Download citation
Download citation
link to html
The complex mol­ecule in the title compound, [Re(C9H6NS)Cl2O(C18H15OP)]·C3H6O, has distorted octa­hedral geometry. The Re=O bond occupies the position trans to the triphenyl­phosphine oxide O atom. The Re—Cl bond trans to the thiol­ate S atom is longer than that trans to the quinoline N atom, implying a stronger trans influence of the S atom. Intra- and inter­molecular π–π inter­actions are also observed between the π rings in the complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105027770/av1252sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105027770/av1252Isup2.hkl
Contains datablock I

CCDC reference: 290559

Comment top

Oxorhenium(V) complexes are of interest because of their characteristic stereochemistry and reactivity as radiopharmaceuticals and O-atom transfer catalysts. We have synthesized oxorhenium(V) complexes using 8-substituted quinoline ligands as asymmetrical bidentate ligands to investigate stereoselectivity. For the N,N-bidentate ligands, the complex using 8-aminoquinoline (8-H2Nqn), [ReCl3(8-Nqn)PPh3] (PPh3 is triphenylphosphine), lost the ReO group and the metal atom formed a double bond with the N atom of the quinoline ligand (Miyashita et al., 2001), whereas the complex using 8-amino-2-methylquinoline (2-Me-8-H2Nqn), [ReOX2(2-Me-8-HNqn)PPh3] (X = Cl and Br), retained the ReO group (Ohashi et al., 2003). Moreover, the complexes were unstable in solution and substitution by OPPh3 can occur. On the other hand, the corresponding oxorhenium(V) complexes [ReOCl2(2-X-5-Y-7-Z-8-Oqn)PPh3] using the N,O-bidentate ligands 2-, 5- and/or 7-substituted 8-hydroxyquinoline (2-X-5-Y-7-Z-8-HOqn; X = H and Me, Y = H, Cl and Br, and Z = H, Cl, Br and I) display no OPPh3 substitution (Miyashita et al., 2005). To elucidate the stereochemistry and reactivity depending on the coordinating atom, we attempted to synthesize new oxorhenium(V) complexes using the N,S-bidentate ligand 8-mercaptoquinoline (8-HSqn). We report here the crystal structure of the obtained complex, (I).

The asymmetric unit of (I) contains a mononuclear complex molecule and an (CH3)2CO molecule. A perspective view of the complex molecule is shown in Fig. 1, and selected bond distances and angles are listed in Table 1. In the complex, the Re atom is coordinated by two O atoms, one establishing a double bond to the metal atom and the other from the OPPh3 ligand, two Cl atoms, and a deprotonated S atom and an N atom from the 8-Sqn ligand, forming a distorted octahedral geometry. The O atom of OPPh3 lies in trans position to the ReO bond along the axial direction, as observed in previously reported oxorhenium(V) complexes (Battistuzzi et al., 2001; Hansen et al., 1995), whereas the S atom, heterocyclic N atom and two cis Cl atoms occupy the equatorial plane. Similar coordination geometry was observed for the oxorhenium(V) complex [ReOCl2(2-Me-8-HNqn)OPPh3] (Ohashi et al., 2003).

The Re1—N1 [2.120 (6) Å] and Re1—O1 [1.649 (6) Å] distances in (I) are within the normal range of Re—N single-bond and ReO multiple-bond distances for the oxorhenium(V) complexes. The Re1—Cl2 bond trans to the S atom [2.448 (2) Å] is significantly longer than the Re1—Cl1 bond trans to the quinoline N atom [2.353 (2) Å]. This difference appears to be a result of the trans influence of the S atom. Indeed, the Re1—S1 distance [2.298 (2) Å] in (I) is shorter than Re—S distances [2.447 (3) and 2.313 (3) Å] in [MeReO(8-Sqn)2] (Shan et al., 2002), in which two S atoms occupy trans positions with respect to each other. The Re1—O2 distance, which is trans to the ReO bond, is 2.117 (4) Å in (I). This is consistent with the trans influence of the ReO linkage on an O atom from an axially bound ligand (Ohashi et al., 2003). In addition, in (I), the Re atom is located at 0.277 (2) Å above the equatorial plane in the direction of the ReO bond.

The ReO linkage significantly expands the angles to the equatorial Cl and P atoms [Cl1—Re1—O1 = 99.7 (2)° and S1—Re1—O1 = 100.7 (3)°], but not those to the equatorial N atom and the other Cl atom [O1—Re1—N1 = 92.6 (3)° and Cl2—Re1—O1 = 93.1 (3)°]. The O1—Re1—O2 angle is 170.9 (3)° in (I), which deviates from 180° for an ideal octahedral structure. The Re1—O2—P1 angle [159.9 (3)°] is slightly smaller than that in [ReOCl3(PPh3)(OPPh3)] [165.1 (3)°], which has a crowded structure (Bryan et al., 1998). These configurations may arise from the relatively less hindered structure or an intramolecular interaction. The dihedral angle between the N1/C1–C4/C9 ring of the quinoline system and the C10–C15 phenyl ring is 11.8 (3)°. The distance between the two planes is 3.43 (2) Å.

In the crystal packing of (I), the C4–C9 rings of the quinoline systems of adjacent molecules overlap in the axial direction, and the complex molecules form a dimeric structure. The interplanar distances [3.53 (1) Å] between two planes at (x, y, z) and (−x, 1 − y, −z) are within the range of intermolecular ππ stacking. Although the (CH3)2CO molecule is also incorporated into the crystal packing, it does not participate in significant intermolecular interactions. The O3—C17i contact distance is 3.33 (1) Å [symmetry code (i): 1 − x, y − 1/2, 1/2 − z].

The reactions of the starting materials [ReOCl3(PPh3)2] with 8-HSqn produced a brown powder. When the powder was recrystallized from (CH3)2CO, compound (I), containing OPPh3 instead of PPh3, was obtained. It appears hat PPh3 was oxidized during the recrystallization process. The strong IR bands of the ReO and PO bonds in (I) were observed at 989 and 1143 cm−1, respectively. In the far-IR spectra, the Re—Cl stretching bands were observed as two strong bands (325 and 280 cm−1). These values for the Re O and Re—Cl bonds reflect well the corresponding bond distances (Miyashita et al., 2005).

Experimental top

To a suspension containing [ReOCl3(PPh3)2] (200 mg, 0.24 mmol) (Johnson et al., 1967) in CH2Cl2 (60 ml) was added a solution containing 8-HSqn·HCl (47 mg, 0.24 mmol) in C6H5CH3 (10 ml). The mixture was stirred overnight at room temperature, whereupon the color of the mixture turned from light green to dark brown. After insoluble materials had been filtered off, the filtrate was dried by vacuum line. The resulted dark-brown powder was washed with Et2O. Recrystallization in a refrigerator from (CH3)2CO gave dark-brown prismatic [block?] crystals (yield 83 mg, 45%). Analysis found: C 46.82, H 3.66, N 1.87%; calculated for C27H21Cl2NO2PReS·C3H6O: C 46.81, H 3.54, N 1.82%.

Refinement top

After their presence had been checking in a difference map, all H atoms bonded to the C atoms were fixed geometrically and allowed to ride on their attached atoms [C—H = 0.95 or 0.97 Å; Uiso = 1.2Ueq(C)]. The H atoms were included in the calculations but not refined. [Constrained?]

Computing details top

Data collection: WinAFC Difftactometer Control Software (Rigaku Corporation, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A perspective drawing of the complex molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 20% probability level and H atoms have been omitted for clarity.
Dichlorooxo(quinoline-8-thiolato-κ2N,S)(triphenylphosphine oxide-κO)rhenium(V) acetone solvate top
Crystal data top
[Re(C9H6NS)Cl2O(C18H15O)]·C3H6OF(000) = 1512
Mr = 769.70Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 11.569 (3) ÅCell parameters from 25 reflections
b = 15.152 (7) Åθ = 14.5–14.9°
c = 17.660 (8) ŵ = 4.38 mm1
β = 103.90 (3)°T = 296 K
V = 3005 (2) Å3Block, black
Z = 40.63 × 0.53 × 0.40 mm
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.025
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 154
Tmin = 0.148, Tmax = 0.174k = 190
7600 measured reflectionsl = 2222
6887 independent reflections3 standard reflections every 150 reflections
4608 reflections with F2 > 2σ(F2) intensity decay: 0.2%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + {0.08[Max(Fo2,0) + 2Fc2]/3}2]
wR(F2) = 0.149(Δ/σ)max = 0.0001
S = 1.12Δρmax = 1.07 e Å3
6887 reflectionsΔρmin = 1.86 e Å3
352 parameters
Crystal data top
[Re(C9H6NS)Cl2O(C18H15O)]·C3H6OV = 3005 (2) Å3
Mr = 769.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.569 (3) ŵ = 4.38 mm1
b = 15.152 (7) ÅT = 296 K
c = 17.660 (8) Å0.63 × 0.53 × 0.40 mm
β = 103.90 (3)°
Data collection top
Rigaku AFC-7S
diffractometer
4608 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.148, Tmax = 0.1743 standard reflections every 150 reflections
7600 measured reflections intensity decay: 0.2%
6887 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045352 parameters
wR(F2) = 0.149H-atom parameters constrained
S = 1.12Δρmax = 1.07 e Å3
6887 reflectionsΔρmin = 1.86 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.04250 (2)0.24780 (2)0.11629 (2)0.04774 (8)
Cl10.0391 (2)0.0952 (1)0.0909 (2)0.0855 (8)
Cl20.0364 (2)0.2135 (2)0.2507 (1)0.0754 (7)
S10.0971 (2)0.2770 (1)0.0020 (1)0.0585 (5)
P10.3452 (1)0.23789 (9)0.22467 (9)0.0355 (4)
O10.1014 (5)0.2690 (4)0.0898 (5)0.086 (2)
O20.2268 (4)0.2321 (3)0.1664 (3)0.042 (1)
O30.2946 (9)0.2152 (6)0.1041 (5)0.120 (3)
N10.0860 (5)0.3822 (4)0.1420 (4)0.053 (2)
C10.0728 (8)0.4197 (6)0.2060 (5)0.072 (3)
C20.0931 (10)0.5115 (6)0.2175 (6)0.088 (3)
C30.1274 (8)0.5613 (5)0.1653 (6)0.074 (3)
C40.1463 (6)0.5235 (5)0.0962 (5)0.062 (2)
C50.1806 (7)0.5724 (5)0.0400 (6)0.073 (3)
C60.1910 (7)0.5287 (6)0.0275 (6)0.076 (3)
C70.1690 (7)0.4392 (6)0.0402 (5)0.063 (2)
C80.1346 (6)0.3899 (5)0.0149 (5)0.057 (2)
C90.1224 (5)0.4317 (4)0.0856 (4)0.042 (2)
C100.3576 (6)0.3327 (4)0.2869 (4)0.046 (2)
C110.3065 (7)0.3319 (5)0.3497 (4)0.057 (2)
C120.308 (1)0.4080 (6)0.3940 (5)0.084 (3)
C130.361 (1)0.4824 (6)0.3754 (6)0.095 (4)
C140.4144 (10)0.4839 (6)0.3120 (7)0.088 (4)
C150.4078 (8)0.4096 (5)0.2665 (5)0.063 (2)
C160.4592 (6)0.2410 (4)0.1713 (4)0.039 (2)
C170.5797 (6)0.2441 (4)0.2088 (4)0.048 (2)
C180.6631 (6)0.2427 (4)0.1635 (5)0.052 (2)
C190.6274 (8)0.2392 (5)0.0833 (5)0.064 (3)
C200.5093 (8)0.2353 (6)0.0474 (5)0.069 (3)
C210.4243 (7)0.2365 (5)0.0913 (5)0.061 (2)
C220.3722 (6)0.1423 (4)0.2861 (4)0.039 (2)
C230.4662 (6)0.1373 (5)0.3505 (4)0.052 (2)
C240.4917 (7)0.0605 (6)0.3938 (4)0.061 (2)
C250.4204 (8)0.0129 (5)0.3715 (5)0.060 (2)
C260.3246 (7)0.0084 (4)0.3075 (5)0.058 (2)
C270.3010 (6)0.0685 (4)0.2648 (4)0.047 (2)
C280.2370 (9)0.1473 (6)0.0974 (5)0.074 (3)
C290.2668 (10)0.0719 (8)0.0555 (7)0.097 (4)
C300.131 (1)0.1387 (7)0.1274 (6)0.091 (4)
H10.04950.38490.24460.0858*
H20.08130.53750.26430.1047*
H30.14110.62180.17570.0900*
H40.19600.63380.04630.0902*
H50.21340.56040.06820.0906*
H60.17750.41220.08690.0746*
H70.27010.27960.36290.0685*
H80.27510.40790.43820.1000*
H90.36160.53430.40630.1139*
H100.45540.53520.30200.1067*
H110.43720.41120.22050.0750*
H120.60460.24710.26420.0581*
H130.74570.24410.18800.0630*
H140.68450.23940.05270.0764*
H150.48480.23120.00800.0826*
H160.34180.23460.06580.0729*
H170.51540.18770.36580.0617*
H180.55680.05800.43810.0729*
H190.43790.06580.40080.0717*
H200.27550.05880.29300.0703*
H210.23530.07110.22040.0573*
H220.23110.01810.06890.1113*
H230.24060.07950.00040.1113*
H240.35160.06240.06800.1113*
H250.14670.15300.18220.1026*
H260.09840.07950.12170.1026*
H270.06810.17750.10070.1026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0317 (2)0.0409 (2)0.0690 (2)0.0017 (1)0.0091 (1)0.0124 (1)
Cl10.089 (2)0.045 (1)0.104 (2)0.013 (1)0.013 (1)0.001 (1)
Cl20.077 (1)0.069 (1)0.094 (2)0.000 (1)0.048 (1)0.022 (1)
S10.056 (1)0.0544 (10)0.060 (1)0.0015 (9)0.0036 (9)0.0006 (8)
P10.0337 (7)0.0341 (8)0.0396 (7)0.0008 (6)0.0107 (6)0.0006 (6)
O10.038 (3)0.078 (4)0.136 (6)0.006 (3)0.010 (3)0.041 (4)
O20.033 (2)0.041 (2)0.050 (2)0.004 (2)0.006 (2)0.004 (2)
O30.161 (8)0.093 (5)0.090 (5)0.062 (6)0.002 (5)0.006 (4)
N10.046 (3)0.045 (3)0.070 (4)0.007 (3)0.019 (3)0.007 (3)
C10.080 (6)0.069 (5)0.075 (6)0.027 (4)0.037 (5)0.008 (4)
C20.115 (8)0.055 (5)0.098 (7)0.033 (5)0.032 (6)0.003 (5)
C30.085 (6)0.049 (4)0.089 (7)0.017 (4)0.025 (5)0.011 (4)
C40.048 (4)0.041 (4)0.095 (6)0.007 (3)0.014 (4)0.017 (4)
C50.051 (5)0.042 (4)0.127 (8)0.012 (3)0.025 (5)0.034 (5)
C60.049 (5)0.083 (6)0.101 (7)0.008 (4)0.031 (5)0.034 (5)
C70.047 (4)0.073 (5)0.073 (5)0.010 (4)0.023 (4)0.024 (4)
C80.036 (4)0.053 (4)0.077 (5)0.004 (3)0.006 (3)0.011 (4)
C90.033 (3)0.028 (3)0.063 (4)0.003 (2)0.010 (3)0.007 (3)
C100.048 (4)0.038 (3)0.049 (4)0.001 (3)0.009 (3)0.004 (3)
C110.080 (5)0.041 (3)0.058 (4)0.002 (3)0.035 (4)0.001 (3)
C120.135 (9)0.059 (5)0.070 (6)0.002 (5)0.049 (6)0.014 (4)
C130.15 (1)0.049 (5)0.094 (8)0.000 (6)0.042 (7)0.026 (5)
C140.109 (8)0.048 (5)0.116 (9)0.025 (5)0.044 (7)0.019 (5)
C150.077 (6)0.043 (4)0.080 (5)0.012 (4)0.042 (4)0.005 (4)
C160.038 (3)0.039 (3)0.043 (3)0.003 (2)0.012 (2)0.001 (3)
C170.034 (3)0.059 (4)0.049 (3)0.006 (3)0.006 (3)0.005 (3)
C180.034 (3)0.052 (4)0.073 (5)0.005 (3)0.017 (3)0.002 (3)
C190.059 (5)0.078 (6)0.063 (5)0.016 (4)0.031 (4)0.009 (4)
C200.051 (4)0.111 (7)0.050 (4)0.011 (4)0.022 (3)0.005 (4)
C210.042 (4)0.086 (6)0.054 (4)0.013 (4)0.012 (3)0.006 (4)
C220.042 (3)0.041 (3)0.038 (3)0.001 (3)0.016 (3)0.001 (2)
C230.043 (4)0.055 (4)0.052 (4)0.003 (3)0.002 (3)0.005 (3)
C240.054 (4)0.074 (5)0.053 (4)0.009 (4)0.009 (3)0.017 (4)
C250.066 (5)0.056 (4)0.063 (5)0.023 (4)0.023 (4)0.019 (4)
C260.073 (5)0.034 (3)0.067 (5)0.001 (3)0.018 (4)0.004 (3)
C270.045 (4)0.044 (3)0.050 (4)0.000 (3)0.006 (3)0.002 (3)
C280.089 (7)0.074 (6)0.051 (5)0.011 (5)0.002 (4)0.005 (4)
C290.090 (8)0.101 (8)0.110 (9)0.012 (6)0.042 (7)0.016 (7)
C300.117 (9)0.074 (6)0.077 (6)0.022 (6)0.014 (6)0.001 (5)
Geometric parameters (Å, º) top
Re1—Cl12.353 (2)C13—C141.41 (1)
Re1—Cl22.448 (2)C13—H90.956
Re1—S12.298 (2)C14—C151.37 (1)
Re1—O11.649 (6)C14—H100.950
Re1—O22.117 (4)C15—H110.954
Re1—N12.120 (6)C16—C171.393 (9)
S1—C81.765 (8)C16—C211.37 (1)
P1—O21.506 (4)C17—C181.395 (10)
P1—C101.794 (7)C17—H120.951
P1—C161.796 (7)C18—C191.38 (1)
P1—C221.792 (6)C18—H130.949
O3—C281.22 (1)C19—C201.36 (1)
N1—C11.306 (10)C19—H140.949
N1—C91.391 (8)C20—C211.39 (1)
C1—C21.42 (1)C20—H150.953
C1—H10.950C21—H160.953
C2—C31.32 (1)C22—C231.373 (9)
C2—H20.955C22—C271.387 (9)
C3—C41.41 (1)C23—C241.385 (10)
C3—H30.941C23—H170.951
C4—C51.37 (1)C24—C251.38 (1)
C4—C91.421 (9)C24—H180.948
C5—C61.39 (1)C25—C261.38 (1)
C5—H40.947C25—H190.948
C6—C71.39 (1)C26—C271.380 (9)
C6—H50.951C26—H200.949
C7—C81.36 (1)C27—H210.953
C7—H60.948C28—C291.45 (1)
C8—C91.44 (1)C28—C301.45 (1)
C10—C111.377 (9)C29—H220.969
C10—C151.388 (9)C29—H230.954
C11—C121.39 (1)C29—H240.964
C11—H70.951C30—H250.965
C12—C131.36 (1)C30—H260.970
C12—H80.948C30—H270.967
Cl2···C2i3.511 (9)O3···C23iv3.50 (1)
Cl2···C3i3.530 (8)O3···C5v3.56 (1)
O1···C19ii3.14 (1)C4···C7iii3.59 (1)
O1···C5iii3.295 (10)C5···C8iii3.59 (1)
O1···C18ii3.312 (10)C6···C25vi3.54 (1)
O1···C6iii3.34 (1)C6···C9iii3.57 (1)
O3···C17iv3.33 (1)
Cl1—Re1—Cl288.46 (9)C13—C12—H8119.5
Cl1—Re1—S191.00 (9)C12—C13—C14121.0 (8)
Cl1—Re1—O199.7 (2)C12—C13—H9119.2
Cl1—Re1—O286.5 (1)C14—C13—H9119.7
Cl1—Re1—N1167.5 (2)C13—C14—C15118.7 (8)
Cl2—Re1—S1166.11 (8)C13—C14—H10119.9
Cl2—Re1—O193.1 (3)C15—C14—H10121.5
Cl2—Re1—O280.3 (1)C10—C15—C14120.2 (7)
Cl2—Re1—N193.3 (2)C10—C15—H11119.9
S1—Re1—O1100.7 (3)C14—C15—H11119.8
S1—Re1—O285.8 (1)P1—C16—C17121.9 (5)
S1—Re1—N184.4 (2)P1—C16—C21117.8 (5)
O1—Re1—O2170.9 (3)C17—C16—C21120.3 (6)
O1—Re1—N192.6 (3)C16—C17—C18118.5 (7)
O2—Re1—N181.7 (2)C16—C17—H12120.8
Re1—S1—C8100.6 (3)C18—C17—H12120.7
O2—P1—C10113.0 (3)C17—C18—C19120.9 (7)
O2—P1—C16107.7 (3)C17—C18—H13119.8
O2—P1—C22111.4 (3)C19—C18—H13119.4
C10—P1—C16109.9 (3)C18—C19—C20119.9 (7)
C10—P1—C22107.4 (3)C18—C19—H14120.5
C16—P1—C22107.2 (3)C20—C19—H14119.6
Re1—O2—P1159.9 (3)C19—C20—C21120.3 (8)
Re1—N1—C1122.2 (5)C19—C20—H15119.9
Re1—N1—C9117.5 (5)C21—C20—H15119.8
C1—N1—C9120.2 (7)C16—C21—C20120.1 (7)
N1—C1—C2120.1 (8)C16—C21—H16120.1
N1—C1—H1119.5C20—C21—H16119.8
C2—C1—H1120.4P1—C22—C23122.3 (5)
C1—C2—C3121.7 (9)P1—C22—C27118.8 (5)
C1—C2—H2118.4C23—C22—C27118.8 (6)
C3—C2—H2119.9C22—C23—C24121.6 (7)
C2—C3—C4120.3 (8)C22—C23—H17119.5
C2—C3—H3118.8C24—C23—H17119.0
C4—C3—H3120.8C23—C24—C25119.1 (7)
C3—C4—C5122.5 (8)C23—C24—H18120.7
C3—C4—C9116.5 (7)C25—C24—H18120.2
C5—C4—C9120.9 (8)C24—C25—C26119.9 (7)
C4—C5—C6117.4 (8)C24—C25—H19119.3
C4—C5—H4121.5C26—C25—H19120.8
C6—C5—H4121.1C25—C26—C27120.2 (7)
C5—C6—C7123.6 (8)C25—C26—H20119.5
C5—C6—H5120.1C27—C26—H20120.3
C7—C6—H5116.3C22—C27—C26120.4 (6)
C6—C7—C8119.7 (8)C22—C27—H21119.7
C6—C7—H6120.7C26—C27—H21119.9
C8—C7—H6119.6O3—C28—C29121 (1)
S1—C8—C7123.1 (7)O3—C28—C30121 (1)
S1—C8—C9117.9 (5)C29—C28—C30116.2 (9)
C7—C8—C9119.0 (7)C28—C29—H22111.8
N1—C9—C4121.1 (7)C28—C29—H23111.7
N1—C9—C8119.5 (6)C28—C29—H24110.8
C4—C9—C8119.4 (6)H22—C29—H23107.6
P1—C10—C11120.0 (5)H22—C29—H24106.7
P1—C10—C15119.4 (5)H23—C29—H24108.0
C11—C10—C15120.3 (6)C28—C30—H25112.0
C10—C11—C12119.6 (7)C28—C30—H26112.8
C10—C11—H7120.3C28—C30—H27111.8
C12—C11—H7120.0H25—C30—H26106.6
C11—C12—C13119.9 (8)H25—C30—H27106.9
C11—C12—H8120.5H26—C30—H27106.4
Re1—S1—C8—C7177.4 (6)N1—C9—C8—C7179.2 (6)
Re1—S1—C8—C90.4 (5)C1—N1—C9—C40 (1)
Re1—O2—P1—C1028.8 (9)C1—N1—C9—C8179.0 (7)
Re1—O2—P1—C16150.3 (8)C1—C2—C3—C40 (1)
Re1—O2—P1—C2292.3 (8)C2—C1—N1—C91 (1)
Re1—N1—C1—C2174.4 (7)C2—C3—C4—C5179.2 (9)
Re1—N1—C9—C4176.2 (5)C2—C3—C4—C92 (1)
Re1—N1—C9—C82.9 (8)C3—C4—C5—C6177.0 (8)
Cl1—Re1—S1—C8169.2 (2)C3—C4—C9—C8177.2 (7)
Cl1—Re1—O2—P1129.1 (8)C4—C5—C6—C70 (1)
Cl1—Re1—N1—C1113.4 (9)C4—C9—C8—C70.1 (10)
Cl1—Re1—N1—C970 (1)C5—C4—C9—C80 (1)
Cl2—Re1—S1—C881.5 (4)C5—C6—C7—C80 (1)
Cl2—Re1—O2—P140.1 (8)C6—C5—C4—C90 (1)
Cl2—Re1—N1—C115.8 (6)C6—C7—C8—C90 (1)
Cl2—Re1—N1—C9168.3 (5)C10—P1—C16—C1758.1 (6)
S1—Re1—O2—P1139.6 (8)C10—P1—C16—C21124.5 (6)
S1—Re1—N1—C1178.0 (6)C10—P1—C22—C2346.6 (7)
S1—Re1—N1—C92.0 (5)C10—P1—C22—C27138.2 (5)
S1—C8—C7—C6176.6 (6)C10—C11—C12—C130 (1)
S1—C8—C9—N12.2 (8)C10—C15—C14—C135 (1)
S1—C8—C9—C4177.0 (5)C11—C10—P1—C16159.8 (6)
P1—O2—Re1—N154.7 (8)C11—C10—P1—C2243.5 (7)
P1—C10—C11—C12174.8 (7)C11—C10—C15—C144 (1)
P1—C10—C15—C14177.8 (8)C11—C12—C13—C140 (1)
P1—C16—C17—C18177.3 (5)C12—C11—C10—C151 (1)
P1—C16—C21—C20177.5 (7)C12—C13—C14—C153 (1)
P1—C22—C23—C24174.6 (6)C15—C10—P1—C1626.9 (7)
P1—C22—C27—C26175.2 (6)C15—C10—P1—C22143.2 (6)
O1—Re1—S1—C890.8 (3)C16—P1—C22—C2371.5 (6)
O1—Re1—N1—C177.5 (7)C16—P1—C22—C27103.8 (6)
O1—Re1—N1—C998.4 (5)C16—C17—C18—C190 (1)
O2—Re1—S1—C882.8 (3)C16—C21—C20—C190 (1)
O2—Re1—N1—C195.5 (6)C17—C16—P1—C2258.3 (6)
O2—Re1—N1—C988.6 (5)C17—C16—C21—C200 (1)
O2—P1—C10—C1179.8 (7)C17—C18—C19—C201 (1)
O2—P1—C10—C1593.5 (6)C18—C17—C16—C210.1 (10)
O2—P1—C16—C17178.3 (5)C18—C19—C20—C211 (1)
O2—P1—C16—C211.0 (6)C21—C16—P1—C22119.0 (6)
O2—P1—C22—C23170.9 (5)C22—C23—C24—C250 (1)
O2—P1—C22—C2713.8 (6)C22—C27—C26—C250 (1)
N1—Re1—S1—C80.8 (3)C23—C22—C27—C260 (1)
N1—C1—C2—C31 (1)C23—C24—C25—C260 (1)
N1—C9—C4—C31 (1)C24—C23—C22—C270 (1)
N1—C9—C4—C5179.1 (7)C24—C25—C26—C271 (1)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Re(C9H6NS)Cl2O(C18H15O)]·C3H6O
Mr769.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.569 (3), 15.152 (7), 17.660 (8)
β (°) 103.90 (3)
V3)3005 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.38
Crystal size (mm)0.63 × 0.53 × 0.40
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.148, 0.174
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
7600, 6887, 4608
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.149, 1.12
No. of reflections6887
No. of parameters352
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 1.86

Computer programs: WinAFC Difftactometer Control Software (Rigaku Corporation, 1999), WinAFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SAPI91 (Fan, 1991), TEXSAN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Re1—Cl12.353 (2)Re1—O11.649 (6)
Re1—Cl22.448 (2)Re1—O22.117 (4)
Re1—S12.298 (2)Re1—N12.120 (6)
Cl1—Re1—Cl288.46 (9)Cl2—Re1—N193.3 (2)
Cl1—Re1—S191.00 (9)S1—Re1—O1100.7 (3)
Cl1—Re1—O199.7 (2)S1—Re1—O285.8 (1)
Cl1—Re1—O286.5 (1)S1—Re1—N184.4 (2)
Cl1—Re1—N1167.5 (2)O1—Re1—O2170.9 (3)
Cl2—Re1—S1166.11 (8)O1—Re1—N192.6 (3)
Cl2—Re1—O193.1 (3)O2—Re1—N181.7 (2)
Cl2—Re1—O280.3 (1)Re1—O2—P1159.9 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds