Download citation
Download citation
link to html
The crystal structure of the title compound, {[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2O}n, is built up from two [Tm(SIP)(H2O)5] mol­ecules (SIP3− is 5-sulfonatobenzene-1,3-dicarboxylate), three 4,4′-bipyridyl (bpy) mol­ecules and one solvent water mol­ecule. One of the bpy mol­ecules and the solvent water mol­ecule are located on an inversion centre and a twofold rotation axis, respectively. The TmIII ion coordination is composed of four carboxyl­ate O atoms from two trianionic SIP3− ligands and five coordinated water mol­ecules. The Tm3+ ions are linked by the SIP3− ligands to form a one-dimensional zigzag chain propagating along the c axis. The chains are linked by inter­chain O—H...O hydrogen bonds to generate a two-dimensional layered structure. The bpy mol­ecules are not involved in coordination but are linked by O—H...N hydrogen bonds to form two-dimensional layers. The two-dimensional layers are further bridged by the bpy mol­ecules as pillars and the solvent water mol­ecules through hydrogen bonds, giving a three-dimensional supra­molecular structure. π–π stacking inter­actions between the parallel aromatic rings, arranged in an offset fashion with a face-to-face distance of 3.566 (1) Å, are observed in the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107022470/av3091sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022470/av3091Isup2.hkl
Contains datablock I

CCDC reference: 271160

Comment top

Crystal engineering and supramolecular chemistry have been the most active areas of materials research in recent years owing to the intriguing structural topologies examined and potential applications in host–guest chemistry, catalysis and electrical conductivity (Biradha & Zaworotko, 1998; Yaghi et al., 1995; Conn & Rebek, 1997). The key to successful construction of supramolecular architectures is the control and manipulation of coordination bonds and noncovalent interactions by carefully selecting the coordination geometry of the metal centers and organic ligands containing appropriate functional groups (such as carboxylic acid and pyridine; Tong et al., 1999; Dong et al., 2000). Among the linker molecules, carboxylic acids such as acetic acid, succinic acid and benzene-1,3,5-tricarboxylic acid have been studied extensively because of their versatile coordination modes (Saalfrank et al., 2001 or 1997???; Bowden et al., 2003; Yaghi et al., 1997). Using benzene-1,3,5-tricarboxylic acid, we recently investigated the influence of changing of one of the carboxylate groups for a sulfonate group by using 5-sulfoisophthalic acid with the goal of obtaining materials with desirable properties. The sulfonate group has one more O atom than the carboxylate group and thus can provide three potential hydrogen-bond acceptors (Evans et al., 1999). The combination of 5-sulfoisophthalic acid ligand with metal ions produced several complexes with diverse structural topologies (Liu & Xu, 2005a, 2006). The hydrothermal reaction of Tm2O3, 5-sulfoisophthalic acid monosodium salt (NaH2SIP) and

4,4'-bipyridine (bpy) yields the title complex, (I). We present its structure here.

The asymmetric unit of (I) consists of a [Tm(SIP)(H2O)5] molecule, one and a half bpy molecules, and one-half of a solvent water molecule. One of the bpy molecules and the solvent water molecule are located on an inversion centre and a twofold rotation axis, respectively. As depicted in Fig. 1, the Tm atom is nine-coordinated by four carboxylate O atoms from two SIP3- ligands and five O atoms from coordinated water molecules. The Tm—O bond lengths range from 2.292 (2) to 2.507 (2) Å with an average value of 2.393 Å, and the O—Tm—O bond angles range from 53.03 (6) to 146.00 (7)° (Table 1). The bond dimensions involving Tm are normal and are comparable to the values in related thulium(III) complexes (Liu & Xu, 2005b). Each SIP3- anion bridges two neighboring Tm3+ ions through its two chelating carboxylate groups (Fig. 1). The sulfonate group is uncoordinated and engaged in hydrogen bonding with the coordinated water molecules. The three identical S—O bond distances (Table 1) suggest that strong conjugation of the sulfonate group is predominant in this structure. The Tm ions are linked by the SIP3- ligands to produce a one-dimensional zigzag chain propagating along the crystallographic c axis as shown in Fig. 2. The chain is repeated by translation about every 17.4 Å along the c direction, comparable with the length of the c axis. The chains are linked by interchain hydrogen bonds between (a) coordinated water molecules and carboxylate O atoms and (b) coordinated water molecules and sulfonate O atoms, with O···O distances of 2.695 (2)–3.038 (3) Å (Table 2), to generate a two-dimensional layered structure (Figs. 3 and 4). ππ stacking interactions between the parallel phenyl rings, arranged in an off-set fashion with a face-to-face distance of 3.566 (1) Å and a centroid-to-centroid distance of 3.677 (2) Å, are observed within the two-dimensional layer.

The bpy molecules are not involved in coordination but link the chains through hydrogen bonds between coordinated water molecules and pyridyl N atoms, as depicted in Fig. 5. It is interesting that the bpy molecules exhibit two types of conformations with the two pyridyl rings coplanar and twisted with the dihedral angle of 26.2 (2)°. The two-dimensional layers are further linked by the bpy molecules as pillars through O—H···N hydrogen bonds (Table 2) to produce a three-dimensional supramolecular framework structure as illustrated in Fig. 5. The solvent water molecule is located in the space between the two-dimensional layers and stabilized by hydrogen bonding with the sulfonate group with a O···O distance of 2.785 (3) Å. The extensive hydrogen bonds and ππ stacking interactions are responsible for the three-dimensional supramolecular framework structure.

Related literature top

For related literature, see: Biradha & Zaworotko (1998); Bowden et al. (2003); Conn & Rebek (1997); Dong et al. (2000); Evans et al. (1999); Liu & Xu (2005a, 2005b, 2006); Saalfrank et al. (2001); Sheldrick (1997a); Tong et al. (1999); Yaghi et al. (1995, 1997).

Experimental top

The title compound was synthesized by a hydrothermal method under autogenous pressure. A mixture of Tm2O3 (38.6 mg, 0.1 mmol), (NaH2SIP) (28.6 mg, 0.1 mmol), bpy (23.4 mg, 1.5 mmol), and distilled water (15 ml) was stirred under ambient conditions. The final mixture was sealed in a 25 ml Teflon-lined steel autoclave, heated at 438 K for five days and then cooled to room temperature. Colorless prism-like crystals of (I) were obtained, recovered by filtration, washed with distilled water and dried in air (yield 56%). Analysis calculated for C46H52N6O25S2Tm2: C 37.04, H 3.52, N 5.64%; found: C 36.99, H 3.50, N 5.61%.

Refinement top

Aromatic H atoms were placed in calculated positions and treated using a riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. H atoms bonded to O atoms were visible in a difference map and were refined with a DFIX (SHELXL97; Sheldrick, 1997a) restraint [O—H = 0.90 (1) Å] and with Uiso(H) values set at 1.5Ueq(O). Atom O5 of the sulfonate group was found to be disordered and was modelled over two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components have refined occupancies of 78.6 (7) and 21.4 (7)%, respectively. The atoms of the terminal pyridyl ring and the sulfonate group have larger displacement parameters because of their freedom of libration.

Computing details top

Data collection: CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x, -y, z + 1/2; (ii) -x - 1, -y + 1, -z; (iii) x, -y, z - 1/2.] No match with codes in Table 2.
[Figure 2] Fig. 2. A view of the [Tm(SIP)(H2O)5]2 zigzag chain. [Symmetry code: (i) x, -y, z + 1/2.]
[Figure 3] Fig. 3. A perspective view of the hydrogen bonds between the chains. Dashed lines indicate hydrogen bonds. [Symmetry codes: (iv) -x - 1/2, -y + 1/2, -z; (v) -x - 1/2, y - 1/2, -z + 1/2; (vi) -x - 1/2, y + 1/2, -z + 1/2; (vii) x, -y + 1, z + 1/2.] iv differs from Table 2.
[Figure 4] Fig. 4. A perspective view of the two-dimensional layered structure. Dashed lines between the O atoms indicate hydrogen bonds.
[Figure 5] Fig. 5. A view of the packing for (I) (viewed down the c axis) showing the bpy pillars between the layers. Some atoms have been omitted for clarity.
catena-Poly[[pentaaquathulium(III)]-µ-5-sulfonatobenzene-1,3-dicarboxylato]- 4,4'-bipyridyl 1.5-solvate hemihydrate] top
Crystal data top
[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2OF(000) = 2960
Mr = 745.46Dx = 1.863 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8423 reflections
a = 30.516 (5) Åθ = 2.0–27.5°
b = 10.8142 (16) ŵ = 3.49 mm1
c = 17.350 (3) ÅT = 130 K
β = 111.795 (2)°Prism, colorless
V = 5316.4 (15) Å30.33 × 0.30 × 0.08 mm
Z = 8
Data collection top
Rigaku Mercury70 (2x2 bin mode)
diffractometer
6071 independent reflections
Radiation source: fine-focus sealed tube5742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2000)
h = 3139
Tmin = 0.328, Tmax = 0.762k = 1314
20149 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0208P)2 + 19.846P]
where P = (Fo2 + 2Fc2)/3
6071 reflections(Δ/σ)max = 0.002
403 parametersΔρmax = 0.91 e Å3
12 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2OV = 5316.4 (15) Å3
Mr = 745.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.516 (5) ŵ = 3.49 mm1
b = 10.8142 (16) ÅT = 130 K
c = 17.350 (3) Å0.33 × 0.30 × 0.08 mm
β = 111.795 (2)°
Data collection top
Rigaku Mercury70 (2x2 bin mode)
diffractometer
6071 independent reflections
Absorption correction: multi-scan
CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2000)
5742 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.762Rint = 0.029
20149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02312 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0208P)2 + 19.846P]
where P = (Fo2 + 2Fc2)/3
6071 reflectionsΔρmax = 0.91 e Å3
403 parametersΔρmin = 0.87 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tm10.257837 (4)0.193024 (9)0.319545 (6)0.00838 (4)
S10.36602 (2)0.44786 (6)0.13949 (4)0.01302 (13)
O10.27147 (7)0.11168 (16)0.18392 (10)0.0134 (4)
O1W0.50000.3321 (4)0.25000.0578 (13)
H1W0.4740 (13)0.381 (4)0.225 (3)0.087*
O20.29363 (7)0.30459 (15)0.18378 (11)0.0113 (4)
O30.27794 (7)0.09440 (16)0.07165 (10)0.0137 (4)
O40.28662 (7)0.01635 (16)0.18215 (11)0.0148 (4)
O50.34050 (12)0.5570 (2)0.09374 (17)0.0180 (7)0.786 (7)
O5A0.3584 (5)0.5489 (7)0.0789 (5)0.0180 (7)0.214 (7)
O60.41449 (8)0.4359 (2)0.14853 (14)0.0331 (6)
O70.35848 (8)0.4398 (2)0.21710 (13)0.0287 (5)
O80.19994 (7)0.30252 (16)0.29530 (11)0.0121 (4)
H8A0.2043 (11)0.359 (2)0.2558 (14)0.018*
H8B0.1701 (5)0.315 (3)0.3288 (17)0.018*
O90.33836 (7)0.21186 (18)0.28583 (12)0.0167 (4)
H9A0.3590 (10)0.260 (3)0.2480 (16)0.025*
H9B0.3543 (11)0.182 (3)0.3159 (19)0.025*
O100.19349 (7)0.05411 (16)0.33629 (12)0.0150 (4)
H10B0.1761 (10)0.068 (3)0.3059 (17)0.022*
H10C0.2007 (12)0.0258 (12)0.327 (2)0.022*
O110.19749 (7)0.23648 (18)0.45654 (11)0.0161 (4)
H11C0.2045 (12)0.295 (2)0.4860 (18)0.024*
H11B0.1871 (12)0.177 (2)0.4948 (16)0.024*
O120.26790 (7)0.39398 (17)0.35546 (12)0.0147 (4)
H12B0.2945 (7)0.417 (3)0.361 (2)0.022*
H12C0.2576 (11)0.453 (2)0.3316 (18)0.022*
N10.10200 (9)0.6135 (3)0.35702 (17)0.0299 (6)
N20.10723 (10)0.3564 (3)0.37579 (18)0.0335 (7)
N30.41372 (9)0.3367 (2)0.16550 (17)0.0260 (6)
C10.30190 (9)0.2150 (2)0.05261 (15)0.0104 (5)
C20.29256 (9)0.1130 (2)0.01235 (15)0.0109 (5)
H20.27940.04230.04260.013*
C30.30259 (9)0.1155 (2)0.07229 (15)0.0101 (5)
C40.32458 (9)0.2189 (2)0.11896 (15)0.0107 (5)
H40.33170.22070.17590.013*
C50.33561 (9)0.3189 (2)0.07944 (15)0.0098 (5)
C60.32340 (9)0.3192 (2)0.00652 (15)0.0108 (5)
H60.32960.38820.03290.013*
C70.28834 (9)0.2107 (2)0.14486 (15)0.0105 (5)
C80.28867 (9)0.0064 (2)0.11084 (15)0.0113 (5)
C90.02016 (10)0.4533 (3)0.38463 (17)0.0219 (6)
C100.02900 (11)0.3265 (3)0.3773 (2)0.0272 (7)
H10A0.00590.27150.37590.033*
C110.07279 (12)0.2836 (3)0.3723 (2)0.0330 (8)
H11A0.07850.19900.36610.040*
C120.09794 (12)0.4774 (4)0.3856 (2)0.0355 (8)
H12A0.12120.52990.38940.043*
C130.05533 (12)0.5286 (3)0.3903 (2)0.0310 (7)
H130.05050.61350.39720.037*
C140.02386 (10)0.5063 (3)0.37958 (18)0.0209 (6)
C150.03996 (11)0.6243 (3)0.4102 (2)0.0270 (7)
H150.02470.66940.43850.032*
C160.07879 (12)0.6732 (3)0.3979 (2)0.0319 (8)
H160.08930.75130.41920.038*
C170.08679 (11)0.5008 (3)0.32900 (19)0.0271 (7)
H170.10270.45800.30090.033*
C180.04876 (11)0.4432 (3)0.33906 (19)0.0250 (6)
H180.04000.36350.31900.030*
C190.41004 (13)0.3527 (4)0.0926 (3)0.0434 (10)
H190.38370.31940.08540.052*
C200.44238 (13)0.4150 (4)0.0263 (2)0.0447 (10)
H200.43750.42300.02330.054*
C210.48207 (10)0.4656 (3)0.03454 (18)0.0202 (6)
C220.48636 (12)0.4484 (3)0.11064 (19)0.0298 (7)
H220.51250.47950.11950.036*
C230.45174 (12)0.3851 (3)0.1734 (2)0.0314 (7)
H230.45540.37590.22400.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.01177 (6)0.00666 (6)0.00715 (6)0.00174 (4)0.00402 (4)0.00005 (4)
S10.0152 (3)0.0097 (3)0.0125 (3)0.0029 (2)0.0032 (3)0.0024 (2)
O10.0225 (10)0.0086 (8)0.0097 (8)0.0019 (7)0.0068 (8)0.0010 (6)
O1W0.052 (3)0.039 (3)0.074 (3)0.0000.013 (3)0.000
O20.0150 (9)0.0089 (8)0.0096 (8)0.0004 (7)0.0042 (7)0.0020 (6)
O30.0209 (10)0.0109 (9)0.0101 (8)0.0057 (7)0.0066 (8)0.0017 (7)
O40.0256 (11)0.0096 (8)0.0137 (9)0.0032 (7)0.0125 (8)0.0015 (7)
O50.0254 (18)0.0087 (10)0.0195 (12)0.0022 (10)0.0078 (12)0.0017 (9)
O5A0.0254 (18)0.0087 (10)0.0195 (12)0.0022 (10)0.0078 (12)0.0017 (9)
O60.0160 (11)0.0489 (15)0.0367 (13)0.0119 (10)0.0124 (10)0.0240 (11)
O70.0336 (13)0.0349 (12)0.0250 (11)0.0184 (10)0.0196 (10)0.0206 (9)
O80.0122 (9)0.0132 (9)0.0107 (8)0.0006 (7)0.0040 (7)0.0052 (7)
O90.0119 (10)0.0198 (10)0.0188 (9)0.0011 (8)0.0059 (8)0.0069 (8)
O100.0182 (10)0.0082 (8)0.0190 (9)0.0006 (7)0.0075 (8)0.0013 (7)
O110.0215 (11)0.0149 (9)0.0105 (8)0.0018 (8)0.0043 (8)0.0001 (7)
O120.0163 (10)0.0126 (9)0.0174 (9)0.0008 (7)0.0086 (8)0.0038 (7)
N10.0164 (13)0.0438 (17)0.0294 (14)0.0067 (12)0.0084 (11)0.0110 (12)
N20.0158 (14)0.0467 (18)0.0335 (15)0.0049 (12)0.0040 (12)0.0193 (13)
N30.0192 (14)0.0219 (13)0.0286 (13)0.0009 (10)0.0006 (11)0.0038 (11)
C10.0118 (12)0.0110 (11)0.0091 (11)0.0005 (9)0.0046 (10)0.0000 (9)
C20.0115 (12)0.0089 (11)0.0117 (11)0.0016 (9)0.0037 (10)0.0014 (9)
C30.0112 (12)0.0080 (11)0.0121 (11)0.0011 (9)0.0054 (10)0.0004 (9)
C40.0112 (12)0.0128 (12)0.0082 (10)0.0005 (9)0.0039 (10)0.0005 (9)
C50.0097 (12)0.0090 (11)0.0101 (11)0.0003 (9)0.0031 (10)0.0007 (9)
C60.0128 (13)0.0087 (11)0.0120 (11)0.0008 (9)0.0059 (10)0.0030 (9)
C70.0099 (12)0.0108 (11)0.0101 (11)0.0010 (9)0.0030 (10)0.0010 (9)
C80.0123 (12)0.0104 (11)0.0113 (11)0.0002 (9)0.0043 (10)0.0007 (9)
C90.0143 (14)0.0304 (16)0.0185 (13)0.0020 (12)0.0031 (12)0.0070 (11)
C100.0185 (16)0.0294 (16)0.0319 (16)0.0039 (13)0.0073 (14)0.0053 (13)
C110.0254 (18)0.0348 (18)0.0345 (18)0.0102 (14)0.0060 (15)0.0078 (14)
C120.0197 (17)0.045 (2)0.044 (2)0.0053 (15)0.0143 (16)0.0161 (16)
C130.0233 (17)0.0302 (17)0.0417 (19)0.0004 (13)0.0147 (15)0.0097 (14)
C140.0136 (14)0.0272 (15)0.0197 (13)0.0030 (12)0.0035 (11)0.0065 (11)
C150.0247 (17)0.0309 (17)0.0296 (16)0.0053 (13)0.0150 (14)0.0016 (13)
C160.0286 (18)0.0316 (18)0.0355 (18)0.0104 (14)0.0118 (15)0.0031 (14)
C170.0153 (15)0.0441 (19)0.0227 (15)0.0016 (14)0.0080 (13)0.0069 (13)
C180.0166 (15)0.0307 (17)0.0260 (15)0.0024 (12)0.0058 (12)0.0025 (13)
C190.0190 (18)0.063 (3)0.053 (2)0.0178 (17)0.0187 (17)0.033 (2)
C200.0266 (19)0.070 (3)0.046 (2)0.0217 (19)0.0230 (17)0.036 (2)
C210.0161 (14)0.0168 (13)0.0237 (14)0.0009 (11)0.0027 (12)0.0021 (11)
C220.0288 (18)0.0346 (18)0.0210 (15)0.0134 (14)0.0034 (14)0.0041 (13)
C230.0343 (19)0.0344 (18)0.0198 (14)0.0104 (15)0.0034 (14)0.0017 (13)
Geometric parameters (Å, º) top
Tm1—O82.2919 (18)C1—C61.396 (3)
Tm1—O122.3124 (18)C1—C71.498 (3)
Tm1—O92.314 (2)C2—C31.385 (3)
Tm1—O12.3994 (17)C2—H20.9300
Tm1—O102.4027 (19)C3—C41.398 (3)
Tm1—O4i2.4249 (18)C3—C81.494 (3)
Tm1—O3i2.4366 (17)C4—C51.387 (3)
Tm1—O112.4517 (19)C4—H40.9300
Tm1—O22.5073 (17)C5—C61.397 (3)
S1—O61.434 (2)C6—H60.9300
S1—O71.451 (2)C8—Tm1ii2.800 (2)
S1—O51.473 (2)C9—C131.379 (4)
S1—O5A1.474 (2)C9—C101.395 (4)
S1—C51.781 (2)C9—C141.493 (4)
O1—C71.269 (3)C10—C111.386 (5)
O1W—H1W0.92 (5)C10—H10A0.9300
O2—C71.263 (3)C11—H11A0.9300
O3—C81.262 (3)C12—C131.388 (5)
O3—Tm1ii2.4366 (17)C12—H12A0.9300
O4—C81.266 (3)C13—H130.9300
O4—Tm1ii2.4249 (18)C14—C181.391 (4)
O8—H8A0.89 (1)C14—C151.399 (4)
O8—H8B0.89 (1)C15—C161.384 (4)
O9—H9A0.89 (3)C15—H150.9300
O9—H9B0.90 (3)C16—H160.9300
O10—H10B0.89 (3)C17—C181.384 (4)
O10—H10C0.89 (1)C17—H170.9300
O11—H11C0.89 (3)C18—H180.9300
O11—H11B0.89 (1)C19—C201.382 (5)
O12—H12B0.89 (3)C19—H190.9300
O12—H12C0.88 (3)C20—C211.384 (5)
N1—C171.331 (4)C20—H200.9300
N1—C161.340 (5)C21—C221.387 (4)
N2—C111.332 (5)C21—C21iii1.488 (6)
N2—C121.336 (5)C22—C231.385 (4)
N3—C191.322 (5)C22—H220.9300
N3—C231.325 (4)C23—H230.9300
C1—C21.391 (3)
O8—Tm1—O1275.67 (7)Tm1—O12—H12C117 (2)
O8—Tm1—O9136.62 (6)H12B—O12—H12C110 (3)
O12—Tm1—O975.56 (7)C17—N1—C16117.0 (3)
O8—Tm1—O182.78 (6)C11—N2—C12116.8 (3)
O12—Tm1—O1128.08 (6)C19—N3—C23115.8 (3)
O9—Tm1—O190.18 (7)C2—C1—C6119.5 (2)
O8—Tm1—O1072.19 (6)C2—C1—C7119.0 (2)
O12—Tm1—O10137.67 (7)C6—C1—C7121.5 (2)
O9—Tm1—O10146.00 (7)C3—C2—C1120.7 (2)
O1—Tm1—O1074.08 (6)C3—C2—H2119.6
O8—Tm1—O4i141.33 (6)C1—C2—H2119.6
O12—Tm1—O4i142.85 (6)C2—C3—C4120.0 (2)
O9—Tm1—O4i74.53 (7)C2—C3—C8118.2 (2)
O1—Tm1—O4i73.48 (6)C4—C3—C8121.9 (2)
O10—Tm1—O4i72.17 (6)C5—C4—C3119.3 (2)
O8—Tm1—O3i143.25 (6)C5—C4—H4120.3
O12—Tm1—O3i96.07 (6)C3—C4—H4120.3
O9—Tm1—O3i71.65 (7)C4—C5—C6120.8 (2)
O1—Tm1—O3i126.69 (6)C4—C5—S1119.38 (18)
O10—Tm1—O3i93.56 (6)C6—C5—S1119.85 (18)
O4i—Tm1—O3i53.59 (6)C1—C6—C5119.5 (2)
O8—Tm1—O1174.11 (6)C1—C6—H6120.2
O12—Tm1—O1171.68 (7)C5—C6—H6120.2
O9—Tm1—O11124.97 (7)O2—C7—O1120.0 (2)
O1—Tm1—O11144.62 (7)O2—C7—C1120.4 (2)
O10—Tm1—O1173.54 (7)O1—C7—C1119.6 (2)
O4i—Tm1—O11109.21 (6)O2—C7—Tm162.45 (13)
O3i—Tm1—O1169.35 (6)O1—C7—Tm157.58 (12)
O8—Tm1—O271.07 (6)C1—C7—Tm1176.39 (18)
O12—Tm1—O275.27 (6)O3—C8—O4120.2 (2)
O9—Tm1—O270.66 (6)O3—C8—C3120.1 (2)
O1—Tm1—O253.03 (6)O4—C8—C3119.7 (2)
O10—Tm1—O2117.76 (6)O3—C8—Tm1ii60.37 (12)
O4i—Tm1—O2114.11 (6)O4—C8—Tm1ii59.85 (13)
O3i—Tm1—O2142.31 (6)C3—C8—Tm1ii177.03 (18)
O11—Tm1—O2136.63 (6)C13—C9—C10117.2 (3)
O8—Tm1—C8i151.96 (7)C13—C9—C14121.3 (3)
O12—Tm1—C8i120.54 (7)C10—C9—C14121.3 (3)
O9—Tm1—C8i71.42 (7)C11—C10—C9119.0 (3)
O1—Tm1—C8i100.20 (7)C11—C10—H10A120.5
O10—Tm1—C8i81.76 (7)C9—C10—H10A120.5
O4i—Tm1—C8i26.84 (6)N2—C11—C10123.9 (3)
O3i—Tm1—C8i26.75 (6)N2—C11—H11A118.0
O11—Tm1—C8i88.92 (7)C10—C11—H11A118.0
O2—Tm1—C8i132.61 (7)N2—C12—C13123.3 (3)
O8—Tm1—C774.80 (7)N2—C12—H12A118.4
O12—Tm1—C7101.63 (7)C13—C12—H12A118.4
O9—Tm1—C780.04 (7)C9—C13—C12119.8 (3)
O1—Tm1—C726.52 (6)C9—C13—H13120.1
O10—Tm1—C795.79 (7)C12—C13—H13120.1
O4i—Tm1—C794.39 (6)C18—C14—C15117.3 (3)
O3i—Tm1—C7141.51 (7)C18—C14—C9120.9 (3)
O11—Tm1—C7148.88 (7)C15—C14—C9121.6 (3)
O2—Tm1—C726.52 (6)C16—C15—C14119.3 (3)
C8i—Tm1—C7119.00 (7)C16—C15—H15120.3
O6—S1—O7113.93 (14)C14—C15—H15120.3
O6—S1—O5116.66 (19)N1—C16—C15123.3 (3)
O7—S1—O5108.31 (18)N1—C16—H16118.4
O6—S1—O5A91.6 (6)C15—C16—H16118.4
O7—S1—O5A132.0 (5)N1—C17—C18124.1 (3)
O6—S1—C5106.59 (12)N1—C17—H17117.9
O7—S1—C5105.54 (12)C18—C17—H17117.9
O5—S1—C5104.81 (13)C17—C18—C14118.9 (3)
O5A—S1—C5104.7 (4)C17—C18—H18120.5
C7—O1—Tm195.89 (14)C14—C18—H18120.5
C7—O2—Tm191.02 (14)N3—C19—C20124.9 (3)
C8—O3—Tm1ii92.88 (14)N3—C19—H19117.6
C8—O4—Tm1ii93.30 (15)C20—C19—H19117.6
Tm1—O8—H8A126 (2)C19—C20—C21119.3 (3)
Tm1—O8—H8B129 (2)C19—C20—H20120.4
H8A—O8—H8B103 (3)C21—C20—H20120.4
Tm1—O9—H9A129 (2)C20—C21—C22116.2 (3)
Tm1—O9—H9B125 (2)C20—C21—C21iii121.6 (3)
H9A—O9—H9B105 (3)C22—C21—C21iii122.2 (3)
Tm1—O10—H10B118 (2)C23—C22—C21120.0 (3)
Tm1—O10—H10C117 (2)C23—C22—H22120.0
H10B—O10—H10C102 (3)C21—C22—H22120.0
Tm1—O11—H11C116 (2)N3—C23—C22123.8 (3)
Tm1—O11—H11B121 (2)N3—C23—H23118.1
H11C—O11—H11B100 (3)C22—C23—H23118.1
Tm1—O12—H12B121 (2)
O8—Tm1—O1—C770.25 (15)O10—Tm1—C7—O2147.72 (14)
O12—Tm1—O1—C74.86 (18)O4i—Tm1—C7—O2139.79 (15)
O9—Tm1—O1—C766.82 (16)O3i—Tm1—C7—O2109.11 (15)
O10—Tm1—O1—C7143.72 (16)O11—Tm1—C7—O280.25 (19)
O4i—Tm1—O1—C7140.61 (16)C8i—Tm1—C7—O2128.50 (14)
O3i—Tm1—O1—C7133.86 (15)O8—Tm1—C7—O1104.63 (16)
O11—Tm1—O1—C7119.30 (16)O12—Tm1—C7—O1176.10 (15)
O2—Tm1—O1—C71.46 (14)O9—Tm1—C7—O1111.04 (16)
C8i—Tm1—O1—C7137.97 (15)O10—Tm1—C7—O134.88 (16)
O8—Tm1—O2—C793.81 (15)O4i—Tm1—C7—O137.60 (16)
O12—Tm1—O2—C7173.41 (16)O3i—Tm1—C7—O168.28 (19)
O9—Tm1—O2—C7107.02 (16)O11—Tm1—C7—O1102.35 (18)
O1—Tm1—O2—C71.46 (14)O2—Tm1—C7—O1177.4 (3)
O10—Tm1—O2—C736.90 (16)C8i—Tm1—C7—O148.89 (17)
O4i—Tm1—O2—C744.85 (16)Tm1ii—O3—C8—O41.7 (3)
O3i—Tm1—O2—C7105.87 (16)Tm1ii—O3—C8—C3176.6 (2)
O11—Tm1—O2—C7132.12 (15)Tm1ii—O4—C8—O31.7 (3)
C8i—Tm1—O2—C768.42 (17)Tm1ii—O4—C8—C3176.6 (2)
C6—C1—C2—C32.6 (4)C2—C3—C8—O315.4 (4)
C7—C1—C2—C3177.1 (2)C4—C3—C8—O3165.5 (2)
C1—C2—C3—C43.3 (4)C2—C3—C8—O4163.0 (2)
C1—C2—C3—C8175.8 (2)C4—C3—C8—O416.1 (4)
C2—C3—C4—C50.8 (4)C13—C9—C10—C112.9 (5)
C8—C3—C4—C5178.3 (2)C14—C9—C10—C11172.2 (3)
C3—C4—C5—C62.4 (4)C12—N2—C11—C100.7 (5)
C3—C4—C5—S1177.18 (19)C9—C10—C11—N21.5 (5)
O6—S1—C5—C4101.4 (2)C11—N2—C12—C131.4 (5)
O7—S1—C5—C420.1 (2)C10—C9—C13—C122.3 (5)
O5—S1—C5—C4134.3 (3)C14—C9—C13—C12172.9 (3)
O5A—S1—C5—C4162.4 (6)N2—C12—C13—C90.1 (5)
O6—S1—C5—C678.2 (2)C13—C9—C14—C18151.5 (3)
O7—S1—C5—C6160.3 (2)C10—C9—C14—C1823.4 (4)
O5—S1—C5—C646.0 (3)C13—C9—C14—C1524.1 (4)
O5A—S1—C5—C618.0 (6)C10—C9—C14—C15161.0 (3)
C2—C1—C6—C50.6 (4)C18—C14—C15—C161.0 (5)
C7—C1—C6—C5179.7 (2)C9—C14—C15—C16174.7 (3)
C4—C5—C6—C13.1 (4)C17—N1—C16—C151.5 (5)
S1—C5—C6—C1176.50 (19)C14—C15—C16—N10.7 (5)
Tm1—O2—C7—O12.5 (2)C16—N1—C17—C180.5 (5)
Tm1—O2—C7—C1177.5 (2)N1—C17—C18—C141.2 (5)
Tm1—O1—C7—O22.7 (3)C15—C14—C18—C171.9 (4)
Tm1—O1—C7—C1177.4 (2)C9—C14—C18—C17173.9 (3)
C2—C1—C7—O2175.5 (2)C23—N3—C19—C200.2 (6)
C6—C1—C7—O24.2 (4)N3—C19—C20—C210.2 (7)
C2—C1—C7—O14.6 (4)C19—C20—C21—C220.3 (6)
C6—C1—C7—O1175.8 (2)C19—C20—C21—C21iii179.6 (4)
O8—Tm1—C7—O277.97 (15)C20—C21—C22—C230.8 (5)
O12—Tm1—C7—O26.51 (16)C21iii—C21—C22—C23179.2 (3)
O9—Tm1—C7—O266.36 (15)C19—N3—C23—C220.3 (5)
O1—Tm1—C7—O2177.4 (3)C21—C22—C23—N30.8 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O60.92 (5)1.90 (5)2.785 (3)161 (5)
O8—H8A···O4iv0.89 (1)1.80 (1)2.695 (2)175 (3)
O8—H8B···N20.89 (1)1.84 (1)2.713 (3)166 (3)
O9—H9A···N30.89 (3)1.94 (3)2.811 (3)167 (3)
O9—H9B···N1v0.90 (3)1.88 (3)2.764 (3)168 (3)
O10—H10B···O7iv0.89 (3)2.17 (3)3.038 (3)166 (3)
O10—H10C···O2vi0.89 (1)1.85 (1)2.730 (2)172 (3)
O11—H11B···O5vi0.89 (1)2.07 (1)2.954 (3)173 (3)
O11—H11B···O5Avi0.89 (1)2.12 (2)2.974 (7)161 (3)
O11—H11C···O3vii0.89 (3)2.13 (3)3.001 (3)169 (3)
O12—H12B···O5viii0.89 (3)1.87 (2)2.723 (4)161 (3)
O12—H12C···O1vii0.88 (3)1.99 (2)2.839 (3)161 (3)
Symmetry codes: (iv) x1/2, y+1/2, z; (v) x1/2, y1/2, z; (vi) x1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2O
Mr745.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)30.516 (5), 10.8142 (16), 17.350 (3)
β (°) 111.795 (2)
V3)5316.4 (15)
Z8
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.33 × 0.30 × 0.08
Data collection
DiffractometerRigaku Mercury70 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2000)
Tmin, Tmax0.328, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
20149, 6071, 5742
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.051, 1.00
No. of reflections6071
No. of parameters403
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0208P)2 + 19.846P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.91, 0.87

Computer programs: CrystalClear (Rigaku Corporation & Molecular Structure Corporation, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 2005), SHELXTL.

Selected geometric parameters (Å, º) top
Tm1—O82.2919 (18)Tm1—O3i2.4366 (17)
Tm1—O122.3124 (18)Tm1—O112.4517 (19)
Tm1—O92.314 (2)Tm1—O22.5073 (17)
Tm1—O12.3994 (17)S1—O61.434 (2)
Tm1—O102.4027 (19)S1—O71.451 (2)
Tm1—O4i2.4249 (18)S1—O51.473 (2)
O8—Tm1—O1275.67 (7)O1—Tm1—O3i126.69 (6)
O8—Tm1—O9136.62 (6)O10—Tm1—O3i93.56 (6)
O12—Tm1—O975.56 (7)O4i—Tm1—O3i53.59 (6)
O8—Tm1—O182.78 (6)O8—Tm1—O1174.11 (6)
O12—Tm1—O1128.08 (6)O12—Tm1—O1171.68 (7)
O9—Tm1—O190.18 (7)O9—Tm1—O11124.97 (7)
O8—Tm1—O1072.19 (6)O1—Tm1—O11144.62 (7)
O12—Tm1—O10137.67 (7)O10—Tm1—O1173.54 (7)
O9—Tm1—O10146.00 (7)O4i—Tm1—O11109.21 (6)
O1—Tm1—O1074.08 (6)O3i—Tm1—O1169.35 (6)
O8—Tm1—O4i141.33 (6)O8—Tm1—O271.07 (6)
O12—Tm1—O4i142.85 (6)O12—Tm1—O275.27 (6)
O9—Tm1—O4i74.53 (7)O9—Tm1—O270.66 (6)
O1—Tm1—O4i73.48 (6)O1—Tm1—O253.03 (6)
O10—Tm1—O4i72.17 (6)O10—Tm1—O2117.76 (6)
O8—Tm1—O3i143.25 (6)O4i—Tm1—O2114.11 (6)
O12—Tm1—O3i96.07 (6)O3i—Tm1—O2142.31 (6)
O9—Tm1—O3i71.65 (7)O11—Tm1—O2136.63 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O60.92 (5)1.90 (5)2.785 (3)161 (5)
O8—H8A···O4ii0.89 (1)1.804 (11)2.695 (2)175 (3)
O8—H8B···N20.89 (1)1.841 (13)2.713 (3)166 (3)
O9—H9A···N30.89 (3)1.94 (3)2.811 (3)167 (3)
O9—H9B···N1iii0.90 (3)1.88 (3)2.764 (3)168 (3)
O10—H10B···O7ii0.89 (3)2.17 (3)3.038 (3)166 (3)
O10—H10C···O2iv0.89 (1)1.845 (11)2.730 (2)172 (3)
O11—H11B···O5iv0.89 (1)2.068 (11)2.954 (3)173 (3)
O11—H11B···O5Aiv0.891 (10)2.116 (18)2.974 (7)161 (3)
O11—H11C···O3v0.89 (3)2.13 (3)3.001 (3)169 (3)
O12—H12B···O5vi0.89 (3)1.868 (15)2.723 (4)161 (3)
O12—H12C···O1v0.88 (3)1.991 (15)2.839 (3)161 (3)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds