Download citation
Download citation
link to html
In the title compound, [Cd(C2H8N2)2(H2O)2](C10H8NO3S)2·2H2O, the CdII atom, located on an inversion centre, has a distorted octa­hedral coordination geometry formed by two ethyl­ene­diamine and two water mol­ecules. 4-Amino­naphthalene-1-sulfonate acts as a counter-ion to balance the charge, and two anti­parallel anions showing strong π–π stacking inter­actions are linked by paired N—H...O(sulfonate) hydrogen bonds into an isolated R22(16) dimer. The crystal structure is stabilized by the π–π stacking inter­­actions and hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106029854/av3025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106029854/av3025Isup2.hkl
Contains datablock I

CCDC reference: 621268

Comment top

Organosulfonates are widely used industrially as surfactants and dyes. Recently, they have been studied as potential liquid crystalline (Huo et al., 1994) and nonlinear optical materials (Marder et al., 1994; Russell et al., 1994), and as complexing agents in the form of sufonated macrocycles (Steed et al., 1995). However, because of their weak coordination abilities with transition metal ions, most of the reported complexes containing sulfonate were aqua–metal salts and the sulfonate only acted as counter-anion to balance the charge (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al.,1997). As the part of an investigation of the coordination behaviour of the sulfonate anion, we present here the crystal structure of the title compound, [Cd(en)2(H2O)2](ans)2·2H2O, (I) (en is ethylenediamine and ans is 4-aminonaphthalene-1-sulfonate). The crystal structure of (I) consists of CdII complex cations, 4-aminonaphthalene-1-sulfonate anions and solvent water molecules. The molecular structure of (I) is shown in Fig. 1. The Cd atom, lying on an inversion center, has a distorted octahedral environment and is coordinated by four N atoms from two diethylenediamine ligands, which lie in the equatorial plane, and by two water O atoms occupying the axial sites. The distances of Cd—N (Table 1) and the average Cd—N bond length is 2.259 (11) Å, which is slightly shorter than the Cd—N distances in [Cd(en)3](NO3) [Cd—N = 2.355 (3)–2.400 (3) Å; Prior, 2006]. The Cd—O distance is 2.361 (2) Å, which is longer than the equivalent Cd—O distances in the complex [Cd(hmt)2(H2O)4][Cd(H2O)6](ans)4·6H2O [Cd—O = 2.2804 (18)–2.3025 (19) Å; hmt is hexamethylenetetramine; Zhou et al., 2005]. The naphthalene ring is essentially planar (the r.m.s. deviation is 0.002 Å), the greatest deviation from the mean plane being 0.024 (2) Å for atom C6. The S and N atoms are deviate slightly [0.1730 (5) and 0.012 (2) Å, respectively] from the naphthalene plane. The centroid–centroid distance [3.5384 (13) Å] between the C3–C7/C12 phenyl ring (centroid Cg1) belonging to the naphthalene ring in one molecule and the C7–C12 phenyl ring (Cg2) of the neighboring naphthalene ring (symmetry code: 1 - x, -y, 1 - z), and the dihedral angles α (between planes Cg1 and Cg1) and β (between the Cg1—Cg2 vector and the normal to the C3–C7/C12 ring) are 1.03 and 15.94°, respectively; these values indicate the existence of significant ππ stacking interactions between adjacent 4-aminonaphthalene-1-sulfonate ions. Two antiparallel 4-aminonaphthalene-1-sulfonate anions are linked by paired NH···O(sulfonate) hydrogen bonds into an isolated R22(16) dimer (Bernstein et al., 1995). Two adjacent anionic dimers are vertical, which is different from the packing mode within the complex [Zn(en)2(H2O)2](ans)2·2H2O (Li & Wang, 2006). Within the latter, four parallel dimers encircle one dimer with a different direction. The cations and anionic dimers in (I) are linked by intra- and intermolecular hydrogen bonds formed by O atoms from the dimers and H atoms belonging to the en ligands and water molecules, thus forming a one-dimension infinite chain along the [001] direction (Fig. 2). As shown in Fig. 3, a cationic layer is linked to an anionic layer through a series of N—H···O, O—H···O and O—H···N hydrogen bonds. The extensive hydrogen bonds together with the strong ππ stacking interaction stabilize the crystal structure, showing a three-dimensional network (Table 2).

Experimental top

Ethylenediamine (0.06 g, 1 mmol) was added to an aqueous solution (20 ml) of Cd(OAc)2·2H2O(0.133 g, 0.5 mmol). After the mixture had been stirred for 2 h at room temperature, the solution was treated with 4-aminonaphthalene-1-sulfonic acid sodium salt tetrahydrate [correct name?] (0.32 g, 1 mmol) in ethanol (10 ml). After filtration, the colorless solution was allowed to stand at room temperature. Well shaped colorless block crystals of the title complex were obtained by slow evaporation of the solvent about one week.

Refinement top

The water and amine H atoms were located in a difference Fourier map and refined with the restraints O—H = 0.73 (4)–0.80 (3) Å, N—H = 0.77 (2)–0.871 (18) Å, and Uiso(H) = 1.5Ueq(O,N). H atoms on C atoms were placed in geometrically idealized positions and refined as riding [C—H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing ellipsoids at the 50% probability level [symmetry code: (a) -x, -y, 1 - z].
[Figure 2] Fig. 2. The one-dimensional chain constructed by the cations and ans anions, with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The molecular packing diagram of (I), with hydrogen bonds shown as dashed lines.
Diaquabis(ethylenediamine)cadmium(II) bis(4-aminonaphthalene-1-sulfonate) dihydrate top
Crystal data top
[Cd(C2H8N2)2(H2O)2](C10H8NO3S)2·2H2OF(000) = 772
Mr = 749.14Dx = 1.651 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 5197 reflections
a = 12.4386 (8) Åθ = 2.3–28.3°
b = 9.8579 (7) ŵ = 0.93 mm1
c = 12.2872 (8) ÅT = 292 K
β = 90.604 (1)°Block, colorless
V = 1506.55 (17) Å30.48 × 0.40 × 0.40 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3590 independent reflections
Radiation source: fine-focus sealed tube3254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.664, Tmax = 0.708k = 1212
17152 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.5785P]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.019
226 parametersΔρmax = 0.57 e Å3
10 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Cd(C2H8N2)2(H2O)2](C10H8NO3S)2·2H2OV = 1506.55 (17) Å3
Mr = 749.14Z = 2
MonoclinicP21/cMo Kα radiation
a = 12.4386 (8) ŵ = 0.93 mm1
b = 9.8579 (7) ÅT = 292 K
c = 12.2872 (8) Å0.48 × 0.40 × 0.40 mm
β = 90.604 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3254 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.708Rint = 0.059
17152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03810 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.57 e Å3
3590 reflectionsΔρmin = 0.92 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00000.00000.03321 (12)
O10.18904 (19)0.0114 (2)0.0164 (2)0.0431 (5)
H1E0.217 (4)0.021 (4)0.035 (3)0.065*
H1F0.214 (3)0.065 (4)0.055 (3)0.065*
N10.01716 (17)0.1785 (3)0.11124 (18)0.0347 (5)
H1A0.069 (2)0.159 (4)0.152 (2)0.052*
H1B0.0416 (19)0.176 (4)0.148 (3)0.052*
N20.00161 (19)0.1750 (3)0.12128 (19)0.0403 (5)
H2A0.051 (2)0.146 (4)0.165 (3)0.060*
H2B0.0612 (19)0.174 (4)0.152 (3)0.060*
C10.0352 (3)0.3006 (3)0.0462 (3)0.0493 (7)
H1C0.01400.37980.08820.059*
H1D0.11110.30870.02860.059*
C20.0297 (2)0.2955 (3)0.0594 (3)0.0471 (7)
H2C0.01470.37570.10270.057*
H2D0.10600.29440.04210.057*
C30.61490 (16)0.0511 (2)0.31294 (16)0.0237 (4)
C40.55554 (18)0.0461 (3)0.25856 (18)0.0292 (4)
H40.58880.10060.20710.035*
C50.44641 (19)0.0641 (2)0.27948 (18)0.0309 (5)
H50.40820.13070.24190.037*
C60.39453 (19)0.0145 (2)0.3543 (2)0.0250 (4)
C70.45213 (16)0.1200 (2)0.41015 (16)0.0227 (4)
C80.40059 (17)0.2063 (2)0.48591 (17)0.0294 (5)
H80.32760.19540.49920.035*
C90.4572 (2)0.3057 (3)0.53985 (19)0.0346 (5)
H90.42250.36170.58920.042*
C100.5668 (2)0.3228 (2)0.52067 (19)0.0329 (5)
H100.60440.39060.55730.039*
C110.61959 (17)0.2411 (2)0.44860 (17)0.0265 (4)
H110.69280.25360.43760.032*
C120.56407 (16)0.1376 (2)0.39045 (15)0.0217 (4)
N30.28367 (18)0.0042 (2)0.3723 (2)0.0319 (5)
H3B0.269 (3)0.072 (3)0.345 (3)0.048*
H3A0.259 (3)0.003 (3)0.435 (2)0.048*
S10.75534 (4)0.05403 (6)0.29272 (4)0.02834 (15)
O20.78563 (14)0.19069 (19)0.25948 (16)0.0413 (4)
O30.80473 (17)0.0134 (2)0.39521 (18)0.0423 (5)
O40.77605 (15)0.0464 (2)0.20777 (15)0.0401 (4)
O50.20737 (17)0.1804 (2)0.20477 (18)0.0466 (5)
H5A0.224 (3)0.255 (3)0.222 (3)0.070*
H5B0.227 (3)0.134 (4)0.251 (3)0.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03856 (18)0.02844 (18)0.03269 (18)0.00107 (8)0.00342 (11)0.00024 (8)
O10.0330 (11)0.0535 (14)0.0428 (12)0.0000 (8)0.0044 (9)0.0001 (8)
N10.0284 (10)0.0421 (12)0.0337 (10)0.0006 (9)0.0061 (8)0.0050 (9)
N20.0359 (11)0.0507 (14)0.0344 (11)0.0026 (10)0.0064 (9)0.0104 (10)
C10.0505 (16)0.0338 (14)0.0638 (19)0.0073 (12)0.0131 (14)0.0053 (13)
C20.0469 (15)0.0344 (14)0.0603 (18)0.0006 (11)0.0118 (13)0.0127 (13)
C30.0242 (9)0.0251 (10)0.0219 (9)0.0006 (8)0.0043 (7)0.0033 (8)
C40.0319 (11)0.0305 (11)0.0254 (10)0.0009 (9)0.0051 (8)0.0053 (9)
C50.0320 (11)0.0314 (12)0.0293 (10)0.0064 (9)0.0012 (8)0.0046 (9)
C60.0226 (10)0.0278 (10)0.0247 (11)0.0016 (7)0.0012 (8)0.0055 (8)
C70.0241 (9)0.0237 (9)0.0203 (9)0.0015 (7)0.0018 (7)0.0040 (7)
C80.0272 (10)0.0326 (11)0.0285 (10)0.0045 (8)0.0061 (8)0.0004 (9)
C90.0388 (12)0.0332 (12)0.0319 (11)0.0043 (10)0.0087 (9)0.0071 (9)
C100.0402 (12)0.0280 (11)0.0305 (11)0.0040 (9)0.0013 (9)0.0055 (9)
C110.0259 (9)0.0278 (10)0.0258 (9)0.0028 (8)0.0029 (8)0.0003 (8)
C120.0243 (9)0.0216 (9)0.0192 (8)0.0002 (7)0.0031 (7)0.0040 (7)
N30.0232 (10)0.0381 (12)0.0344 (12)0.0056 (7)0.0007 (8)0.0014 (8)
S10.0243 (3)0.0338 (3)0.0271 (3)0.0003 (2)0.00891 (19)0.0006 (2)
O20.0357 (9)0.0367 (9)0.0519 (11)0.0077 (7)0.0186 (8)0.0020 (8)
O30.0286 (9)0.0644 (14)0.0338 (10)0.0056 (7)0.0006 (8)0.0039 (8)
O40.0382 (10)0.0432 (10)0.0394 (10)0.0036 (8)0.0156 (7)0.0092 (9)
O50.0469 (11)0.0451 (11)0.0476 (11)0.0014 (9)0.0122 (8)0.0021 (9)
Geometric parameters (Å, º) top
Cd1—N12.240 (2)C5—C61.369 (3)
Cd1—N22.280 (2)C5—H50.9300
Cd1—O12.361 (2)C6—N31.411 (3)
O1—H1E0.73 (4)C6—C71.434 (3)
O1—H1F0.78 (3)C7—C81.419 (3)
N1—C11.461 (4)C7—C121.426 (3)
N1—H1A0.840 (18)C8—C91.373 (3)
N1—H1B0.858 (18)C8—H80.9300
N2—C21.451 (4)C9—C101.396 (3)
N2—H2A0.871 (18)C9—H90.9300
N2—H2B0.866 (18)C10—C111.370 (3)
C1—C21.537 (5)C10—H100.9300
C1—H1C0.9700C11—C121.421 (3)
C1—H1D0.9700C11—H110.9300
C2—H2C0.9700N3—H3B0.77 (2)
C2—H2D0.9700N3—H3A0.84 (3)
C3—C41.378 (3)S1—O31.452 (2)
C3—C121.431 (3)S1—O21.4584 (19)
C3—S11.767 (2)S1—O41.4637 (19)
C4—C51.396 (3)O5—H5A0.80 (3)
C4—H40.9300O5—H5B0.77 (3)
N1i—Cd1—N1180.0H2C—C2—H2D108.2
N1i—Cd1—N2101.19 (10)C4—C3—C12119.92 (19)
N1—Cd1—N278.81 (10)C4—C3—S1117.94 (17)
N1i—Cd1—N2i78.81 (10)C12—C3—S1121.89 (16)
N1—Cd1—N2i101.19 (10)C3—C4—C5121.1 (2)
N2—Cd1—N2i180.00 (12)C3—C4—H4119.5
N1i—Cd1—O189.33 (8)C5—C4—H4119.5
N1—Cd1—O190.67 (8)C6—C5—C4121.2 (2)
N2—Cd1—O190.25 (8)C6—C5—H5119.4
N2i—Cd1—O189.75 (8)C4—C5—H5119.4
N1i—Cd1—O1i90.67 (8)C5—C6—N3120.0 (2)
N1—Cd1—O1i89.33 (8)C5—C6—C7119.7 (2)
N2—Cd1—O1i89.75 (8)N3—C6—C7120.2 (2)
N2i—Cd1—O1i90.25 (8)C8—C7—C12119.15 (19)
O1—Cd1—O1i180.0C8—C7—C6121.47 (19)
Cd1—O1—H1E114 (4)C12—C7—C6119.38 (19)
Cd1—O1—H1F118 (3)C9—C8—C7120.8 (2)
H1E—O1—H1F105 (4)C9—C8—H8119.6
C1—N1—Cd1109.20 (17)C7—C8—H8119.6
C1—N1—H1A114 (3)C8—C9—C10120.1 (2)
Cd1—N1—H1A105 (3)C8—C9—H9120.0
C1—N1—H1B116 (3)C10—C9—H9120.0
Cd1—N1—H1B103 (3)C11—C10—C9121.0 (2)
H1A—N1—H1B109 (3)C11—C10—H10119.5
C2—N2—Cd1106.29 (17)C9—C10—H10119.5
C2—N2—H2A115 (3)C10—C11—C12120.9 (2)
Cd1—N2—H2A100 (3)C10—C11—H11119.6
C2—N2—H2B117 (3)C12—C11—H11119.6
Cd1—N2—H2B106 (3)C11—C12—C7118.17 (18)
H2A—N2—H2B112 (4)C11—C12—C3123.16 (18)
N1—C1—C2110.8 (2)C7—C12—C3118.67 (18)
N1—C1—H1C109.5C6—N3—H3B106 (3)
C2—C1—H1C109.5C6—N3—H3A120 (3)
N1—C1—H1D109.5H3B—N3—H3A113 (3)
C2—C1—H1D109.5O3—S1—O2112.92 (12)
H1C—C1—H1D108.1O3—S1—O4110.86 (12)
N2—C2—C1110.1 (2)O2—S1—O4112.17 (12)
N2—C2—H2C109.6O3—S1—C3106.46 (11)
C1—C2—H2C109.6O2—S1—C3108.25 (10)
N2—C2—H2D109.6O4—S1—C3105.71 (11)
C1—C2—H2D109.6H5A—O5—H5B106 (4)
N1i—Cd1—N1—C1157 (19)C12—C7—C8—C90.0 (3)
N2—Cd1—N1—C19.07 (17)C6—C7—C8—C9179.1 (2)
N2i—Cd1—N1—C1170.93 (17)C7—C8—C9—C100.1 (3)
O1—Cd1—N1—C199.19 (19)C8—C9—C10—C110.2 (4)
O1i—Cd1—N1—C180.81 (19)C9—C10—C11—C120.7 (3)
N1i—Cd1—N2—C2159.95 (17)C10—C11—C12—C70.7 (3)
N1—Cd1—N2—C220.05 (17)C10—C11—C12—C3178.9 (2)
N2i—Cd1—N2—C278.08 (18)C8—C7—C12—C110.4 (3)
O1—Cd1—N2—C270.58 (18)C6—C7—C12—C11178.73 (19)
O1i—Cd1—N2—C2109.42 (18)C8—C7—C12—C3179.26 (19)
Cd1—N1—C1—C236.1 (3)C6—C7—C12—C31.6 (3)
Cd1—N2—C2—C145.5 (3)C4—C3—C12—C11179.2 (2)
N1—C1—C2—N257.2 (4)S1—C3—C12—C116.6 (3)
C12—C3—C4—C51.5 (3)C4—C3—C12—C70.5 (3)
S1—C3—C4—C5172.97 (18)S1—C3—C12—C7173.75 (14)
C3—C4—C5—C60.3 (4)C4—C3—S1—O3111.89 (19)
C4—C5—C6—N3178.8 (2)C12—C3—S1—O362.4 (2)
C4—C5—C6—C71.8 (3)C4—C3—S1—O2126.44 (19)
C5—C6—C7—C8178.1 (2)C12—C3—S1—O259.2 (2)
N3—C6—C7—C81.2 (3)C4—C3—S1—O46.1 (2)
C5—C6—C7—C122.8 (3)C12—C3—S1—O4179.62 (17)
N3—C6—C7—C12179.75 (19)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N30.77 (3)2.13 (3)2.900 (3)177 (4)
O5—H5A···O4ii0.80 (3)2.13 (3)2.906 (3)163 (4)
O1—H1F···O50.78 (3)2.16 (3)2.858 (3)150 (4)
O1—H1E···O4iii0.73 (4)2.14 (4)2.815 (3)154 (5)
N3—H3A···O3iv0.84 (3)2.24 (3)3.073 (3)171 (3)
N1—H1B···O50.86 (2)2.17 (2)3.009 (3)166 (3)
N1—H1A···O2v0.84 (2)2.27 (2)3.073 (3)159 (4)
N2—H2B···O2vi0.87 (2)2.56 (3)3.322 (3)148 (4)
N2—H2A···O4iii0.87 (2)2.42 (2)3.232 (3)154 (3)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H8N2)2(H2O)2](C10H8NO3S)2·2H2O
Mr749.14
Crystal system, space groupMonoclinicP21/c
Temperature (K)292
a, b, c (Å)12.4386 (8), 9.8579 (7), 12.2872 (8)
β (°) 90.604 (1)
V3)1506.55 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.48 × 0.40 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.664, 0.708
No. of measured, independent and
observed [I > 2σ(I)] reflections
17152, 3590, 3254
Rint0.059
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 1.11
No. of reflections3590
No. of parameters226
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.92

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cd1—N12.240 (2)Cd1—O12.361 (2)
Cd1—N22.280 (2)
N1—Cd1—N278.81 (10)N1—Cd1—O190.67 (8)
N1—Cd1—N2i101.19 (10)N2—Cd1—O190.25 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N30.77 (3)2.13 (3)2.900 (3)177 (4)
O5—H5A···O4ii0.80 (3)2.13 (3)2.906 (3)163 (4)
O1—H1F···O50.78 (3)2.16 (3)2.858 (3)150 (4)
O1—H1E···O4iii0.73 (4)2.14 (4)2.815 (3)154 (5)
N3—H3A···O3iv0.84 (3)2.24 (3)3.073 (3)171 (3)
N1—H1B···O50.86 (2)2.17 (2)3.009 (3)166 (3)
N1—H1A···O2v0.84 (2)2.27 (2)3.073 (3)159 (4)
N2—H2B···O2vi0.87 (2)2.56 (3)3.322 (3)148 (4)
N2—H2A···O4iii0.87 (2)2.42 (2)3.232 (3)154 (3)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x1, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds