Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [RuF2(C26H24P2)2]·2CHCl3, the Ru atom lies on a centre of symmetry with a trans arrangement of the F atoms. A H...F contact (2.249 Å) suggests weak intra­molecular hydrogen bonding. The solvent mol­ecules exhibit hydrogen bonding with the F atoms (H...F = 1.91 Å).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107030466/av3094sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107030466/av3094Isup2.hkl
Contains datablock I

CCDC reference: 659120

Comment top

Synthetic strategies into ruthenium–fluorido complexes, especially those ligated by bidentate phosphanes, often employ toxic thallium-based metathesis reagents (Barthazy et al., 2000), such that alternative routes into ruthenium–fluorido complexes are, therefore, desirable. Previous work has shown that the fluoride bridges in [RuF2(CO)3]4 are amenable to cleavage by a variety of Lewis bases, affording a facile route into ruthenium–fluorido complexes ligated by monodentate phosphanes (Coleman et al., 1997). However, questions regarding how changes in ligand denticity may influence this reaction protocol remain unanswered.

The reaction between [RuF2(CO)3]4 and bis(diphenylphosphino)ethane (dppe) was facile at room temperature, as evidenced by vigorous evolution of carbon monoxide. Multiple recrystallizations from chloroform/DCM and hexane solutions afforded the product [RuF2(dppe)2]·2CHCl3, (I). The coordination geometry can best be described as octahedral, with the Ru atom on a centre of symmetry and the phenyl rings of the ligand backbone adopting a staggered conformation with respect to each other. Although this could be rationalized on steric grounds, the conformation may also be affected by weak secondary bonding interactions between the metal-bound F atoms and the neighbouring aryl rings. Indeed, the H26···F1 non-bonded contact (2.249 Å) suggests weak intra-molecular hydrogen bonding, as has been previously observed in the related complex [RuF2(dppp)2] [dppp is 1,3-bis(diphenylphosphino)propane; Barthazy et al., 2000]. It is noteworthy that two chloroform molecules cocrystallized within the unit cell, and these engage in hydrogen-bonding interactions with the axial F atomss; the distance from atom C27 to atom F1 [2.905 (5) Å] and the H27···F1 hydrogen-bond length (1.911 Å) suggest a fairly strong interaction.

The Ru—P bond lengths [2.3356 (8) and 2.3510 (8) Å] in (I) are in good agreement with those previously reported for the related complex [RuF2(dppp)2] [2.310 (2) Å]. Intriguingly, the Ru—F bond length in (I) [2.1729 (18) Å] is substantially longer than that observed in [RuF2(dppp)2] [2.065 (3) Å]. The participation of the metal-bound F atoms in hydrogen-bonding interactions with the two chloroform molecules may be responsible for this.

Compound (I) represents a rare example of an octahedral fluorido complex ligated only by phosphorus donors. Furthermore, given the ability of fluorine to act as a strong π donor, the adoption of an F-trans-F (not F-trans-P) configuration in (I) is somewhat surprising, since the π-acceptor capability of alkyl and aryl phosphanes is well established (Orpen & Connelly, 1985, 1990). Indeed, the stereochemistry observed in (I) is in direct contrast to that reported for the related complex [RuF2(dppp)2], which assumes an F-trans-P configuration. It is possible that this is associated with the geometrical restrictions imposed by the chelation constraints of the two-C-atom bridge in dppe [in (I)] when compared with the three-C-atom bridge of dppp {in [RuF2(dppp)2]}. However, this trend is not mirrored in chlorine chemistry; both trans-[RuCl2(dppe)2] (Polam & Porter, 1993) and cis-[RuCl2(depe)2] [depe is 1,2-bis(diethylphosphino)ethane; Winter et al., 2000] employ a phosphane with a two-C-atom bridge. It is noteworthy that the related complex [RuF(FHF)(dmpe)2] [dmpe is 1,2-bis(dimethylphosphino)ethane] also adopts an F-trans-P configuration (Kirkham et al., 2001).

Related literature top

For related literature, see: Barthazy et al. (2000); Coleman et al. (1997); Kirkham et al. (2001); Orpen & Connelly (1985, 1990); Polam & Porter (1993); Sheldrick (1997); Winter et al. (2000).

Experimental top

A Schlenk tube was charged with [RuF2(CO)3]4 (250 mg, 0.280 mmol) and 1,2-bis(diphenylphosphino)ethane (1.114 g, 2.800 mmol). Dichloromethane (40 ml) was transferred onto the solids via a cannular, and the solution was stirred under a partial vacuum for 12 h. All volatiles were removed in vacuo. Recrystallization from a chloroform/DCM/hexane solution afforded (I) as an air- and moisture-sensitive yellow powder in 8% yield. m/z (+ FAB) 897 ([M – 2 F]+, 100%), 499 ([M – 2 F – dppe]+, 46). 1H (CDCl3): δ 7.80–7.20 (m, 40H, Ar—CH), 2.60–1.90 (m, 8H, CH2). 19F{1H} (CDCl3): δ -318.2 (q, 2JPF = 19 Hz, RuF). 31P{1H} (CDCl3): δ 49.8 (br s, RuP). νmax (cm-1, solid)L 2919 (br), 1479 (s), 1435 (s), 1094 (s), 741 (br), 691 (br).

Refinement top

All H atoms were refined using a riding model, using the default SHELXL97 parameters (Sheldrick, 1997) and with isotropic displacement parameters of 1.2 times Uiso of the bonded C atom. The displacement parameters of atoms Ru1 and F1 were restrained using the the SHELXL97 commands DELU 0.005 and SIMU. The largest residual electron density peak in the final Fourier difference map is located 0.35 Å from atom Cl3.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) representation of (I), showing 50% probability displacement ellipsoids. H atoms on the ligand have been omitted for clarity. Hydrogen bonds are shown as dashed lines. [Symmetry code: -x + 1, -y, -z.]
Bis[1,2-bis(diphenylphosphino)ethane-κ2P,P']difluoridoruthenium(II) trichloromethane disolvate top
Crystal data top
[RuF2(C26H24P2)2]·2CHCl3F(000) = 1196
Mr = 1174.59Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7764 reflections
a = 11.3274 (8) Åθ = 2.3–28.4°
b = 17.8090 (12) ŵ = 0.78 mm1
c = 12.9556 (9) ÅT = 150 K
β = 94.885 (1)°Block, yellow
V = 2604.0 (3) Å30.18 × 0.12 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6177 independent reflections
Radiation source: fine-focus sealed tube5249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.873, Tmax = 0.918k = 2322
22716 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145Constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0799P)2 + 3.0645P]
where P = (Fo2 + 2Fc2)/3
6177 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 1.86 e Å3
0 restraintsΔρmin = 1.60 e Å3
Crystal data top
[RuF2(C26H24P2)2]·2CHCl3V = 2604.0 (3) Å3
Mr = 1174.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.3274 (8) ŵ = 0.78 mm1
b = 17.8090 (12) ÅT = 150 K
c = 12.9556 (9) Å0.18 × 0.12 × 0.11 mm
β = 94.885 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5249 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.918Rint = 0.030
22716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145Constrained
S = 1.05Δρmax = 1.86 e Å3
6177 reflectionsΔρmin = 1.60 e Å3
329 parameters
Special details top

Experimental. Absorption correction based on 12260 reflections; Rint 0.031 before correction and 0.026 after.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.50000.00000.00000.01770 (12)
F10.62387 (15)0.03151 (10)0.13009 (13)0.0215 (4)
P10.47539 (7)0.12127 (4)0.06703 (6)0.02112 (18)
P20.32541 (7)0.03129 (5)0.07614 (6)0.02225 (18)
C10.3144 (3)0.13253 (19)0.0916 (3)0.0265 (7)
H1A0.29570.18520.11150.041 (11)*
H1B0.28470.09960.14970.024 (9)*
C20.2536 (3)0.1124 (2)0.0047 (3)0.0295 (7)
H2A0.16960.10000.01560.045 (12)*
H2B0.25520.15650.05130.028 (9)*
C30.5263 (3)0.19995 (18)0.0152 (2)0.0259 (7)
C40.6436 (3)0.1996 (2)0.0557 (3)0.0333 (8)
H40.69300.15810.04300.032 (10)*
C50.6891 (4)0.2596 (2)0.1147 (3)0.0416 (9)
H50.76970.25890.14170.056 (14)*
C60.6198 (5)0.3196 (2)0.1345 (3)0.0519 (11)
H60.65230.36080.17380.062 (11)*
C70.5011 (5)0.3200 (2)0.0968 (4)0.0535 (11)
H70.45160.36080.11220.060 (14)*
C80.4548 (4)0.2604 (2)0.0362 (3)0.0386 (8)
H80.37410.26110.00930.046 (12)*
C90.5251 (3)0.14645 (19)0.1930 (2)0.0258 (6)
C100.5828 (3)0.2133 (2)0.2114 (3)0.0324 (7)
H100.59330.25000.15810.045 (12)*
C110.6251 (4)0.2269 (2)0.3070 (3)0.0424 (9)
H110.66450.27270.31900.062 (15)*
C120.6100 (4)0.1739 (3)0.3848 (3)0.0451 (10)
H120.64130.18260.44950.052 (13)*
C130.5494 (4)0.1082 (2)0.3687 (3)0.0411 (9)
H130.53600.07270.42320.054 (13)*
C140.5082 (3)0.0939 (2)0.2724 (3)0.0317 (7)
H140.46820.04810.26090.024 (9)*
C150.2108 (3)0.04088 (19)0.0673 (3)0.0272 (7)
C160.1417 (3)0.0510 (2)0.0261 (3)0.0334 (8)
H160.14730.01620.08090.047 (13)*
C170.0647 (3)0.1117 (2)0.0396 (3)0.0409 (9)
H170.01850.11830.10370.034 (10)*
C180.0553 (3)0.1623 (2)0.0400 (4)0.0434 (9)
H180.00380.20420.03020.062 (15)*
C190.1206 (3)0.1520 (2)0.1335 (3)0.0391 (9)
H190.11200.18620.18870.045 (12)*
C200.1990 (3)0.0920 (2)0.1477 (3)0.0327 (8)
H200.24460.08570.21210.030 (10)*
C210.3266 (3)0.06706 (18)0.2083 (2)0.0276 (7)
C220.2259 (3)0.0681 (2)0.2631 (3)0.0345 (8)
H220.15490.04490.23480.039 (11)*
C230.2295 (4)0.1030 (2)0.3590 (3)0.0426 (10)
H230.16070.10350.39620.048 (12)*
C240.3308 (4)0.1368 (2)0.4008 (3)0.0471 (10)
H240.33250.16030.46670.058 (14)*
C250.4309 (4)0.1368 (2)0.3469 (3)0.0472 (10)
H250.50110.16060.37580.054 (14)*
C260.4296 (4)0.1023 (2)0.2507 (3)0.0368 (8)
H260.49870.10260.21390.033 (10)*
C270.7811 (5)0.0563 (3)0.3160 (4)0.0564 (12)
H270.72710.04290.25370.10 (2)*
Cl10.72268 (15)0.01807 (10)0.42480 (12)0.0760 (4)
Cl20.92062 (13)0.01646 (12)0.30151 (14)0.0912 (6)
Cl30.7900 (3)0.15279 (9)0.32307 (15)0.1564 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01756 (18)0.01913 (19)0.01672 (18)0.00091 (12)0.00332 (12)0.00011 (12)
F10.0220 (9)0.0195 (8)0.0241 (9)0.0027 (7)0.0084 (7)0.0039 (7)
P10.0231 (4)0.0208 (4)0.0197 (4)0.0015 (3)0.0035 (3)0.0011 (3)
P20.0206 (4)0.0239 (4)0.0230 (4)0.0019 (3)0.0061 (3)0.0007 (3)
C10.0264 (16)0.0274 (16)0.0253 (16)0.0045 (13)0.0003 (12)0.0029 (13)
C20.0261 (16)0.0305 (17)0.0328 (18)0.0085 (13)0.0076 (13)0.0053 (14)
C30.0341 (17)0.0219 (15)0.0221 (15)0.0023 (13)0.0043 (12)0.0009 (12)
C40.0361 (19)0.0315 (18)0.0318 (18)0.0020 (15)0.0007 (14)0.0028 (14)
C50.048 (2)0.038 (2)0.037 (2)0.0101 (18)0.0051 (17)0.0013 (16)
C60.080 (3)0.036 (2)0.039 (2)0.010 (2)0.007 (2)0.0095 (17)
C70.073 (3)0.033 (2)0.054 (3)0.006 (2)0.002 (2)0.0160 (19)
C80.044 (2)0.0307 (19)0.040 (2)0.0052 (16)0.0006 (17)0.0043 (16)
C90.0285 (16)0.0278 (16)0.0215 (15)0.0039 (13)0.0045 (12)0.0052 (12)
C100.042 (2)0.0273 (17)0.0287 (17)0.0025 (15)0.0067 (14)0.0043 (14)
C110.054 (2)0.039 (2)0.036 (2)0.0070 (18)0.0127 (18)0.0118 (16)
C120.058 (3)0.054 (3)0.0252 (18)0.003 (2)0.0123 (17)0.0086 (17)
C130.053 (2)0.048 (2)0.0228 (17)0.0008 (19)0.0058 (16)0.0032 (16)
C140.0376 (19)0.0320 (18)0.0254 (17)0.0014 (15)0.0016 (14)0.0022 (14)
C150.0193 (14)0.0298 (17)0.0335 (17)0.0001 (12)0.0083 (12)0.0018 (13)
C160.0251 (16)0.0382 (19)0.0372 (19)0.0008 (14)0.0045 (14)0.0002 (16)
C170.0266 (18)0.044 (2)0.051 (2)0.0026 (16)0.0010 (16)0.0047 (18)
C180.0254 (18)0.037 (2)0.068 (3)0.0048 (16)0.0021 (17)0.0006 (19)
C190.0289 (18)0.0332 (19)0.056 (2)0.0016 (15)0.0097 (16)0.0106 (18)
C200.0268 (17)0.0334 (18)0.039 (2)0.0012 (14)0.0077 (14)0.0015 (15)
C210.0345 (17)0.0236 (16)0.0257 (16)0.0066 (13)0.0090 (13)0.0004 (12)
C220.0359 (19)0.0364 (19)0.0327 (18)0.0088 (15)0.0124 (15)0.0014 (15)
C230.055 (2)0.045 (2)0.0311 (19)0.0150 (19)0.0195 (18)0.0006 (16)
C240.069 (3)0.044 (2)0.029 (2)0.012 (2)0.0089 (19)0.0099 (17)
C250.059 (3)0.044 (2)0.039 (2)0.002 (2)0.0037 (19)0.0147 (18)
C260.043 (2)0.037 (2)0.0308 (18)0.0036 (16)0.0094 (15)0.0067 (15)
C270.072 (3)0.039 (2)0.056 (3)0.009 (2)0.005 (2)0.004 (2)
Cl10.0749 (10)0.0972 (11)0.0567 (8)0.0055 (8)0.0115 (7)0.0064 (7)
Cl20.0459 (7)0.1385 (15)0.0891 (11)0.0006 (8)0.0063 (7)0.0543 (10)
Cl30.340 (4)0.0365 (7)0.0773 (11)0.0278 (13)0.0689 (17)0.0035 (7)
Geometric parameters (Å, º) top
Ru1—F1i2.1729 (18)C11—H110.9500
Ru1—F12.1729 (18)C12—C131.381 (6)
Ru1—P1i2.3356 (8)C12—H120.9500
Ru1—P12.3356 (8)C13—C141.392 (5)
Ru1—P2i2.3510 (8)C13—H130.9500
Ru1—P22.3510 (8)C14—H140.9500
P1—C31.824 (3)C15—C161.395 (5)
P1—C91.828 (3)C15—C201.399 (5)
P1—C11.835 (3)C16—C171.389 (5)
P2—C151.824 (3)C16—H160.9500
P2—C211.826 (3)C17—C181.381 (6)
P2—C21.865 (3)C17—H170.9500
C1—C21.518 (4)C18—C191.377 (6)
C1—H1A0.9900C18—H180.9500
C1—H1B0.9900C19—C201.393 (5)
C2—H2A0.9900C19—H190.9500
C2—H2B0.9900C20—H200.9500
C3—C41.386 (5)C21—C221.394 (5)
C3—C81.388 (5)C21—C261.397 (5)
C4—C51.388 (5)C22—C231.388 (5)
C4—H40.9500C22—H220.9500
C5—C61.363 (6)C23—C241.366 (7)
C5—H50.9500C23—H230.9500
C6—C71.391 (7)C24—C251.381 (6)
C6—H60.9500C24—H240.9500
C7—C81.396 (6)C25—C261.389 (5)
C7—H70.9500C25—H250.9500
C8—H80.9500C26—H260.9500
C9—C101.388 (5)C27—Cl31.723 (5)
C9—C141.392 (5)C27—Cl11.746 (5)
C10—C111.387 (5)C27—Cl21.757 (6)
C10—H100.9500C27—H271.0000
C11—C121.381 (6)
F1i—Ru1—F1180.00 (14)C14—C9—P1117.5 (3)
F1i—Ru1—P1i95.64 (5)C11—C10—C9120.3 (3)
F1—Ru1—P1i84.36 (5)C11—C10—H10119.8
F1i—Ru1—P184.36 (5)C9—C10—H10119.8
F1—Ru1—P195.64 (5)C12—C11—C10120.2 (4)
P1i—Ru1—P1180.000 (15)C12—C11—H11119.9
F1i—Ru1—P2i97.13 (5)C10—C11—H11119.9
F1—Ru1—P2i82.87 (5)C11—C12—C13120.0 (3)
P1i—Ru1—P2i81.88 (3)C11—C12—H12120.0
P1—Ru1—P2i98.12 (3)C13—C12—H12120.0
F1i—Ru1—P282.87 (5)C12—C13—C14119.9 (4)
F1—Ru1—P297.13 (5)C12—C13—H13120.0
P1i—Ru1—P298.12 (3)C14—C13—H13120.0
P1—Ru1—P281.88 (3)C9—C14—C13120.2 (3)
P2i—Ru1—P2180.00 (5)C9—C14—H14119.9
C3—P1—C9103.10 (15)C13—C14—H14119.9
C3—P1—C1106.12 (16)C16—C15—C20118.7 (3)
C9—P1—C1101.29 (15)C16—C15—P2119.3 (3)
C3—P1—Ru1118.14 (11)C20—C15—P2121.6 (3)
C9—P1—Ru1121.52 (11)C17—C16—C15120.7 (4)
C1—P1—Ru1104.53 (11)C17—C16—H16119.7
C15—P2—C21104.66 (16)C15—C16—H16119.7
C15—P2—C2103.67 (16)C18—C17—C16120.0 (4)
C21—P2—C299.40 (15)C18—C17—H17120.0
C15—P2—Ru1115.25 (11)C16—C17—H17120.0
C21—P2—Ru1122.49 (11)C19—C18—C17120.1 (4)
C2—P2—Ru1108.80 (11)C19—C18—H18120.0
C2—C1—P1110.2 (2)C17—C18—H18120.0
C2—C1—H1A109.6C18—C19—C20120.5 (4)
P1—C1—H1A109.6C18—C19—H19119.8
C2—C1—H1B109.6C20—C19—H19119.8
P1—C1—H1B109.6C19—C20—C15120.1 (4)
H1A—C1—H1B108.1C19—C20—H20120.0
C1—C2—P2112.4 (2)C15—C20—H20120.0
C1—C2—H2A109.1C22—C21—C26119.1 (3)
P2—C2—H2A109.1C22—C21—P2122.8 (3)
C1—C2—H2B109.1C26—C21—P2117.7 (3)
P2—C2—H2B109.1C23—C22—C21120.0 (4)
H2A—C2—H2B107.9C23—C22—H22120.0
C4—C3—C8119.1 (3)C21—C22—H22120.0
C4—C3—P1117.6 (3)C24—C23—C22120.8 (4)
C8—C3—P1123.3 (3)C24—C23—H23119.6
C3—C4—C5120.3 (4)C22—C23—H23119.6
C3—C4—H4119.9C23—C24—C25119.9 (4)
C5—C4—H4119.9C23—C24—H24120.1
C6—C5—C4121.0 (4)C25—C24—H24120.1
C6—C5—H5119.5C24—C25—C26120.5 (4)
C4—C5—H5119.5C24—C25—H25119.7
C5—C6—C7119.6 (4)C26—C25—H25119.7
C5—C6—H6120.2C25—C26—C21119.8 (4)
C7—C6—H6120.2C25—C26—H26120.1
C6—C7—C8119.9 (4)C21—C26—H26120.1
C6—C7—H7120.0Cl3—C27—Cl1111.8 (3)
C8—C7—H7120.0Cl3—C27—Cl2111.1 (3)
C3—C8—C7120.2 (4)Cl1—C27—Cl2109.6 (3)
C3—C8—H8119.9Cl3—C27—H27108.1
C7—C8—H8119.9Cl1—C27—H27108.1
C10—C9—C14119.2 (3)Cl2—C27—H27108.1
C10—C9—P1123.3 (3)
F1i—Ru1—P1—C3165.36 (13)C6—C7—C8—C31.3 (7)
F1—Ru1—P1—C314.64 (13)C3—P1—C9—C102.4 (3)
P2i—Ru1—P1—C398.22 (13)C1—P1—C9—C10107.3 (3)
P2—Ru1—P1—C381.78 (13)Ru1—P1—C9—C10137.7 (3)
F1i—Ru1—P1—C965.62 (14)C3—P1—C9—C14174.8 (3)
F1—Ru1—P1—C9114.38 (14)C1—P1—C9—C1475.5 (3)
P2i—Ru1—P1—C930.80 (13)Ru1—P1—C9—C1439.5 (3)
P2—Ru1—P1—C9149.20 (13)C14—C9—C10—C111.3 (5)
F1i—Ru1—P1—C147.72 (12)P1—C9—C10—C11175.8 (3)
F1—Ru1—P1—C1132.28 (12)C9—C10—C11—C120.1 (6)
P2i—Ru1—P1—C1144.14 (11)C10—C11—C12—C132.0 (7)
P2—Ru1—P1—C135.86 (11)C11—C12—C13—C142.8 (7)
F1i—Ru1—P2—C1549.13 (13)C10—C9—C14—C130.5 (5)
F1—Ru1—P2—C15130.87 (13)P1—C9—C14—C13176.8 (3)
P1i—Ru1—P2—C1545.59 (13)C12—C13—C14—C91.5 (6)
P1—Ru1—P2—C15134.41 (13)C21—P2—C15—C16145.2 (3)
F1i—Ru1—P2—C21178.33 (14)C2—P2—C15—C1641.5 (3)
F1—Ru1—P2—C211.67 (14)Ru1—P2—C15—C1677.3 (3)
P1i—Ru1—P2—C2183.61 (13)C21—P2—C15—C2042.2 (3)
P1—Ru1—P2—C2196.39 (13)C2—P2—C15—C20145.9 (3)
F1i—Ru1—P2—C266.76 (13)Ru1—P2—C15—C2095.3 (3)
F1—Ru1—P2—C2113.24 (13)C20—C15—C16—C171.4 (5)
P1i—Ru1—P2—C2161.48 (13)P2—C15—C16—C17171.4 (3)
P1—Ru1—P2—C218.52 (13)C15—C16—C17—C180.5 (6)
C3—P1—C1—C273.8 (3)C16—C17—C18—C191.2 (6)
C9—P1—C1—C2178.8 (2)C17—C18—C19—C201.9 (6)
Ru1—P1—C1—C251.8 (2)C18—C19—C20—C151.0 (6)
P1—C1—C2—P237.6 (3)C16—C15—C20—C190.7 (5)
C15—P2—C2—C1116.1 (3)P2—C15—C20—C19172.0 (3)
C21—P2—C2—C1136.2 (3)C15—P2—C21—C2229.9 (3)
Ru1—P2—C2—C17.0 (3)C2—P2—C21—C2277.0 (3)
C9—P1—C3—C481.7 (3)Ru1—P2—C21—C22163.5 (2)
C1—P1—C3—C4172.2 (3)C15—P2—C21—C26157.4 (3)
Ru1—P1—C3—C455.4 (3)C2—P2—C21—C2695.7 (3)
C9—P1—C3—C896.4 (3)Ru1—P2—C21—C2623.8 (3)
C1—P1—C3—C89.7 (3)C26—C21—C22—C230.8 (5)
Ru1—P1—C3—C8126.5 (3)P2—C21—C22—C23173.3 (3)
C8—C3—C4—C51.3 (5)C21—C22—C23—C240.2 (6)
P1—C3—C4—C5176.9 (3)C22—C23—C24—C250.4 (6)
C3—C4—C5—C60.4 (6)C23—C24—C25—C260.4 (7)
C4—C5—C6—C71.3 (7)C24—C25—C26—C210.2 (6)
C5—C6—C7—C82.1 (7)C22—C21—C26—C250.8 (6)
C4—C3—C8—C70.4 (6)P2—C21—C26—C25173.7 (3)
P1—C3—C8—C7177.7 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[RuF2(C26H24P2)2]·2CHCl3
Mr1174.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.3274 (8), 17.8090 (12), 12.9556 (9)
β (°) 94.885 (1)
V3)2604.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.18 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.873, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
22716, 6177, 5249
Rint0.030
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.05
No. of reflections6177
No. of parameters329
H-atom treatmentConstrained
Δρmax, Δρmin (e Å3)1.86, 1.60

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97, PLATON (Spek, 2003), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) top
Ru1—F1i2.1729 (18)P1—C11.835 (3)
Ru1—P12.3356 (8)P2—C21.865 (3)
Ru1—P22.3510 (8)C1—C21.518 (4)
F1—Ru1—P195.64 (5)C1—P1—Ru1104.53 (11)
P1—Ru1—P281.88 (3)C2—P2—Ru1108.80 (11)
Symmetry code: (i) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds