Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compounds, 4-carboxy­anilinium (2R,3R)-tartrate, C7H8NO2+·C4H5O6, (I), and 4-amino­benzoic acid, C7H7NO2, (II), the carboxyl planes of the 4-carboxy­anilinium cations/4-amino­benzoic acid are twisted from the aromatic plane. In (I), the characteristic head-to-tail inter­actions are observed through the tartrate anions, forming two C22(7) chain motifs propagating parallel to the a and c axes of the unit cell. Also, the tartrate anions are connected through two primary C11(6) and C11(7) chain motifs, leading to a secondary R44(22) ring motif. In (II), head-to-tail inter­action is seen through a discrete D11(2) motif and carboxyl group dimerization is observed through centrosymmetrically related R22(8) motifs around the inversion centres of the unit cell. The crystal structures of both compounds are stabilized by intricate three-dimensional hydrogen-bonding networks. Alternate hydro­phobic and hydro­philic layers are observed in (I) as a result of a column-like arrangement of the anions and the aromatic rings of the cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107022469/av3090sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022469/av3090Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022469/av3090IIsup3.hkl
Contains datablock II

CCDC references: 661804; 661805

Comment top

4-Aminobenzoic acid (PABA) is an essential biological molecule, acting as a bacterial cofactor involved in the synthesis of folic acid (Robinson, 1966). PABA is also a starting material in the synthesis of target esters, salts, folic acid, azo dyes and many other organic compounds. It is used in medicine for preparing local anaesthetics and ointments. It helps to protect the skin from sunburn and cancer. Fibrotic skin disorders can also be treated with PABA (Osgood et al., 1982). As PABA can donate and also accept hydrogen, it has proved to be a versatile reagent for structure extension by linear hydrogen-bonding associations, through both the carboxylic acid and amine functional groups. The crystallographic study of PABA compounds was started by Pant (1965), who studied the crystal structure of 3,5-dibromo-4-aminobenzoic acid. Later, Lai & Marsh (1967) studied this structure extensively using photographic/visual data. In fact, PABA exists in two different polymorphs, the α- and β-forms. The β-form has recently been reinvestigated by Gracin & Fischer (2005). The absence of diffractometer data for the α-form of this compound, (II), stimulated us to carry out the redetermination of this structure.

PABA complexes such as 4-carboxyphenylammonium nitrate and perchlorate monohydrate, and bis(4-carboxyphenylammonium) sulfate (Athimoolam & Natarajan, 2006), have already been studied in our laboratory to understand their structure–extension properties via their linear and cyclic hydrogen-bonding associations. Also, the structures of 4-carboxyanilinium dihydrogenmonoarsenate monohydrate (Tordjman et al., 1988), 2,4,6-trinitrobenzoic acid 4-aminobenzoic acid monohydrate (Lynch et al., 1992), bis(4-aminobenzoic acid-N)dichlorocadmium(II) (Le Fur & Masse, 1996) and bis(4-aminobenzoic acid-N)silver(I) nitrate (Wang et al., 2004) have been reported earlier. Hu and co-workers have already reported the structure of PABA with tartaric acid in hydrated form (Hu et al., 2002). Here, we present the crystal structure of an anhydrous form of PABA–tartaric acid complex, (I).

The asymmetric parts of (I) and (II) consist of two crystallographically independent PABA molecules oriented with angles of 1.7 (3) and 38.4 (1)°, respectively, between themselves (Figs. 1 and 2). Protonation on the N site of the PABA cation and deprotonation on the –COOH group of the anion in (I) are evident from the C—N and C—O bond distances (Table 1). Twisting out of the carboxyl plane from the aromatic ring plane is a common feature found in PABA complexes [in 27 complexes of PABA adducts in the Cambridge Structural Database (CSD; Version 5.28; Allen, 2002)]. The angles of this twisting are 1.1 (2) and 6.8 (2)° in (I), and 3.0 (4) and 4.3 (4)° in (II).

As discussed above, the structure–extension property of PABA via hydrogen bonds is recognized as a possible tool for promoting co-crystallization, with the aim of designing noncentrosymmetric organic materials (Etter & Frankenbach, 1989). However, among the many reported adducts of PABA, only a few have been found to crystallize in noncentrosymmetric space groups (only four out of 27 complexes of PABA adducts in the CSD), and complex (I) is another such case.

In (II), the bond distances and angles (Table 3) are in agreement with the reported values (Lai & Marsh, 1967). Even though the molecular structure of (II) is already known, the aim of the present work is to elucidate the structure with precision, and to study the crystal packing of the molecule via hydrogen bonds and their visualization through graph-set notation (Etter et al., 1990; Bernstein et al., 1995).

As discussed in our previous publication (Athimoolam & Natarajan, 2006), the head-to-tail hydrogen-bonding association (head = NH2/NH3+; tail = COOH) and carboxylic acid group dimerization are characteristic interactions found between the PABA residues in many PABA complexes in the CSD. In (I), these interactions are observed through the anions because of dominant hydrogen-bonding sites in the tartrates, and correspondingly the crystal packing can be described by an intricate three-dimensional hydrogen-bonding network (Fig. 3). In (II), head-to-tail interaction is seen through a discrete D11(2) motif via an N14···O2A hydrogen bond and carboxylic acid group dimerization is observed through centrosymmetrically related R22(8) motifs (in both residues in the asymmetric unit) around the inversion centres of the unit cell. Hence, in short, the crystal packing of (II) can be readily described with three primary motifs [two R22(8) and one D11(2)] and two discrete secondary motifs [D23(7) and D33(19)] (Table 3; Fig 4).

Alternate hydrophobic and hydrophilic layers are observed in (I) as a result of the column-like arrangement of the aromatic rings of the cations and the anions. Each tartrate anion forms a self-association of S(5) motif via O—H···O intramolecular bonds. Even though tartrates form extensive intermolecular hydrogen bonds between themselves and with PABA, it is more sensible to discuss the characteristic hydrogen-bonding features than all the intricate hydrogen bonds (Table 4). The NH3+ group of the cationic residues of (I) and (II) form two sets of C22(7) chain motifs through the tartrate anions via N—H···O hydrogen bonds. Also, the tartrate anions are themselves connected via O—H···O bonds of another C22(7) chain motif. One of the two C22(7) chain motifs of the N—H···O hydrogen bonds and the O—H···O C22(7) chain motif lead to a ring of R33(12) motif in both cationic residues (Fig. 5). Fig. 6 shows the aggregation of the tartrates through O—H···O chain motifs of C11(6) and C11(7) running along the a and c axes of the unit cell, respectively. These chain motifs form a closed secondary R44(22) ring motif in both anions.

Related literature top

For related literature, see: Allen (2002); Athimoolam & Natarajan (2006); Bernstein et al. (1995); Etter & Frankenbach (1989); Etter et al. (1990); Gracin & Fischer (2005); Hu et al. (2002); Lai & Marsh (1967); Le Fur & Masse (1996); Lynch et al. (1992); Osgood et al. (1982); Pant (1965); Robinson (1966); Tordjman et al. (1988); Wang et al. (2004).

Experimental top

Compound (I) was crystallized from an aqueous solution containing 4-aminobenzoic acid and (2R,3R)-tartaric acid in the stochiometric ratio of 1:1 at room temperature by the technique of slow evaporation. Compound (II) was crystallized from a saturated aqueous solution of 4-aminobenzoic acid.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic CH) and 0.98 (–CH) Å, O—H = 0.82 Å and N—H = 0.89 Å, and with Uiso(H) = 1.2–1.5Ueq(parent). In compound (I), in addition to the 2721 unique reflections, 109 Friedel pairs were measured. However, owing to the absence of atoms with significant anomalous dispersion effects, these data were merged.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Version 1.4.1; Macrae et al., 2006 ) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A packing diagram for (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. A packing diagram for (II), viewed down the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 5] Fig. 5. A view of the cations in (I) connected through the tartrate anions, showing the C22(7) chain motifs and R33(12) ring motifs. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x, y, z - 1; (ii) 1 + x, y, z; (iii) x + 1, y, z - 1.]
[Figure 6] Fig. 6. A view showing the aggregation of anions in (I) through the primary C11(6) and C11(7) tartrate graph-set motifs propagating along the a and c axes, respectively, and the secondary R44(22) ring motif. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x - 1, y, z; (ii) x, y, z - 1.]
(I) 4-Carboxyanilinium (2R,3R)-tartrate top
Crystal data top
C7H8NO2+·C4H5O6F(000) = 600
Mr = 287.22Dx = 1.557 Mg m3
Dm = 1.54 (2) Mg m3
Dm measured by flotation using a liquid mixture of xylene and carbon tetrachloride
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.021 (4) Åθ = 10.3–13.8°
b = 28.789 (11) ŵ = 0.14 mm1
c = 7.426 (5) ÅT = 293 K
β = 107.89 (4)°Needle, light pink
V = 1225.0 (12) Å30.22 × 0.15 × 0.13 mm
Z = 4
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
2127 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 27.0°, θmin = 2.8°
ω/2θ scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 136
Tmin = 0.930, Tmax = 0.981l = 99
3083 measured reflections3 standard reflections every 60 min
2721 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.9248P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2721 reflectionsΔρmax = 0.29 e Å3
371 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 10 (10)
Crystal data top
C7H8NO2+·C4H5O6V = 1225.0 (12) Å3
Mr = 287.22Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.021 (4) ŵ = 0.14 mm1
b = 28.789 (11) ÅT = 293 K
c = 7.426 (5) Å0.22 × 0.15 × 0.13 mm
β = 107.89 (4)°
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
2127 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.091
Tmin = 0.930, Tmax = 0.9813 standard reflections every 60 min
3083 measured reflections intensity decay: none
2721 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.29 e Å3
2721 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
371 parametersAbsolute structure parameter: 10 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.8226 (8)0.67323 (16)0.0080 (6)0.0378 (10)
C1110.8437 (10)0.72498 (19)0.0118 (7)0.0508 (13)
O1A0.6800 (8)0.75065 (14)0.0388 (7)0.0692 (12)
O1B1.0618 (8)0.73936 (15)0.0753 (9)0.0893 (16)
H1B1.06480.76780.07470.134*
C121.0157 (8)0.64471 (17)0.0696 (7)0.0460 (12)
H121.16400.65770.11420.055*
C130.9896 (8)0.59720 (16)0.0654 (7)0.0410 (11)
H131.11950.57800.10850.049*
C140.7689 (7)0.57829 (15)0.0034 (5)0.0288 (9)
N140.7443 (5)0.52768 (12)0.0075 (4)0.0277 (7)
H14A0.59360.52020.04470.042*
H14B0.81240.51630.10770.042*
H14C0.81210.51580.08810.042*
C150.5741 (8)0.60591 (18)0.0649 (7)0.0435 (11)
H150.42610.59280.10950.052*
C160.6028 (8)0.65377 (18)0.0589 (7)0.0463 (12)
H160.47270.67290.10040.056*
C210.8070 (10)0.67979 (17)0.5080 (7)0.0469 (13)
C2110.8226 (17)0.6277 (2)0.5179 (10)0.080 (2)
O2A1.0033 (14)0.60777 (19)0.5926 (9)0.117 (2)
O2B0.6155 (13)0.60719 (17)0.4365 (10)0.110 (2)
H2B0.63520.57930.42600.165*
C220.5945 (10)0.70212 (19)0.4390 (8)0.0549 (14)
H220.45760.68480.40030.066*
C230.5843 (8)0.75003 (17)0.4271 (7)0.0424 (11)
H230.44170.76520.37990.051*
C240.7882 (7)0.77484 (14)0.4862 (5)0.0284 (8)
N240.7733 (6)0.82591 (13)0.4695 (5)0.0318 (8)
H24A0.91510.83810.51740.048*
H24B0.68040.83660.53280.048*
H24C0.71550.83380.34810.048*
C251.0025 (8)0.75375 (18)0.5561 (7)0.0431 (11)
H251.13930.77110.59480.052*
C261.0073 (10)0.70549 (19)0.5668 (7)0.0533 (14)
H261.14980.69040.61490.064*
C1C0.4047 (6)0.87001 (14)0.2336 (5)0.0248 (8)
O2C0.2639 (5)0.89617 (12)0.3507 (4)0.0420 (8)
O1C0.5479 (5)0.84367 (11)0.2691 (4)0.0385 (7)
C2C0.4042 (6)0.87210 (15)0.0270 (5)0.0273 (8)
H2C0.46980.90220.02490.033*
O3C0.5475 (5)0.83688 (12)0.0836 (4)0.0389 (8)
H3C0.58710.81870.01400.058*
C3C0.1568 (6)0.86891 (15)0.0099 (5)0.0265 (8)
H3C10.06950.89720.06050.032*
O4C0.0436 (5)0.82991 (12)0.1144 (4)0.0415 (8)
H4C0.09560.83060.12350.062*
C4C0.1727 (6)0.86315 (15)0.1977 (5)0.0259 (8)
O5C0.1045 (6)0.82926 (12)0.2593 (4)0.0437 (8)
O6C0.2692 (6)0.89898 (11)0.2996 (4)0.0401 (7)
H6C0.27110.89500.40940.060*
C1D0.1114 (7)0.49961 (15)0.7123 (5)0.0287 (8)
O1D0.0936 (5)0.49943 (12)0.7115 (4)0.0403 (8)
O2D0.2886 (5)0.49398 (12)0.8581 (4)0.0407 (8)
C2D0.1614 (6)0.50738 (14)0.5273 (5)0.0263 (8)
H2D0.24640.53670.53500.032*
O3D0.0512 (5)0.51052 (12)0.3776 (4)0.0358 (7)
H3D0.16090.50580.41880.054*
C4D0.3464 (6)0.48222 (15)0.2962 (5)0.0260 (8)
O5D0.4770 (5)0.51416 (12)0.2901 (4)0.0373 (7)
O6D0.2221 (5)0.45940 (11)0.1483 (4)0.0357 (7)
H6D0.24860.46940.05360.054*
C3D0.3065 (6)0.46861 (14)0.4818 (5)0.0243 (8)
H3D10.45800.46800.58060.029*
O4D0.1992 (5)0.42501 (10)0.4784 (4)0.0321 (6)
H4D0.06130.42680.41530.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.049 (3)0.032 (2)0.030 (2)0.003 (2)0.0094 (19)0.0020 (18)
C1110.066 (3)0.037 (3)0.045 (3)0.002 (3)0.010 (2)0.000 (2)
O1A0.076 (3)0.035 (2)0.085 (3)0.008 (2)0.009 (2)0.002 (2)
O1B0.073 (3)0.036 (2)0.136 (5)0.014 (2)0.002 (3)0.005 (3)
C120.033 (2)0.038 (3)0.060 (3)0.008 (2)0.005 (2)0.005 (2)
C130.033 (2)0.029 (2)0.057 (3)0.0022 (18)0.007 (2)0.001 (2)
C140.029 (2)0.032 (2)0.0262 (19)0.0008 (17)0.0094 (16)0.0003 (17)
N140.0288 (16)0.0290 (19)0.0263 (16)0.0020 (14)0.0099 (13)0.0007 (14)
C150.030 (2)0.043 (3)0.053 (3)0.004 (2)0.006 (2)0.002 (2)
C160.039 (3)0.040 (3)0.054 (3)0.010 (2)0.006 (2)0.002 (2)
C210.080 (4)0.027 (2)0.039 (3)0.008 (2)0.025 (3)0.000 (2)
C2110.154 (8)0.035 (3)0.068 (4)0.015 (4)0.061 (5)0.000 (3)
O2A0.193 (6)0.052 (3)0.115 (5)0.061 (4)0.060 (5)0.022 (3)
O2B0.189 (6)0.033 (3)0.121 (5)0.025 (3)0.067 (5)0.014 (3)
C220.063 (3)0.039 (3)0.059 (3)0.012 (3)0.014 (3)0.008 (3)
C230.036 (2)0.035 (3)0.050 (3)0.006 (2)0.004 (2)0.002 (2)
C240.037 (2)0.026 (2)0.0245 (19)0.0064 (17)0.0130 (16)0.0017 (16)
N240.0393 (18)0.031 (2)0.0250 (16)0.0055 (15)0.0104 (14)0.0011 (14)
C250.036 (2)0.043 (3)0.048 (3)0.008 (2)0.011 (2)0.006 (2)
C260.061 (3)0.047 (3)0.050 (3)0.029 (3)0.016 (3)0.011 (2)
C1C0.0288 (19)0.027 (2)0.0198 (17)0.0007 (16)0.0096 (15)0.0008 (16)
O2C0.0476 (18)0.055 (2)0.0239 (14)0.0222 (16)0.0116 (13)0.0101 (14)
O1C0.0459 (17)0.046 (2)0.0281 (15)0.0163 (15)0.0176 (13)0.0044 (13)
C2C0.0279 (18)0.034 (2)0.0192 (18)0.0027 (16)0.0060 (15)0.0017 (16)
O3C0.0416 (17)0.050 (2)0.0236 (14)0.0220 (15)0.0082 (12)0.0063 (13)
C3C0.0233 (18)0.035 (2)0.0202 (18)0.0010 (16)0.0050 (14)0.0005 (16)
O4C0.0368 (16)0.053 (2)0.0310 (15)0.0126 (15)0.0054 (13)0.0137 (15)
C4C0.0219 (17)0.032 (2)0.0243 (18)0.0023 (15)0.0072 (14)0.0012 (16)
O5C0.0540 (19)0.046 (2)0.0343 (16)0.0158 (16)0.0181 (14)0.0005 (15)
O6C0.0602 (19)0.0387 (19)0.0249 (14)0.0137 (15)0.0182 (14)0.0078 (13)
C1D0.0321 (19)0.035 (2)0.0202 (17)0.0063 (17)0.0106 (15)0.0022 (16)
O1D0.0309 (15)0.063 (2)0.0306 (15)0.0045 (15)0.0143 (12)0.0056 (15)
O2D0.0332 (15)0.065 (2)0.0214 (14)0.0122 (14)0.0054 (12)0.0017 (14)
C2D0.0274 (18)0.031 (2)0.0214 (17)0.0021 (16)0.0084 (14)0.0001 (16)
O3D0.0274 (13)0.055 (2)0.0240 (13)0.0107 (14)0.0060 (11)0.0080 (14)
C4D0.0183 (16)0.036 (2)0.0242 (18)0.0034 (16)0.0066 (14)0.0001 (16)
O5D0.0311 (14)0.050 (2)0.0318 (14)0.0135 (14)0.0108 (12)0.0000 (14)
O6D0.0426 (16)0.0421 (19)0.0231 (13)0.0134 (14)0.0108 (13)0.0040 (13)
C3D0.0215 (17)0.028 (2)0.0208 (16)0.0019 (15)0.0027 (14)0.0023 (15)
O4D0.0324 (14)0.0290 (16)0.0326 (15)0.0009 (12)0.0067 (12)0.0045 (12)
Geometric parameters (Å, º) top
C11—C161.381 (7)N24—H24C0.8900
C11—C121.381 (7)C25—C261.391 (7)
C11—C1111.495 (7)C25—H250.9300
C111—O1A1.196 (7)C26—H260.9300
C111—O1B1.318 (7)C1C—O1C1.236 (5)
O1B—H1B0.8200C1C—O2C1.261 (5)
C12—C131.376 (7)C1C—C2C1.536 (5)
C12—H120.9300C2C—O3C1.418 (5)
C13—C141.381 (6)C2C—C3C1.537 (5)
C13—H130.9300C2C—H2C0.9800
C14—C151.374 (6)O3C—H3C0.8200
C14—N141.464 (6)C3C—O4C1.415 (5)
N14—H14A0.8900C3C—C4C1.524 (5)
N14—H14B0.8900C3C—H3C10.9800
N14—H14C0.8900O4C—H4C0.8200
C15—C161.388 (7)C4C—O5C1.202 (5)
C15—H150.9300C4C—O6C1.306 (5)
C16—H160.9300O6C—H6C0.8200
C21—C261.367 (8)C1D—O1D1.232 (5)
C21—C221.382 (8)C1D—O2D1.276 (5)
C21—C2111.502 (8)C1D—C2D1.511 (5)
C211—O2A1.205 (10)C2D—O3D1.418 (4)
C211—O2B1.344 (10)C2D—C3D1.518 (5)
O2B—H2B0.8200C2D—H2D0.9800
C22—C231.382 (7)O3D—H3D0.8200
C22—H220.9300C4D—O5D1.219 (5)
C23—C241.371 (6)C4D—O6D1.301 (5)
C23—H230.9300C4D—C3D1.521 (5)
C24—C251.375 (6)O6D—H6D0.8200
C24—N241.476 (5)C3D—O4D1.408 (5)
N24—H24A0.8900C3D—H3D10.9800
N24—H24B0.8900O4D—H4D0.8200
C16—C11—C12119.6 (4)H24B—N24—H24C109.5
C16—C11—C111118.5 (5)C24—C25—C26117.6 (5)
C12—C11—C111121.9 (4)C24—C25—H25121.2
O1A—C111—O1B123.5 (6)C26—C25—H25121.2
O1A—C111—C11123.6 (5)C21—C26—C25121.4 (5)
O1B—C111—C11112.9 (5)C21—C26—H26119.3
C111—O1B—H1B109.5C25—C26—H26119.3
C13—C12—C11120.3 (4)O1C—C1C—O2C125.8 (3)
C13—C12—H12119.8O1C—C1C—C2C116.9 (3)
C11—C12—H12119.8O2C—C1C—C2C117.3 (3)
C12—C13—C14119.4 (4)O3C—C2C—C1C111.3 (3)
C12—C13—H13120.3O3C—C2C—C3C110.0 (3)
C14—C13—H13120.3C1C—C2C—C3C112.3 (3)
C15—C14—C13121.4 (4)O3C—C2C—H2C107.7
C15—C14—N14119.9 (4)C1C—C2C—H2C107.7
C13—C14—N14118.7 (4)C3C—C2C—H2C107.7
C14—N14—H14A109.5C2C—O3C—H3C109.5
C14—N14—H14B109.5O4C—C3C—C4C109.8 (3)
H14A—N14—H14B109.5O4C—C3C—C2C108.5 (3)
C14—N14—H14C109.5C4C—C3C—C2C109.2 (3)
H14A—N14—H14C109.5O4C—C3C—H3C1109.8
H14B—N14—H14C109.5C4C—C3C—H3C1109.8
C14—C15—C16118.6 (4)C2C—C3C—H3C1109.8
C14—C15—H15120.7C3C—O4C—H4C109.5
C16—C15—H15120.7O5C—C4C—O6C124.3 (4)
C11—C16—C15120.7 (4)O5C—C4C—C3C123.4 (4)
C11—C16—H16119.7O6C—C4C—C3C112.3 (3)
C15—C16—H16119.7C4C—O6C—H6C109.5
C26—C21—C22119.5 (5)O1D—C1D—O2D125.4 (4)
C26—C21—C211119.3 (6)O1D—C1D—C2D118.4 (3)
C22—C21—C211121.3 (6)O2D—C1D—C2D116.2 (3)
O2A—C211—O2B125.3 (7)O3D—C2D—C1D109.8 (3)
O2A—C211—C21122.2 (8)O3D—C2D—C3D108.4 (3)
O2B—C211—C21112.5 (7)C1D—C2D—C3D112.5 (3)
C211—O2B—H2B109.5O3D—C2D—H2D108.7
C21—C22—C23120.4 (5)C1D—C2D—H2D108.7
C21—C22—H22119.8C3D—C2D—H2D108.7
C23—C22—H22119.8C2D—O3D—H3D109.5
C24—C23—C22118.8 (5)O5D—C4D—O6D124.0 (4)
C24—C23—H23120.6O5D—C4D—C3D120.7 (3)
C22—C23—H23120.6O6D—C4D—C3D115.1 (3)
C23—C24—C25122.3 (4)C4D—O6D—H6D109.5
C23—C24—N24117.8 (4)O4D—C3D—C2D111.5 (3)
C25—C24—N24119.8 (4)O4D—C3D—C4D114.4 (3)
C24—N24—H24A109.5C2D—C3D—C4D105.9 (3)
C24—N24—H24B109.5O4D—C3D—H3D1108.3
H24A—N24—H24B109.5C2D—C3D—H3D1108.3
C24—N24—H24C109.5C4D—C3D—H3D1108.3
H24A—N24—H24C109.5C3D—O4D—H4D109.5
C16—C11—C111—O1A0.5 (8)C211—C21—C26—C25178.4 (5)
C12—C11—C111—O1A179.3 (5)C24—C25—C26—C210.7 (8)
C16—C11—C111—O1B178.9 (5)O1C—C1C—C2C—O3C9.6 (5)
C12—C11—C111—O1B1.3 (7)O2C—C1C—C2C—O3C172.3 (3)
C16—C11—C12—C130.3 (8)O1C—C1C—C2C—C3C133.4 (4)
C111—C11—C12—C13179.5 (5)O2C—C1C—C2C—C3C48.5 (5)
C11—C12—C13—C140.9 (8)O3C—C2C—C3C—O4C73.5 (4)
C12—C13—C14—C151.1 (7)C1C—C2C—C3C—O4C51.1 (4)
C12—C13—C14—N14179.8 (4)O3C—C2C—C3C—C4C46.2 (4)
C13—C14—C15—C160.8 (7)C1C—C2C—C3C—C4C170.7 (3)
N14—C14—C15—C16179.9 (4)O4C—C3C—C4C—O5C2.3 (5)
C12—C11—C16—C150.0 (8)C2C—C3C—C4C—O5C116.5 (4)
C111—C11—C16—C15179.8 (5)O4C—C3C—C4C—O6C177.9 (3)
C14—C15—C16—C110.2 (8)C2C—C3C—C4C—O6C63.2 (4)
C26—C21—C211—O2A7.3 (9)O1D—C1D—C2D—O3D3.5 (5)
C22—C21—C211—O2A173.4 (6)O2D—C1D—C2D—O3D176.9 (4)
C26—C21—C211—O2B173.1 (5)O1D—C1D—C2D—C3D124.3 (4)
C22—C21—C211—O2B6.2 (8)O2D—C1D—C2D—C3D56.1 (5)
C26—C21—C22—C230.8 (8)O3D—C2D—C3D—O4D65.1 (4)
C211—C21—C22—C23178.5 (5)C1D—C2D—C3D—O4D56.5 (4)
C21—C22—C23—C240.5 (8)O3D—C2D—C3D—C4D59.9 (4)
C22—C23—C24—C250.3 (7)C1D—C2D—C3D—C4D178.5 (3)
C22—C23—C24—N24179.1 (4)O5D—C4D—C3D—O4D165.4 (3)
C23—C24—C25—C260.4 (7)O6D—C4D—C3D—O4D18.5 (5)
N24—C24—C25—C26179.2 (4)O5D—C4D—C3D—C2D71.3 (4)
C22—C21—C26—C250.9 (8)O6D—C4D—C3D—C2D104.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O5Ci0.822.202.901 (6)143
O1B—H1B···O4Ci0.822.252.949 (6)143
N14—H14A···O2Dii0.891.912.790 (5)170
N14—H14B···O3Di0.891.932.788 (4)163
N14—H14C···O1Diii0.891.812.687 (4)168
O2B—H2B···O5D0.822.202.914 (6)145
N24—H24A···O2Civ0.892.633.490 (5)164
N24—H24C···O3C0.891.922.787 (5)166
N24—H24B···O1Cv0.891.892.737 (5)159
O3C—H3C···O1A0.822.112.841 (5)149
O4C—H4C···O1Cvi0.822.122.877 (5)154
O6C—H6C···O2Cv0.821.802.608 (4)171
O3D—H3D···O5Dvi0.822.112.715 (4)131
O4D—H4D···O2Cvii0.822.062.782 (4)146
O6D—H6D···O2Dii0.821.702.515 (4)175
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x, y1/2, z.
(II) 4-Aminobenzoic acid top
Crystal data top
C7H7NO2F(000) = 576
Mr = 137.14Dx = 1.373 Mg m3
Dm = 1.36 (2) Mg m3
Dm measured by flotation using a liquid mixture of xylene and carbon tetrachloride
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 18.5712 (8) Åθ = 9.1–13.6°
b = 3.8431 (3) ŵ = 0.10 mm1
c = 18.6321 (9) ÅT = 293 K
β = 93.670 (11)°Needle, light pink
V = 1327.06 (13) Å30.23 × 0.14 × 0.12 mm
Z = 8
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
1746 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
ω/2θ scansh = 022
Absorption correction: ψ scan
(North et al., 1968)
k = 14
Tmin = 0.945, Tmax = 0.985l = 2222
3787 measured reflections3 standard reflections every 60 min
2845 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.076P)2 + 1.6498P]
where P = (Fo2 + 2Fc2)/3
2845 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7NO2V = 1327.06 (13) Å3
Mr = 137.14Z = 8
Monoclinic, P21/nMo Kα radiation
a = 18.5712 (8) ŵ = 0.10 mm1
b = 3.8431 (3) ÅT = 293 K
c = 18.6321 (9) Å0.23 × 0.14 × 0.12 mm
β = 93.670 (11)°
Data collection top
Nonius MACH-3 sealed-tube
diffractometer
1746 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.945, Tmax = 0.9853 standard reflections every 60 min
3787 measured reflections intensity decay: none
2845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.17Δρmax = 0.37 e Å3
2845 reflectionsΔρmin = 0.27 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.84596 (17)0.2725 (10)0.57151 (17)0.0421 (8)
C1110.91218 (19)0.1701 (11)0.53878 (18)0.0463 (9)
O1A0.91302 (13)0.0090 (8)0.48179 (14)0.0587 (8)
O1B0.97236 (13)0.2588 (9)0.57552 (14)0.0600 (8)
H1B1.00700.18830.55460.090*
C120.77871 (18)0.1918 (11)0.53741 (19)0.0483 (9)
H120.77670.08040.49300.058*
C130.71598 (19)0.2732 (12)0.5680 (2)0.0523 (10)
H130.67210.21560.54410.063*
C140.71662 (19)0.4406 (11)0.6341 (2)0.0509 (9)
N140.65429 (17)0.5140 (12)0.6668 (2)0.0708 (11)
H14A0.61320.45610.64640.085*
H14B0.65630.61800.70780.085*
C150.78406 (19)0.5267 (11)0.6685 (2)0.0497 (9)
H150.78590.64040.71260.060*
C160.84725 (19)0.4442 (10)0.63744 (19)0.0460 (9)
H160.89130.50380.66080.055*
C210.42867 (17)0.2794 (10)0.65205 (17)0.0413 (8)
C2110.46161 (18)0.1748 (11)0.58669 (18)0.0476 (9)
O2A0.52138 (14)0.0223 (9)0.58821 (14)0.0627 (8)
O2B0.42463 (14)0.2369 (9)0.52655 (13)0.0618 (8)
H2B0.44770.17360.49280.093*
C220.36222 (19)0.4527 (10)0.64957 (19)0.0460 (9)
H220.33920.50770.60520.055*
C230.33051 (19)0.5428 (11)0.71138 (19)0.0478 (9)
H230.28630.65720.70850.057*
C240.36421 (19)0.4637 (11)0.77878 (19)0.0466 (9)
N240.33086 (18)0.5453 (11)0.84022 (17)0.0637 (10)
H24A0.35090.49100.88160.076*
H24B0.28990.65070.83730.076*
C250.43079 (19)0.2923 (11)0.78169 (19)0.0489 (9)
H250.45370.23490.82590.059*
C260.46226 (18)0.2091 (11)0.71935 (19)0.0486 (9)
H260.50730.10260.72210.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0398 (17)0.043 (2)0.0425 (17)0.0016 (16)0.0010 (14)0.0027 (16)
C1110.0438 (18)0.053 (2)0.0416 (18)0.0009 (18)0.0033 (14)0.0053 (18)
O1A0.0442 (14)0.083 (2)0.0485 (14)0.0039 (15)0.0020 (11)0.0119 (15)
O1B0.0376 (13)0.084 (2)0.0575 (15)0.0023 (15)0.0035 (11)0.0155 (16)
C120.0441 (18)0.056 (2)0.0436 (18)0.0001 (18)0.0033 (15)0.0013 (18)
C130.0399 (18)0.064 (3)0.052 (2)0.0063 (19)0.0063 (15)0.008 (2)
C140.0442 (19)0.054 (2)0.055 (2)0.0023 (18)0.0065 (16)0.0085 (19)
N140.0447 (17)0.099 (3)0.070 (2)0.004 (2)0.0087 (15)0.004 (2)
C150.051 (2)0.051 (2)0.0463 (19)0.0001 (19)0.0023 (15)0.0018 (18)
C160.0418 (18)0.047 (2)0.0481 (19)0.0047 (17)0.0021 (14)0.0004 (17)
C210.0385 (17)0.040 (2)0.0444 (18)0.0026 (16)0.0027 (14)0.0009 (16)
C2110.0405 (18)0.056 (2)0.0454 (19)0.0059 (18)0.0024 (14)0.0014 (18)
O2A0.0458 (14)0.091 (2)0.0515 (15)0.0130 (15)0.0013 (11)0.0020 (15)
O2B0.0556 (15)0.086 (2)0.0433 (14)0.0146 (16)0.0040 (11)0.0023 (16)
C220.0450 (18)0.049 (2)0.0427 (18)0.0037 (17)0.0057 (14)0.0042 (17)
C230.0390 (17)0.052 (2)0.052 (2)0.0017 (17)0.0017 (15)0.0020 (18)
C240.0453 (18)0.047 (2)0.0469 (19)0.0048 (17)0.0004 (15)0.0005 (17)
N240.0549 (19)0.088 (3)0.0476 (18)0.010 (2)0.0024 (14)0.0006 (19)
C250.0477 (19)0.054 (2)0.0437 (18)0.0035 (18)0.0081 (15)0.0022 (18)
C260.0383 (17)0.055 (2)0.051 (2)0.0011 (17)0.0059 (15)0.0037 (19)
Geometric parameters (Å, º) top
C11—C161.393 (5)C21—C261.391 (5)
C11—C121.399 (5)C21—C221.400 (5)
C11—C1111.461 (5)C21—C2111.454 (5)
C111—O1A1.230 (4)C211—O2A1.254 (4)
C111—O1B1.318 (4)C211—O2B1.298 (4)
O1B—H1B0.8200O2B—H2B0.8200
C12—C131.365 (5)C22—C231.371 (5)
C12—H120.9300C22—H220.9300
C13—C141.389 (6)C23—C241.400 (5)
C13—H130.9300C23—H230.9300
C14—N141.372 (5)C24—N241.372 (5)
C14—C151.409 (5)C24—C251.399 (5)
N14—H14A0.8600N24—H24A0.8600
N14—H14B0.8600N24—H24B0.8600
C15—C161.378 (5)C25—C261.371 (5)
C15—H150.9300C25—H250.9300
C16—H160.9300C26—H260.9300
C16—C11—C12118.0 (3)C26—C21—C22117.8 (3)
C16—C11—C111121.9 (3)C26—C21—C211120.8 (3)
C12—C11—C111120.1 (3)C22—C21—C211121.4 (3)
O1A—C111—O1B121.4 (3)O2A—C211—O2B121.6 (3)
O1A—C111—C11123.6 (3)O2A—C211—C21122.0 (3)
O1B—C111—C11115.0 (3)O2B—C211—C21116.4 (3)
C111—O1B—H1B109.5C211—O2B—H2B109.5
C13—C12—C11121.4 (3)C23—C22—C21121.1 (3)
C13—C12—H12119.3C23—C22—H22119.4
C11—C12—H12119.3C21—C22—H22119.4
C12—C13—C14121.1 (3)C22—C23—C24120.5 (3)
C12—C13—H13119.4C22—C23—H23119.8
C14—C13—H13119.4C24—C23—H23119.8
N14—C14—C13122.0 (4)N24—C24—C25121.3 (3)
N14—C14—C15120.0 (4)N24—C24—C23119.9 (3)
C13—C14—C15118.0 (3)C25—C24—C23118.7 (3)
C14—N14—H14A120.0C24—N24—H24A120.0
C14—N14—H14B120.0C24—N24—H24B120.0
H14A—N14—H14B120.0H24A—N24—H24B120.0
C16—C15—C14120.7 (4)C26—C25—C24120.0 (3)
C16—C15—H15119.6C26—C25—H25120.0
C14—C15—H15119.6C24—C25—H25120.0
C15—C16—C11120.8 (3)C25—C26—C21121.8 (3)
C15—C16—H16119.6C25—C26—H26119.1
C11—C16—H16119.6C21—C26—H26119.1
C16—C11—C111—O1A177.7 (4)C26—C21—C211—O2A0.8 (6)
C12—C11—C111—O1A0.9 (6)C22—C21—C211—O2A179.4 (4)
C16—C11—C111—O1B1.3 (5)C26—C21—C211—O2B176.8 (4)
C12—C11—C111—O1B179.9 (4)C22—C21—C211—O2B3.0 (6)
C16—C11—C12—C131.0 (6)C26—C21—C22—C231.5 (6)
C111—C11—C12—C13177.6 (4)C211—C21—C22—C23178.3 (4)
C11—C12—C13—C140.2 (6)C21—C22—C23—C240.2 (6)
C12—C13—C14—N14177.7 (4)C22—C23—C24—N24177.9 (4)
C12—C13—C14—C150.5 (6)C22—C23—C24—C250.2 (6)
N14—C14—C15—C16177.8 (4)N24—C24—C25—C26178.9 (4)
C13—C14—C15—C160.5 (6)C23—C24—C25—C260.8 (6)
C14—C15—C16—C110.3 (6)C24—C25—C26—C212.3 (6)
C12—C11—C16—C151.0 (6)C22—C21—C26—C252.6 (6)
C111—C11—C16—C15177.6 (4)C211—C21—C26—C25177.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1Ai0.821.832.650 (4)172
N14—H14A···O2A0.862.573.369 (5)154
O2B—H2B···O2Aii0.821.812.616 (4)166
N24—H24A···O1Aiii0.862.132.969 (4)165
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC7H8NO2+·C4H5O6C7H7NO2
Mr287.22137.14
Crystal system, space groupMonoclinic, P21Monoclinic, P21/n
Temperature (K)293293
a, b, c (Å)6.021 (4), 28.789 (11), 7.426 (5)18.5712 (8), 3.8431 (3), 18.6321 (9)
β (°) 107.89 (4) 93.670 (11)
V3)1225.0 (12)1327.06 (13)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.140.10
Crystal size (mm)0.22 × 0.15 × 0.130.23 × 0.14 × 0.12
Data collection
DiffractometerNonius MACH-3 sealed-tube
diffractometer
Nonius MACH-3 sealed-tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.930, 0.9810.945, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
3083, 2721, 2127 3787, 2845, 1746
Rint0.0910.038
(sin θ/λ)max1)0.6390.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.08 0.066, 0.227, 1.17
No. of reflections27212845
No. of parameters371183
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.290.37, 0.27
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter10 (10)?

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), SHELXTL/PC, ORTEP-3 (Farrugia, 1997), Mercury (Version 1.4.1; Macrae et al., 2006 ) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C111—O1A1.196 (7)C1C—O2C1.261 (5)
C111—O1B1.318 (7)C4C—O5C1.202 (5)
C14—N141.464 (6)C4C—O6C1.306 (5)
C211—O2A1.205 (10)C1D—O1D1.232 (5)
C211—O2B1.344 (10)C1D—O2D1.276 (5)
C24—N241.476 (5)C4D—O5D1.219 (5)
C1C—O1C1.236 (5)C4D—O6D1.301 (5)
C12—C11—C111—O1B1.3 (7)C22—C21—C211—O2B6.2 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O5Ci0.822.202.901 (6)143
O1B—H1B···O4Ci0.822.252.949 (6)143
N14—H14A···O2Dii0.891.912.790 (5)170
N14—H14B···O3Di0.891.932.788 (4)163
N14—H14C···O1Diii0.891.812.687 (4)168
O2B—H2B···O5D0.822.202.914 (6)145
N24—H24A···O2Civ0.892.633.490 (5)164
N24—H24C···O3C0.891.922.787 (5)166
N24—H24B···O1Cv0.891.892.737 (5)159
O3C—H3C···O1A0.822.112.841 (5)149
O4C—H4C···O1Cvi0.822.122.877 (5)154
O6C—H6C···O2Cv0.821.802.608 (4)171
O3D—H3D···O5Dvi0.822.112.715 (4)131
O4D—H4D···O2Cvii0.822.062.782 (4)146
O6D—H6D···O2Dii0.821.702.515 (4)175
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z1; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x1, y, z; (vii) x, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
C111—O1A1.230 (4)C211—O2A1.254 (4)
C111—O1B1.318 (4)C211—O2B1.298 (4)
C14—N141.372 (5)C24—N241.372 (5)
C16—C11—C111—O1B1.3 (5)C22—C21—C211—O2B3.0 (6)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O1Ai0.821.832.650 (4)172
N14—H14A···O2A0.862.573.369 (5)154
O2B—H2B···O2Aii0.821.812.616 (4)166
N24—H24A···O1Aiii0.862.132.969 (4)165
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds