Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [RhBr(C8H12)(C21H8N2F10)], has a slightly distorted pseudo-square-planar geometry. The whole molecule has an approximate mirror symmetry, with the mirror plane passing through the mid-points of the two alkene bonds of the cycloocta-1,5-diene (COD) ligand. The average Rh—C(COD) distance is inversely related to the magnitude of the Rh—C(benzimidazole) distance in this type of compound. The mol­ecules are stacked in columns running along the a axis. The crystal structure contains two types of inter­molecular C—H...F inter­actions, as well as two weak π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107015417/av3078sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107015417/av3078IIsup2.hkl
Contains datablock II

CCDC reference: 649079

Comment top

N-Heterocyclic carbenes (NHCs) based on the imidazole ring system are a novel class of ligands in organometallic chemistry (Weskamp et al., 2000) which tend to coordinate very strongly to the metal centre. NHCs and their metal complexes continue to attract interest as components in homogeneous catalysis (Herrmann, 2002a). The isolation of the stable imidazolin-2-ylidene and the saturated imidazolidin-2-ylidene derivative sparked renewed interest in the chemistry of N-heterocyclic carbenes and their metal complexes (Hahn, 2006). Recently, transition metal complexes of NHCs have been the focus of considerable attention since they can act as catalysts or catalyst precursors in Rh-catalyzed hydroformylation (Chen et al., 2000), Ru-catalyzed olefin metathesis (Fürstner, 2000), cyclopropanation (Çetinkaya et al., 1997), furan synthesis (Küçükbay et al., 1996; Çetinkaya et al., 2002) and Pd-catalyzed Heck or Suzuki coupling (McGuinnes & Cavell, 2000; Weskamp et al., 1999). However, NHC complexes with fluorinated substituents are rare (Xu et al., 2000). We report here the preparation and characterization of a novel RhI complex, (II), bearing the fluorinated NHC ligand (Saunders & McGrandle, 2005).

Complex (II) has a slightly distorted pseudo-square-planar geometry (Fig. 1 and Table 1), if the mid-points of the two double bonds of the cycloocta-1,5-diene (COD) ligand are considered as coordination sites. The metal centre is coordinated to two alkene bonds of the COD ligand, to a non-substituted C atom of the benzimidazole ring and to the Br atom. The whole molecule has an approximate twofold symmetry on the mid-points of the C22C23 and C26 C27 bonds; when these mid-points are considered, it can be said that the complex has a cis arrangement. The angle between the carbene heterocycle and the coordination plane (Br1/mid-point C22C23/mid-point C26C27) is 88.29 (14)°. This value is somewhat lower than that reported by Herrmann (2002a) but significantly higher than that reported by Dinçer et al. (2006). The COD ring exhibits a boat conformation with the Rh—C(COD) distances ranging from 2.116 (4) to 2.224 (4) Å. The Rh1—C22 and Rh1—C23 bond distances are shorter than Rh1—C26 and Rh1—C27; this is not unexpected and is due to the trans influence of the chelating ligand. These results agree with the values in the literature (Ingleson et al., 2001; Vicente et al., 2001).

Comparing the average Rh—C(COD) bond length of 2.17 (2) Å and the Rh—C(benzimidazole) bond length of 2.010 (3) Å with literature values, it is observed that Rh—C(COD) increases with decreasing Rh—C(benzimidazole) distance [2.167 (4) and 2.016 (4) Å (Baker et al., 2004); 2.161 (2) and 2.018 (2) Å (Hahn et al., 2004); 2.143 (3) and 2.059 (3) Å (Duan et al., 2003)]. The CC bond lengths of the cyclooctadiene ligand differ in that the double bond trans to the carbene ligand [C26C27 = 1.381 (6) Å] is shorter than the CC bond trans to the bromo ligand [C22C23 = 1.392 (6) Å]. However, these distances fall in the expected range for coordinated olefins (Cambridge Structural Database, Version 5.28; CONQUEST, Version 1.9; Allen, 2002).

The benzimidazole ring is planar, with a maximum deviation from the plane of -0.012 (2) Å for atom C1, and makes dihedral angles of 88.69 (9) and 88.98 (12)° with the C9–C14 and C16–C21 pentafluorophenyl ring planes, respectively, indicating that two pentafluorophenyl rings are almost perpendicular with respect to the benzimidazole ring. The metal–carbon bond distance between the Rh atom and the NHC ligand is in good agreement with those of other rhodium NHC complexes (Günay et al., 2006; Dinçer et al., 2005, 2006). The N1—C1 and N2—C1 bond distances are both 1.359 (4) Å. These are significantly shorter than the other N—C(carbene) bond distances in (II) (Table 1). The shorter N—C(carbene) bonds are indicative of a greater multiple-bond character due to partial electron donation by the N atom to the carbene C-atom donor (Herrmann, 2002b; Fröhlich et al., 1997). Theoretical studies also indicate that the stability of these carbenes is due to electron donation from the N-atom lone pairs into the formally empty p(π) orbital on the carbene C atom (Heinemann et al., 1996; Böhme & Frenking, 1996). For this reason, the N1—C1 and N2—C1 bonds are shortened. It is observed that the steric effect of the pentafluorophenyl rings on the Br—Rh—C(carbene) angle and Rh—Br bond results in increased angle [92.82 (9)°] and shortened bond [2.5090 (5) Å] values relative to those in similar compounds (Günay et al., 2006; Dinçer et al., 2005; Herrmann, 2002b; Danopoulos et al., 2002).

In the crystal structure (Fig. 2), molecules of the title compound are packed in columns running along the a axis. The molecules in each column are linked to one another in a zigzag arrangement via C25—H25A···F1i hydrogen bonds (geometric parameters and symmetry codes for hydrogen bonds are given in Table 2), resulting in the formation of molecular chains along the a axis. In addition, there are ππ stacking and C3—H3···F8ii interactions between the molecules in inversion-related columns. In these weak ππ interactions, the C16–C21 pentafluorophenyl ring in the molecule at (x, y, z) stacks above the ring at (1 - x, -y, 1 - z), with a distance of 3.956 (8) Å between the ring centroids, and a perpendicular distance of 3.402 (8) Å between the rings. Inversion-related columns are connected to similar neighboring columns by means of another weak ππ interaction. In these ππ interactions, the C2–C7 benzimidazole ring in the molecule at (x, y, z) stacks above the ring at (2 - x, -y, 2 - z), with a distance of 3.924 (8) Å between the ring centroids, and a perpendicular distance of 3.537 (8) Å between the rings. There are no other significant intermolecular interactions, such as C—H···π interactions, in the crystal structure of (II).

Related literature top

For related literature, see: Allen (2002); Böhme & Frenking (1996); Baker et al. (2004); Chen et al. (2000); Danopoulos et al. (2002); Dinçer et al. (2005, 2006); Duan et al. (2003); Fürstner (2000); Fröhlich et al. (1997); Gülcemal (2005); Günay et al. (2006); Hahn (2006); Hahn et al. (2004); Heinemann et al. (1996); Herrmann (2002a, 2002b); Ingleson et al. (2001); Küçükbay et al. (1996); McGuinnes & Cavell (2000); Saunders & McGrandle (2005); Uson et al. (1985); Vicente et al. (2001); Weskamp et al. (1999, 2000); Xu et al. (2000); Çetinkaya et al. (1997, 2002).

Experimental top

All manipulations were carried out under an atmosphere of dry Ar using standard Schlenk techniques. Solvent and reagents were obtained from Aldrich, Fluka and Merck. [Rh(µ-OMe)(1,5-COD)]2 (Uson et al., 1985) was synthesized according to literature procedures. A 50 ml Schlenk tube was charged with (I) (Gülcemal, 2005) (111.80 mg, 0.2 mmol), [Rh(OMe)(η4-COD)]2 (48.40 mg, 0.1 mmol) and 5 ml of dichloromethane. The solution was stirred for 24 h at room temperature and heated under reflux for 2 h. Upon cooling to room temperature, hexane (10 ml) was added to the mixture. The resulting solid was filtered off and recrystallized from CH2Cl2/MeOH (1:5 v/v, 18 ml) (yield 115 mg, 78%; m.p. 509–511 K). Analysis calculated for C29H20BrF10N2Rh: C 46.97, H 2.70, N 3.78%; found: C 46.27, H 2.94, N 3.71%. 1H NMR (CDCl3): δ 1.94 (q, J = 9.5 Hz, 4H, COD-CH2), 2.37 (br, 4H, COD-CH2), 3.52 (s, 2H, COD-CH), 5.22 (s, 2H, COD-CH), 5.92 (d, 2H, J = 16 Hz, CH2—C6F5), 6.39 (d, 2H, J = 16 Hz, CH2—C6F5), 7.09 (q, J = 2.8 Hz, 2H, Ar—H), 7.21 (q, J = 3.1 Hz, 2H, Ar—H); 13C NMR (CDCl3): δ 27.42 (d, J = 21.4 Hz, COD-CH2), 31.88 (d, J = 22.2 Hz, COD-CH2), 40.78 (CH2—C6F5), 69.04 (d, J = 13.8 Hz, COD-CH), 100.28 (d, J = 6.9 Hz, COD-CH), 108.42, 108.85, 122.13, 133.79, 135.70, 138.16, 139.16, 141.64, 143.37, 145.83 (Ar—C), 199.03 (d, J = 50.6 Hz, Ccarb—Rh); 19F NMR (CDCl3): δ -140.98 (2 F, Fo), -153.83 (1 F, Fp), -161.51 (2 F, Fm).

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the C—H bond lengths at 0.97, 0.98 and 0.93 Å for CH2, CH and aromatic CH groups, respectively. The Uiso(H) values were set at 1.2Ueq of the pivot atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : A view of (II), with 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. : The molecular packing of (II), viewed along the b axis. Dashed lines show the C—H···F and ππ interactions.
[1,3-Bis(2,3,4,5,6-pentafluorobenzyl)benzimidazol-2- ylidene]bromido(η4-cycloocta-1,5-diene)rhodium(I) top
Crystal data top
[RhBr(C8H12)(C21H8N2F10)]F(000) = 1512
Mr = 769.29Dx = 1.828 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 31719 reflections
a = 10.3441 (5) Åθ = 1.6–27.2°
b = 21.4937 (10) ŵ = 2.13 mm1
c = 15.4717 (7) ÅT = 296 K
β = 125.629 (3)°Prism, yellow
V = 2795.9 (2) Å30.52 × 0.42 × 0.36 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
6179 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4843 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.056
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 1.9°
ω scansh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2727
Tmin = 0.288, Tmax = 0.545l = 1919
36192 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.2219P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6179 reflectionsΔρmax = 0.41 e Å3
389 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (3)
Crystal data top
[RhBr(C8H12)(C21H8N2F10)]V = 2795.9 (2) Å3
Mr = 769.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3441 (5) ŵ = 2.13 mm1
b = 21.4937 (10) ÅT = 296 K
c = 15.4717 (7) Å0.52 × 0.42 × 0.36 mm
β = 125.629 (3)°
Data collection top
Stoe IPDS-II
diffractometer
6179 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
4843 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.545Rint = 0.056
36192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
6179 reflectionsΔρmin = 0.79 e Å3
389 parameters
Special details top

Experimental. 1H, 13C and 19F NMR spectra were recorded using a Varian 400 MHz s pectrometer with chemical shifts referenced to residual solvent CDCl3. Elemental analysis was carried out by the analytical service of TÜBİTAK (the Scientific & Technical Research Council of Turkey) with a CHNS-932 (LECO) apparatus. Melting points were determined using an electro thermal melting point detection apparatus.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh11.06906 (3)0.160433 (12)0.76436 (2)0.05361 (10)
Br10.81298 (5)0.210453 (19)0.61874 (3)0.07439 (14)
F10.6657 (3)0.20549 (13)0.8181 (3)0.1033 (9)
F20.4795 (4)0.29422 (16)0.6782 (3)0.1159 (10)
F30.6130 (5)0.39550 (13)0.6564 (3)0.1201 (11)
F40.9343 (5)0.40495 (14)0.7727 (3)0.1442 (14)
F51.1180 (4)0.31665 (14)0.9127 (3)0.1126 (10)
F60.9339 (4)0.01534 (15)0.5720 (2)0.1082 (9)
F70.7248 (6)0.05384 (18)0.3723 (3)0.1621 (18)
F80.4412 (5)0.10236 (15)0.3120 (2)0.1635 (19)
F90.3674 (3)0.10778 (16)0.4532 (3)0.1405 (14)
F100.5754 (3)0.06782 (14)0.6525 (2)0.0938 (7)
N10.9050 (3)0.06318 (12)0.8118 (2)0.0507 (6)
N20.9578 (3)0.14510 (12)0.9066 (2)0.0554 (6)
C10.9690 (4)0.12105 (14)0.8300 (2)0.0513 (7)
C20.8530 (4)0.05093 (15)0.8752 (2)0.0536 (7)
C30.7801 (4)0.00053 (17)0.8832 (3)0.0643 (9)
H30.75890.03610.84280.077*
C40.7403 (5)0.0036 (2)0.9541 (3)0.0744 (11)
H40.68910.02960.96070.089*
C50.7747 (5)0.0558 (2)1.0151 (3)0.0771 (11)
H50.74820.05651.06320.092*
C60.8474 (5)0.1075 (2)1.0076 (3)0.0696 (9)
H60.86890.14301.04830.083*
C70.8862 (4)0.10316 (15)0.9360 (3)0.0554 (7)
C81.0064 (5)0.20827 (17)0.9490 (3)0.0686 (9)
H8A1.11360.21540.96980.082*
H8B1.00830.21181.01220.082*
C90.8986 (5)0.25774 (16)0.8710 (3)0.0636 (9)
C100.7349 (5)0.25522 (18)0.8094 (4)0.0718 (10)
C110.6373 (6)0.3000 (2)0.7371 (4)0.0817 (12)
C120.7048 (7)0.3505 (2)0.7252 (4)0.0845 (13)
C130.8651 (7)0.35587 (19)0.7844 (4)0.0879 (14)
C140.9612 (5)0.31027 (19)0.8565 (4)0.0770 (11)
C150.8845 (4)0.02064 (16)0.7314 (3)0.0593 (8)
H15A0.85320.01980.74130.071*
H15B0.98590.01570.74170.071*
C160.7627 (4)0.04194 (15)0.6192 (3)0.0585 (8)
C170.7954 (6)0.03886 (18)0.5447 (3)0.0783 (11)
C180.6868 (9)0.0585 (2)0.4418 (4)0.1026 (18)
C190.5465 (8)0.0824 (2)0.4121 (4)0.1034 (19)
C200.5076 (6)0.0855 (2)0.4826 (4)0.0920 (15)
C210.6168 (5)0.06489 (17)0.5857 (3)0.0701 (10)
C221.2604 (4)0.0965 (2)0.8417 (3)0.0718 (10)
H221.23770.05870.86600.086*
C231.2981 (4)0.1476 (2)0.9077 (3)0.0740 (11)
H231.29610.13850.96900.089*
C241.4091 (6)0.1997 (3)0.9273 (5)0.126 (2)
H24A1.42260.22600.98300.151*
H24B1.51210.18180.95410.151*
C251.3626 (6)0.2389 (3)0.8376 (5)0.1008 (15)
H25A1.44250.23470.82390.121*
H25B1.36520.28170.85820.121*
C261.2046 (5)0.2274 (2)0.7363 (4)0.0781 (11)
H261.14570.26540.69930.094*
C271.1652 (6)0.1770 (2)0.6699 (4)0.0798 (12)
H271.08390.18580.59450.096*
C281.2764 (7)0.1257 (3)0.6897 (5)0.1087 (18)
H28A1.22610.10070.62570.130*
H28B1.37080.14410.70110.130*
C291.3272 (7)0.0840 (3)0.7788 (5)0.123 (2)
H29A1.44220.08580.82730.147*
H29B1.29870.04190.75150.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.05673 (16)0.05533 (16)0.05389 (16)0.00292 (11)0.03513 (13)0.00857 (11)
Br10.0737 (2)0.0689 (2)0.0642 (2)0.01353 (18)0.0309 (2)0.00471 (17)
F10.0771 (15)0.0925 (18)0.151 (3)0.0002 (13)0.0724 (17)0.0390 (17)
F20.0910 (19)0.134 (3)0.133 (3)0.0276 (17)0.0714 (19)0.042 (2)
F30.184 (3)0.0799 (17)0.106 (2)0.0204 (19)0.090 (2)0.0233 (16)
F40.202 (4)0.090 (2)0.131 (3)0.065 (2)0.092 (3)0.0055 (18)
F50.110 (2)0.104 (2)0.118 (2)0.0535 (17)0.0630 (19)0.0161 (17)
F60.139 (3)0.119 (2)0.112 (2)0.0158 (19)0.099 (2)0.0010 (17)
F70.302 (6)0.123 (3)0.106 (2)0.003 (3)0.144 (3)0.002 (2)
F80.227 (4)0.091 (2)0.0549 (16)0.010 (2)0.015 (2)0.0060 (14)
F90.0806 (18)0.115 (2)0.129 (3)0.0228 (17)0.0065 (17)0.011 (2)
F100.0687 (14)0.117 (2)0.0950 (19)0.0156 (13)0.0475 (14)0.0049 (15)
N10.0551 (14)0.0502 (14)0.0478 (14)0.0012 (11)0.0305 (12)0.0019 (11)
N20.0643 (16)0.0522 (14)0.0577 (16)0.0078 (12)0.0400 (14)0.0056 (11)
C10.0508 (16)0.0520 (17)0.0496 (16)0.0014 (13)0.0284 (14)0.0020 (13)
C20.0555 (17)0.0539 (17)0.0497 (17)0.0002 (13)0.0296 (15)0.0055 (13)
C30.067 (2)0.0578 (19)0.063 (2)0.0060 (16)0.0345 (18)0.0076 (15)
C40.072 (2)0.079 (3)0.073 (3)0.0060 (19)0.043 (2)0.019 (2)
C50.084 (3)0.094 (3)0.070 (2)0.003 (2)0.055 (2)0.015 (2)
C60.079 (2)0.079 (2)0.061 (2)0.0037 (19)0.0463 (19)0.0038 (18)
C70.0590 (17)0.0569 (18)0.0512 (17)0.0020 (14)0.0325 (15)0.0026 (14)
C80.073 (2)0.062 (2)0.070 (2)0.0172 (17)0.041 (2)0.0185 (17)
C90.089 (2)0.0500 (18)0.074 (2)0.0086 (17)0.060 (2)0.0099 (16)
C100.085 (3)0.061 (2)0.097 (3)0.0028 (18)0.069 (2)0.0049 (19)
C110.099 (3)0.078 (3)0.092 (3)0.007 (2)0.070 (3)0.010 (2)
C120.127 (4)0.063 (2)0.082 (3)0.005 (2)0.071 (3)0.003 (2)
C130.143 (4)0.056 (2)0.081 (3)0.026 (3)0.074 (3)0.008 (2)
C140.096 (3)0.067 (2)0.085 (3)0.034 (2)0.062 (3)0.024 (2)
C150.0632 (18)0.0551 (18)0.062 (2)0.0058 (15)0.0379 (17)0.0038 (15)
C160.069 (2)0.0516 (17)0.0520 (18)0.0034 (15)0.0339 (16)0.0059 (14)
C170.114 (3)0.057 (2)0.071 (3)0.004 (2)0.058 (3)0.0076 (18)
C180.181 (6)0.066 (3)0.068 (3)0.014 (3)0.076 (4)0.007 (2)
C190.142 (5)0.054 (2)0.054 (3)0.011 (3)0.023 (3)0.0034 (19)
C200.082 (3)0.059 (2)0.079 (3)0.003 (2)0.015 (2)0.003 (2)
C210.070 (2)0.058 (2)0.063 (2)0.0024 (17)0.0281 (19)0.0047 (16)
C220.062 (2)0.077 (2)0.074 (2)0.0161 (18)0.0387 (19)0.020 (2)
C230.0529 (19)0.092 (3)0.062 (2)0.0034 (18)0.0247 (17)0.020 (2)
C240.086 (3)0.145 (5)0.098 (4)0.054 (3)0.026 (3)0.023 (3)
C250.093 (3)0.094 (3)0.123 (4)0.027 (3)0.067 (3)0.004 (3)
C260.093 (3)0.075 (3)0.090 (3)0.003 (2)0.066 (3)0.022 (2)
C270.106 (3)0.085 (3)0.086 (3)0.008 (2)0.077 (3)0.019 (2)
C280.146 (5)0.104 (4)0.141 (5)0.015 (3)0.120 (4)0.011 (3)
C290.121 (4)0.154 (5)0.125 (5)0.070 (4)0.090 (4)0.042 (4)
Geometric parameters (Å, º) top
Rh1—C12.010 (3)C9—C101.378 (6)
Rh1—C222.116 (4)C9—C141.384 (5)
Rh1—C232.118 (4)C10—C111.371 (6)
Rh1—C262.222 (4)C11—C121.361 (6)
Rh1—C272.224 (4)C12—C131.353 (7)
Rh1—Br12.5090 (5)C13—C141.379 (7)
F1—C101.336 (4)C15—C161.504 (5)
F2—C111.333 (5)C15—H15A0.9700
F3—C121.339 (5)C15—H15B0.9700
F4—C131.345 (5)C16—C211.370 (5)
F5—C141.327 (5)C16—C171.379 (5)
F6—C171.334 (5)C17—C181.375 (7)
F7—C181.347 (6)C18—C191.342 (8)
F8—C191.343 (5)C19—C201.367 (8)
F9—C201.331 (6)C20—C211.384 (6)
F10—C211.331 (5)C22—C231.392 (6)
N1—C11.359 (4)C22—C291.510 (6)
N1—C21.392 (4)C22—H220.9800
N1—C151.456 (4)C23—C241.503 (6)
N2—C11.359 (4)C23—H230.9800
N2—C71.400 (4)C24—C251.444 (7)
N2—C81.464 (4)C24—H24A0.9700
C2—C71.373 (5)C24—H24B0.9700
C2—C31.385 (5)C25—C261.484 (7)
C3—C41.381 (5)C25—H25A0.9700
C3—H30.9300C25—H25B0.9700
C4—C51.373 (6)C26—C271.381 (6)
C4—H40.9300C26—H260.9800
C5—C61.383 (6)C27—C281.492 (7)
C5—H50.9300C27—H270.9800
C6—C71.384 (5)C28—C291.460 (7)
C6—H60.9300C28—H28A0.9700
C8—C91.504 (6)C28—H28B0.9700
C8—H8A0.9700C29—H29A0.9700
C8—H8B0.9700C29—H29B0.9700
C1—Rh1—C2291.62 (14)N1—C15—H15B108.8
C1—Rh1—C2390.43 (14)C16—C15—H15B108.8
C22—Rh1—C2338.38 (17)H15A—C15—H15B107.7
C1—Rh1—C26160.15 (16)C21—C16—C17117.0 (4)
C22—Rh1—C2692.39 (16)C21—C16—C15123.0 (3)
C23—Rh1—C2680.80 (16)C17—C16—C15120.1 (4)
C1—Rh1—C27163.35 (16)F6—C17—C18119.1 (4)
C22—Rh1—C2781.17 (16)F6—C17—C16119.6 (4)
C23—Rh1—C2793.05 (18)C18—C17—C16121.3 (5)
C26—Rh1—C2736.19 (17)C19—C18—F7121.0 (5)
C1—Rh1—Br192.82 (9)C19—C18—C17120.4 (5)
C22—Rh1—Br1159.47 (12)F7—C18—C17118.6 (6)
C23—Rh1—Br1161.40 (13)C18—C19—F8120.4 (6)
C26—Rh1—Br190.20 (12)C18—C19—C20120.4 (4)
C27—Rh1—Br189.06 (13)F8—C19—C20119.1 (6)
C1—N1—C2111.6 (3)F9—C20—C19120.9 (5)
C1—N1—C15124.2 (3)F9—C20—C21120.3 (5)
C2—N1—C15124.0 (3)C19—C20—C21118.8 (5)
C1—N2—C7111.6 (3)F10—C21—C16120.3 (3)
C1—N2—C8124.2 (3)F10—C21—C20117.6 (4)
C7—N2—C8124.1 (3)C16—C21—C20122.1 (4)
N2—C1—N1104.5 (3)C23—C22—C29125.2 (5)
N2—C1—Rh1127.7 (2)C23—C22—Rh170.9 (2)
N1—C1—Rh1127.8 (2)C29—C22—Rh1112.3 (3)
C7—C2—C3121.6 (3)C23—C22—H22113.6
C7—C2—N1106.5 (3)C29—C22—H22113.6
C3—C2—N1132.0 (3)Rh1—C22—H22113.6
C4—C3—C2116.7 (4)C22—C23—C24126.2 (5)
C4—C3—H3121.6C22—C23—Rh170.7 (2)
C2—C3—H3121.6C24—C23—Rh1111.8 (3)
C5—C4—C3121.4 (4)C22—C23—H23113.4
C5—C4—H4119.3C24—C23—H23113.4
C3—C4—H4119.3Rh1—C23—H23113.4
C4—C5—C6122.3 (4)C25—C24—C23116.9 (4)
C4—C5—H5118.9C25—C24—H24A108.1
C6—C5—H5118.9C23—C24—H24A108.1
C5—C6—C7116.0 (4)C25—C24—H24B108.1
C5—C6—H6122.0C23—C24—H24B108.1
C7—C6—H6122.0H24A—C24—H24B107.3
C2—C7—C6122.0 (3)C24—C25—C26117.6 (4)
C2—C7—N2105.8 (3)C24—C25—H25A107.9
C6—C7—N2132.2 (3)C26—C25—H25A107.9
N2—C8—C9113.3 (3)C24—C25—H25B107.9
N2—C8—H8A108.9C26—C25—H25B107.9
C9—C8—H8A108.9H25A—C25—H25B107.2
N2—C8—H8B108.9C27—C26—C25125.6 (5)
C9—C8—H8B108.9C27—C26—Rh172.0 (2)
H8A—C8—H8B107.7C25—C26—Rh1109.5 (3)
C10—C9—C14115.0 (4)C27—C26—H26113.9
C10—C9—C8124.4 (3)C25—C26—H26113.9
C14—C9—C8120.6 (4)Rh1—C26—H26113.9
F1—C10—C11117.4 (4)C26—C27—C28124.7 (5)
F1—C10—C9118.4 (4)C26—C27—Rh171.8 (2)
C11—C10—C9124.1 (4)C28—C27—Rh1109.4 (3)
F2—C11—C12120.2 (4)C26—C27—H27114.3
F2—C11—C10121.3 (4)C28—C27—H27114.3
C12—C11—C10118.6 (5)Rh1—C27—H27114.3
F3—C12—C13119.9 (4)C29—C28—C27117.2 (4)
F3—C12—C11120.1 (5)C29—C28—H28A108.0
C13—C12—C11120.0 (4)C27—C28—H28A108.0
F4—C13—C12120.9 (5)C29—C28—H28B108.0
F4—C13—C14118.5 (5)C27—C28—H28B108.0
C12—C13—C14120.6 (4)H28A—C28—H28B107.2
F5—C14—C13119.1 (4)C28—C29—C22116.8 (4)
F5—C14—C9119.1 (4)C28—C29—H29A108.1
C13—C14—C9121.8 (4)C22—C29—H29A108.1
N1—C15—C16113.7 (3)C28—C29—H29B108.1
N1—C15—H15A108.8C22—C29—H29B108.1
C16—C15—H15A108.8H29A—C29—H29B107.3
C7—N2—C1—N10.5 (4)F6—C17—C18—C19180.0 (4)
C8—N2—C1—N1177.4 (3)C16—C17—C18—C191.2 (7)
C7—N2—C1—Rh1177.4 (2)F6—C17—C18—F70.6 (7)
C8—N2—C1—Rh15.7 (5)C16—C17—C18—F7179.4 (4)
C2—N1—C1—N20.4 (3)F7—C18—C19—F80.3 (7)
C15—N1—C1—N2177.0 (3)C17—C18—C19—F8179.1 (4)
C2—N1—C1—Rh1177.4 (2)F7—C18—C19—C20178.4 (4)
C15—N1—C1—Rh16.1 (4)C17—C18—C19—C202.2 (7)
C22—Rh1—C1—N2109.5 (3)C18—C19—C20—F9178.5 (4)
C23—Rh1—C1—N271.1 (3)F8—C19—C20—F90.2 (7)
C26—Rh1—C1—N27.9 (6)C18—C19—C20—C211.4 (7)
C27—Rh1—C1—N2173.3 (5)F8—C19—C20—C21179.9 (4)
Br1—Rh1—C1—N290.6 (3)C17—C16—C21—F10178.4 (3)
C22—Rh1—C1—N166.8 (3)C15—C16—C21—F101.6 (5)
C23—Rh1—C1—N1105.2 (3)C17—C16—C21—C201.4 (6)
C26—Rh1—C1—N1168.4 (4)C15—C16—C21—C20178.6 (3)
C27—Rh1—C1—N13.0 (7)F9—C20—C21—F100.6 (6)
Br1—Rh1—C1—N193.2 (3)C19—C20—C21—F10179.3 (4)
C1—N1—C2—C70.2 (4)F9—C20—C21—C16179.7 (4)
C15—N1—C2—C7176.8 (3)C19—C20—C21—C160.4 (6)
C1—N1—C2—C3179.3 (3)C1—Rh1—C22—C2388.6 (2)
C15—N1—C2—C32.7 (5)C26—Rh1—C22—C2371.9 (3)
C7—C2—C3—C40.9 (5)C27—Rh1—C22—C23106.4 (3)
N1—C2—C3—C4178.4 (3)Br1—Rh1—C22—C23168.9 (2)
C2—C3—C4—C51.3 (6)C1—Rh1—C22—C29150.2 (4)
C3—C4—C5—C61.5 (6)C23—Rh1—C22—C29121.1 (5)
C4—C5—C6—C71.0 (6)C26—Rh1—C22—C2949.2 (4)
C3—C2—C7—C60.6 (5)C27—Rh1—C22—C2914.7 (4)
N1—C2—C7—C6178.9 (3)Br1—Rh1—C22—C2947.8 (6)
C3—C2—C7—N2179.6 (3)C29—C22—C23—C240.9 (7)
N1—C2—C7—N20.1 (4)Rh1—C22—C23—C24103.4 (4)
C5—C6—C7—C20.6 (5)C29—C22—C23—Rh1104.3 (4)
C5—C6—C7—N2179.3 (4)C1—Rh1—C23—C2292.1 (2)
C1—N2—C7—C20.4 (4)C26—Rh1—C23—C22105.8 (3)
C8—N2—C7—C2177.3 (3)C27—Rh1—C23—C2271.6 (3)
C1—N2—C7—C6178.5 (4)Br1—Rh1—C23—C22167.8 (3)
C8—N2—C7—C61.6 (6)C1—Rh1—C23—C24145.7 (4)
C1—N2—C8—C970.6 (4)C22—Rh1—C23—C24122.3 (5)
C7—N2—C8—C9105.9 (4)C26—Rh1—C23—C2416.5 (4)
N2—C8—C9—C1045.3 (5)C27—Rh1—C23—C2450.6 (4)
N2—C8—C9—C14134.5 (4)Br1—Rh1—C23—C2445.5 (6)
C14—C9—C10—F1179.2 (4)C22—C23—C24—C2564.8 (8)
C8—C9—C10—F10.6 (6)Rh1—C23—C24—C2516.7 (8)
C14—C9—C10—C110.9 (6)C23—C24—C25—C264.4 (9)
C8—C9—C10—C11178.8 (4)C24—C25—C26—C2772.0 (7)
F1—C10—C11—F20.4 (7)C24—C25—C26—Rh19.4 (7)
C9—C10—C11—F2178.6 (4)C1—Rh1—C26—C27173.0 (4)
F1—C10—C11—C12178.7 (4)C22—Rh1—C26—C2771.5 (3)
C9—C10—C11—C120.4 (7)C23—Rh1—C26—C27108.2 (3)
F2—C11—C12—F31.9 (7)Br1—Rh1—C26—C2788.1 (3)
C10—C11—C12—F3179.1 (4)C1—Rh1—C26—C2550.7 (6)
F2—C11—C12—C13179.4 (4)C22—Rh1—C26—C2550.8 (4)
C10—C11—C12—C130.3 (7)C23—Rh1—C26—C2514.1 (4)
F3—C12—C13—F42.2 (7)C27—Rh1—C26—C25122.3 (5)
C11—C12—C13—F4179.0 (4)Br1—Rh1—C26—C25149.5 (3)
F3—C12—C13—C14179.2 (4)C25—C26—C27—C280.0 (6)
C11—C12—C13—C140.4 (7)Rh1—C26—C27—C28101.5 (4)
F4—C13—C14—F50.8 (6)C25—C26—C27—Rh1101.4 (4)
C12—C13—C14—F5179.4 (4)C1—Rh1—C27—C26171.7 (4)
F4—C13—C14—C9178.5 (4)C22—Rh1—C27—C26106.5 (3)
C12—C13—C14—C90.1 (7)C23—Rh1—C27—C2669.9 (3)
C10—C9—C14—F5180.0 (4)Br1—Rh1—C27—C2691.6 (3)
C8—C9—C14—F50.3 (6)C1—Rh1—C27—C2850.4 (8)
C10—C9—C14—C130.8 (6)C22—Rh1—C27—C2814.8 (4)
C8—C9—C14—C13179.0 (4)C23—Rh1—C27—C2851.4 (4)
C1—N1—C15—C1667.9 (4)C26—Rh1—C27—C28121.3 (5)
C2—N1—C15—C16108.3 (4)Br1—Rh1—C27—C28147.1 (4)
N1—C15—C16—C2145.2 (5)C26—C27—C28—C2968.3 (7)
N1—C15—C16—C17134.8 (3)Rh1—C27—C28—C2912.6 (7)
C21—C16—C17—F6178.2 (4)C27—C28—C29—C220.7 (9)
C15—C16—C17—F61.8 (5)C23—C22—C29—C2869.3 (7)
C21—C16—C17—C180.6 (6)Rh1—C22—C29—C2812.5 (7)
C15—C16—C17—C18179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···F1i0.972.443.397 (6)167
C3—H3···F8ii0.932.503.331 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[RhBr(C8H12)(C21H8N2F10)]
Mr769.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.3441 (5), 21.4937 (10), 15.4717 (7)
β (°) 125.629 (3)
V3)2795.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.52 × 0.42 × 0.36
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.288, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
36192, 6179, 4843
Rint0.056
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.05
No. of reflections6179
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.79

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Rh1—C12.010 (3)N1—C11.359 (4)
Rh1—C222.116 (4)N1—C21.392 (4)
Rh1—C232.118 (4)N1—C151.456 (4)
Rh1—C262.222 (4)N2—C11.359 (4)
Rh1—C272.224 (4)N2—C71.400 (4)
Rh1—Br12.5090 (5)N2—C81.464 (4)
C1—Rh1—C2291.62 (14)C1—N2—C7111.6 (3)
C1—Rh1—C2390.43 (14)C1—N2—C8124.2 (3)
C22—Rh1—C2338.38 (17)C7—N2—C8124.1 (3)
C1—Rh1—C26160.15 (16)N2—C1—N1104.5 (3)
C1—Rh1—C27163.35 (16)N2—C1—Rh1127.7 (2)
C26—Rh1—C2736.19 (17)N1—C1—Rh1127.8 (2)
C1—N1—C2111.6 (3)N2—C8—C9113.3 (3)
C1—N1—C15124.2 (3)N1—C15—C16113.7 (3)
C2—N1—C15124.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25A···F1i0.972.443.397 (6)167
C3—H3···F8ii0.932.503.331 (5)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds