [Zn—O = 2.124 (2) and 2.333 (2) Å, and O—Zn—O = 165.97 (8)°], while the two carboxylate O atoms [O1i and O2i; symmetry code: (i) -1/2 + x, 1/2 - y, 1/2 + z], the N atom (N1), and the water O atom (O3) define the equatorial plane (mean deviation 0.224 Å). Zn is raised above the equatorial plane by 0.284 Å towards the apical atom, O4.

The 4-aminobenzoate ligand adopts a chelating/bridging coordination mode (Wang et al., 2002), linking two neighbouring Zn coordination centres to form a one-dimensional chain, [Zn(H2O)(C7H6NO2)]n, with a Zn—N—C bond angle of 115.9 (2)° and a Zn···Zn separation of 9.40 (2) Å. Similarly, the nitrate ion acts as a µ2-bridge (Huang et al., 2004; Ling et al., 2004), linking two neighbouring metal centres to form another one-dimensional chain, [Zn(NO3)(H2O)]n, with Zn—O—N bond angles of 112.5 (2) and 124.9 (2)° and a Zn···Zn separation of 5.74 (3) Å. Thus, compound (I) exhibits a two-dimensional layer-like structure (Fig. 2), which is formed by the interconnection of neighbouring [Zn(H2O)(C7H6NO2)]n chains via µ2-NO3- bridges or by that of neighbouring [Zn(NO3)(H2O)]n chains via µ2-4-aminobenzoate bridges. The two-dimensional layer consists of rectangular grids with dimensions of 9.40 (2) × 5.74 (3) Å, based on the Zn···Zn distances.

It is noteworthy that there is hydrogen bonding in the title compound. One weak interaction occurs between the layers in (I). The water ligand forms hydrogen bonds with the carboxylate O atoms of the 4-aminobenzoate, with O—H···O distances of 2.720 (3) and 2.721 (3) Å (Table 2). Such hydrogen bonding-interactions consolidate the structural architecture and further extend the two-dimensional layers into a three-dimensional framework.

Related literature top

For related literature, see: Amiraslanov et al. (1979); Chandrasekhar et al. (1988); Chen & Chen (2002); Hauptmann et al. (2000); Huang et al. (2004); Le Fur & Masse (1996); Ling et al. (2004); Rzaezynska & Belskii (1994); Sundberg et al. (1998); Wang et al. (2002); Zhang & Lu (2005); Zheng et al. (2001).

Experimental top

An ethanol solution (8 ml) of 2,2'-bipyridine (1.2 mmol) and 4-aminobenzoic acid (1.6 mmol) was added slowly to an aqueous solution (10 ml) of Zn(NO3)2·6H2O (1 mmol) with continuous stirring. After half an hour, the reaction mixture was allowed to stand at room temperature undisturbed for two weeks, resulting in colourless crystals of (I) (yield 71%). Analysis, calculated for C7H8N2O6Zn: C 29.86, H 2.86, N 9.95%; found: C 29.81, H 2.71, N 9.89%.

Refinement top

The H atoms of the coordinated water molecule were located in a difference Fourier map and refined isotropically. The remaining H atoms were constrained to an ideal geometry, with N—H = 0.90 and C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C,N). [Please check added text]

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A locally expanded unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 + x, 1/2 - y, 1/2 + z].
[Figure 2] Fig. 2. The two-dimensional structure of (I). All H atoms have been omitted for clarity.
Poly[µ2-4-aminobenzoato-aqua-µ2-nitrato-zinc] top
Crystal data top
[Zn(C7H6NO2)(NO3)(H2O)]F(000) = 568
Mr = 281.52Dx = 1.900 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2033 reflections
a = 10.6087 (16) Åθ = 3.1–27.5°
b = 9.4342 (10) ŵ = 2.51 mm1
c = 11.1367 (19) ÅT = 293 K
β = 118.000 (6)°Prism, colourless
V = 984.1 (2) Å30.20 × 0.16 × 0.08 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2256 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.760, Tmax = 1.000k = 1212
7449 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3274P]
where P = (Fo2 + 2Fc2)/3
2256 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn(C7H6NO2)(NO3)(H2O)]V = 984.1 (2) Å3
Mr = 281.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6087 (16) ŵ = 2.51 mm1
b = 9.4342 (10) ÅT = 293 K
c = 11.1367 (19) Å0.20 × 0.16 × 0.08 mm
β = 118.000 (6)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1864 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 1.000Rint = 0.044
7449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.59 e Å3
2256 reflectionsΔρmin = 0.43 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.65364 (4)0.31488 (4)0.60597 (4)0.02357 (13)
N10.7853 (3)0.1528 (3)0.6138 (3)0.0242 (6)
H1A0.85480.14420.70020.029*
H1B0.73450.07180.59180.029*
N20.4198 (3)0.1554 (3)0.4055 (3)0.0265 (6)
C11.0579 (3)0.2065 (3)0.2796 (3)0.0224 (7)
C20.9809 (3)0.1954 (3)0.3620 (3)0.0238 (7)
C31.0246 (4)0.2765 (4)0.4775 (4)0.0358 (9)
H3A1.09800.34160.50010.043*
C40.9610 (4)0.2626 (4)0.5607 (4)0.0347 (9)
H40.99220.31740.63890.042*
C50.8513 (3)0.1673 (3)0.5268 (3)0.0230 (7)
C60.8038 (4)0.0875 (4)0.4093 (4)0.0307 (8)
H60.72760.02530.38480.037*
C70.8698 (4)0.1003 (3)0.3285 (3)0.0293 (8)
H70.83940.04470.25080.035*
O11.1493 (2)0.2996 (2)0.3035 (2)0.0280 (5)
O21.0290 (2)0.1165 (2)0.1837 (2)0.0253 (5)
O30.6962 (3)0.4876 (2)0.5259 (3)0.0274 (5)
H3C0.752 (6)0.549 (5)0.580 (5)0.081 (18)*
H3B0.626 (4)0.524 (4)0.460 (4)0.031 (11)*
O40.4943 (2)0.2617 (2)0.4067 (2)0.0312 (5)
O50.3488 (3)0.0910 (2)0.2962 (2)0.0320 (5)
O60.4198 (3)0.1176 (3)0.5109 (3)0.0419 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0249 (2)0.0260 (2)0.0228 (2)0.00055 (16)0.01374 (18)0.00098 (16)
N10.0281 (15)0.0263 (14)0.0233 (15)0.0005 (11)0.0164 (13)0.0019 (11)
N20.0234 (15)0.0264 (15)0.0236 (15)0.0010 (12)0.0058 (12)0.0025 (12)
C10.0226 (17)0.0261 (16)0.0192 (16)0.0051 (13)0.0104 (14)0.0045 (13)
C20.0262 (17)0.0256 (16)0.0229 (17)0.0006 (13)0.0143 (15)0.0008 (13)
C30.038 (2)0.041 (2)0.037 (2)0.0182 (17)0.0255 (19)0.0181 (17)
C40.042 (2)0.041 (2)0.031 (2)0.0125 (17)0.0256 (19)0.0170 (16)
C50.0264 (17)0.0240 (16)0.0241 (17)0.0033 (13)0.0165 (15)0.0015 (13)
C60.0303 (19)0.0366 (19)0.032 (2)0.0105 (15)0.0198 (17)0.0094 (15)
C70.0327 (19)0.0347 (19)0.0250 (18)0.0079 (15)0.0174 (16)0.0103 (15)
O10.0293 (13)0.0281 (12)0.0318 (14)0.0055 (10)0.0188 (12)0.0011 (10)
O20.0274 (13)0.0297 (12)0.0208 (12)0.0036 (10)0.0129 (11)0.0052 (10)
O30.0267 (14)0.0265 (13)0.0244 (14)0.0006 (11)0.0082 (12)0.0035 (11)
O40.0269 (13)0.0337 (13)0.0263 (13)0.0103 (11)0.0071 (11)0.0011 (11)
O50.0344 (14)0.0243 (12)0.0234 (12)0.0001 (10)0.0020 (11)0.0049 (10)
O60.0577 (19)0.0393 (14)0.0269 (14)0.0105 (13)0.0185 (14)0.0005 (12)
Geometric parameters (Å, º) top
Zn1—O2i1.998 (2)C1—C21.492 (4)
Zn1—O32.009 (2)C2—C31.376 (5)
Zn1—N12.045 (3)C2—C71.386 (4)
Zn1—O42.124 (2)C3—C41.384 (4)
Zn1—O5ii2.333 (2)C3—H3A0.9300
Zn1—O1i2.470 (2)C4—C51.376 (5)
N1—C51.445 (4)C4—H40.93
N1—H1A0.90C5—C61.384 (4)
N1—H1B0.90C6—C71.380 (4)
N2—O61.227 (3)C6—H60.93
N2—O51.248 (3)C7—H70.93
N2—O41.274 (3)O3—H3B0.83 (4)
C1—O11.240 (4)O3—H3C0.85 (5)
C1—O21.284 (4)
O2i—Zn1—O3105.20 (9)O1—C1—Zn1iii70.95 (17)
O2i—Zn1—N1143.27 (9)O2—C1—Zn1iii49.40 (14)
O3—Zn1—N1109.52 (10)C2—C1—Zn1iii167.9 (2)
O2i—Zn1—O499.50 (9)C3—C2—C7118.8 (3)
O3—Zn1—O487.83 (10)C3—C2—C1119.7 (3)
N1—Zn1—O493.47 (10)C7—C2—C1121.4 (3)
O2i—Zn1—O5ii88.22 (9)C2—C3—C4121.1 (3)
O3—Zn1—O5ii78.81 (10)C2—C3—H3A119.4
N1—Zn1—O5ii87.07 (10)C4—C3—H3A119.4
O4—Zn1—O5ii165.97 (8)C5—C4—C3119.5 (3)
O2i—Zn1—O1i57.52 (8)C5—C4—H4120.2
O3—Zn1—O1i148.46 (9)C3—C4—H4120.2
N1—Zn1—O1i86.17 (8)C4—C5—C6120.1 (3)
O4—Zn1—O1i119.26 (8)C4—C5—N1119.4 (3)
O5ii—Zn1—O1i74.77 (8)C6—C5—N1120.5 (3)
O2i—Zn1—C1i29.20 (9)C7—C6—C5119.8 (3)
O3—Zn1—C1i130.26 (10)C7—C6—H6120.1
N1—Zn1—C1i114.26 (10)C5—C6—H6120.1
O4—Zn1—C1i111.38 (10)C6—C7—C2120.6 (3)
O5ii—Zn1—C1i80.95 (9)C6—C7—H7119.7
O1i—Zn1—C1i28.33 (8)C2—C7—H7119.7
C5—N1—Zn1115.95 (19)C1—O1—Zn1iii80.72 (18)
C5—N1—H1A108.3C1—O2—Zn1iii101.40 (18)
Zn1—N1—H1A108.3Zn1—O3—O2iv116.97 (12)
C5—N1—H1B108.3Zn1—O3—O1v118.41 (12)
Zn1—N1—H1B108.3O2iv—O3—O1v105.54 (10)
H1A—N1—H1B107.4Zn1—O3—H3C118 (3)
O6—N2—O5121.4 (3)O2iv—O3—H3C110 (3)
O6—N2—O4119.9 (3)Zn1—O3—H3B115 (3)
O5—N2—O4118.7 (3)O1v—O3—H3B108 (3)
O1—C1—O2120.3 (3)H3C—O3—H3B113 (4)
O1—C1—C2121.1 (3)N2—O4—Zn1112.46 (18)
O2—C1—C2118.6 (3)N2—O5—Zn1vi124.93 (19)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2iv0.83 (4)1.89 (4)2.720 (3)177 (4)
O3—H3C···O1v0.85 (5)1.88 (5)2.721 (3)171 (5)
Symmetry codes: (iv) x+3/2, y+1/2, z+1/2; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H6NO2)(NO3)(H2O)]
Mr281.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.6087 (16), 9.4342 (10), 11.1367 (19)
β (°) 118.000 (6)
V3)984.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.20 × 0.16 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.760, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7449, 2256, 1864
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 1.11
No. of reflections2256
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.43

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—O2i1.998 (2)Zn1—O42.124 (2)
Zn1—O32.009 (2)Zn1—O5ii2.333 (2)
Zn1—N12.045 (3)Zn1—O1i2.470 (2)
O2i—Zn1—O3105.20 (9)O3—Zn1—O5ii78.81 (10)
O2i—Zn1—N1143.27 (9)N1—Zn1—O5ii87.07 (10)
O3—Zn1—N1109.52 (10)O4—Zn1—O5ii165.97 (8)
O2i—Zn1—O499.50 (9)O3—Zn1—O1i148.46 (9)
O3—Zn1—O487.83 (10)N1—Zn1—O1i86.17 (8)
N1—Zn1—O493.47 (10)O4—Zn1—O1i119.26 (8)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O2iii0.83 (4)1.89 (4)2.720 (3)177 (4)
O3—H3C···O1iv0.85 (5)1.88 (5)2.721 (3)171 (5)
Symmetry codes: (iii) x+3/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds