Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the mol­ecule of the title compound, C26H21N3O5S, a new type of sulfonamide derivative with potential antibacterial activity, the flavone moiety is almost planar. The isoxazole and amino­phenyl rings are also planar and make dihedral angles of 77.0 (2) and 81.4 (1)°, respectively, with the best plane of the flavone ring system. The crystal structure is stabilized by intra- and inter­molecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023759/av1251sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023759/av1251Isup2.hkl
Contains datablock I

CCDC reference: 285801

Comment top

Flavonoids form a class of benzo-γ-pyrone derivatives and include flavones, flavanes, flavonols, anthocyanidines and catechins. They possess a wide spectrum of biological activities, such as anticancer (Zharko et al., 1986), antibacterial (Mori et al., 1987), antifungal (Perry & Foster, 1994), antiviral (Wleklik et al., 1988), spasmolytic (Ertan et al., 1989), hypoglycaemic (Bozdağ-Dündar et al., 2001), antihistaminic (Amella et al., 1985) and antioxidant (Czompa et al., 2000). Furthermore, it is well documented that sulfonamide derivatives have been used in particular against urinary tract infections caused by Escherichia coli (Mutschler et al., 2001). In view of reports indicating that derivatives of flavone exhibit antimicrobial activity (Ayhan-Kilcigil et al., 1999; Ayhan-Kilcigil & Altanlar, 2000; Tunçbilek et al., 1999), we have described the synthesis and antimicrobial evaluation of new sulfonamide derivatives having a flavone ring system (Reference?).

In order to gain more information about the relationship between structural features and biological properties, in the last decade we have also carried out crystallographic studies on several molecules of this family (Kendi et al., 1994, 1995a,b, 1996, 2000; Özbey et al., 1997, 1999; Ayhan-Kilcigil et al., 1998; Tunçbilek et al., 1999). As part of this research, we present here the crystal structure of the title novel sulfonamide derivative, (I). The compound was also tested for antimicrobial activity by the Agar diffusion method against E. coli and the result was compared with that of the corresponding sulphonamide derivative, (2). According to the result of this test, compound (I) shows better activity than the corresponding sulfonamide against E. coli (Ayhan-Kilcigil et al., 2003).

The molecule of the title compound consists of sulfamethoxazole and flavone moieties. The flavone moiety of the molecule is almost planar; the dihedral angle between the best planes of the benzopyran and phenyl rings, which are both planar as expected, is 2.8 (2)°. This value is comparable with those of 5,7-dihydroxy-8-methoxyflavone (2.8°; Jiang et al., 2002), 5,7-dihydroxy-4'-methoxyflavone (3.1°; Cantrell, 1986) and 1,4-dihydro-2,6-dimethyl-4-[4-(4H-4-oxo-1-benzopyran-2-yl)phenyl]-3,5-pyridine dicarboxylate (3.3°; Kendi et al., 1994). However, it is significantly smaller than those in flavone-3'-sulfonamide (8.3°; Kendi et al., 2000), 2-(2-ethoxycarbonyl-1,4-benzodioxan-7-yl)-4H-1-benzopyran-4-one (13.9°; Özbey et al., 1997), 2–6-dimethyl-4-(2-phenyl-4-oxo-4H-1- benzopyran-6-yl-)-1,4-dihydropyridine-3,5-dicarboxylate (10.7°; Özbey et al., 1999) and 2'-methyl-3'-nitroflavone (139.8°; Kendi et al., 1996), due to the steric hindrance caused by the groups attached to the phenyl ring.

The coplanarity of the phenyl ring and the benzopyran plane has been attributed to a short intramolecular hydrogen contact between an H atom of the phenyl and atom O1 of the pyrone (Table 2). Similar intramolecular hydrogen-bond interactions are reported for 2'-methoxyflavone (Wallet et al., 1990), 6-(3-hydroxy-3-methylbut-1-yl)flavone and 6-(3-methylbut-3-en-1-ynyl)flavone (Artali et al., 2003) and 2-(2-Ethoxycarbonyl-1,4-benzodioxan-7-yl)-4H-1-benzopyran-4-one (Özbey et al., 1997).

The atoms around the S atom in the sulfonamide of (I) are arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O4—S1—O5 [119.9 (2)°], but it conforms to the non-tetrahedral nature commonly observed in sulphonamides (Chatterjee et al., 1982; Haridas et al., 1984; Ghosh et al., 1991; Kendi et al., 2000; Takasuka & Nakai, 2001). In this configuration, the sulfonyl atom O4 takes part in short intramolecular hydrogen contacts with atoms C17 and C27, forming a five-membered ring structure.

The isoxazole and aminophenyl rings at N1 and S1, respectively, are essentially planar and form an angle of 40.7 (2)°. In related molecules, the torsion angles ε1 (C—C—S—N) and ε2 (C—S—N—C) defining the conformation of the sulfonamide group are reported to lie in the ranges 70–120 and 60–90°, respectively (Kálmán et al., 1981). In the present structure, the C23—C22—S1—N1 and C22—S1—N1—C17 torsion angles of 81.4 (3) and 64.2 (3)°, respectively, lie within these ranges. The flavone moiety is rotated around the N1—C17 and C17—C6 bonds, giving torsion angles S1—N1—C17—C6 = 158.0 (2)° and N1—C17—C6—C5 = 140.6 (4)°. As far as the interatomic distances and bond angles of the title compound are concerned, those of both the sulfamethoxazole and the flavone moieties agree well with their equivalents in similar structures.

The packing of the molecules and the hydrogen bonding in the structure are shown in Fig. 2. A l l O and N atoms, except N1 and O3, participate in hydrogen bonds and short intramolecular contacts (Table 2). Atom N3 of the arylamino moiety is involved in two intermolecular hydrogen bonds with the sulfonyl atom O5 and flavone atom O2. The isoxazole atom N2 takes part in a relatively weak hydrogen bond with atom C16 of the flavone. The packing is also characterized by an overlap of the benzopyran moieties, related by a centre at (1/2,0,0), at an interplanar distance of less than 3.7 Å.

Experimental top

The synthesis of compound (I) was performed according to the reported method of Ayhan-Kilcigil et al. (2003). A mixture of 6-bromomethylflavone, (1) (157 mg, 0.5 mmol), 4-amino-N-(5-methyl-3-isoxazoyl)benzensulfonamide, (2) (0.5 mmol) and anhydrous potassium carbonate (69 mg, 0.5 mmol) was stirred at 333 K in dimethylformamide (10 ml) until the starting materials were used up. Water was added (Volume?) and the mixture was extracted with CHCl3. The extract was washed with water and purified by column chromatography and then recrystallized from ethanol. The structure was assigned by NMR and mass spectroscopies and elemental analysis results.

Refinement top

The H atoms at N3 were located in a difference Fourier map and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(N3)]. The methyl H atoms were also located by difference Fourier synthesis and refined as a rigid group, with Uiso(H) = 1.5Ueq(C21). All other H atoms were placed in idealized positions and refined using a riding model, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (methylene).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing arrangement for (I). Hydrogen bonds are depicted as dashed lines.
4-amino-N-(5-methylisoxazol-3-yl)-N-[(4-oxo-2-phenyl-4H-1-benzopyran-6- yl)methyl]benzensulfonamide top
Crystal data top
C26H21N3O5SF(000) = 1016
Mr = 487.53Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.824 (2) ÅCell parameters from 20 reflections
b = 23.183 (4) Åθ = 9.2–18.1°
c = 11.305 (3) ŵ = 0.19 mm1
β = 96.185 (2)°T = 295 K
V = 2299.2 (9) Å3Prism, colourless
Z = 40.48 × 0.36 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.080
non–profiled ω scansθmax = 26.3°, θmin = 2.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 1010
Tmin = 0.923, Tmax = 0.962k = 028
4875 measured reflectionsl = 014
4641 independent reflections3 standard reflections every 120 min
2022 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.04sinθ/λ]
where P = 0.33333Fo2 + 0.66667Fc2
wR(F2) = 0.146(Δ/σ)max < 0.001
S = 0.97Δρmax = 0.27 e Å3
4641 reflectionsΔρmin = 0.33 e Å3
322 parameters
Crystal data top
C26H21N3O5SV = 2299.2 (9) Å3
Mr = 487.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.824 (2) ŵ = 0.19 mm1
b = 23.183 (4) ÅT = 295 K
c = 11.305 (3) Å0.48 × 0.36 × 0.21 mm
β = 96.185 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2022 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.923, Tmax = 0.9623 standard reflections every 120 min
4875 measured reflections intensity decay: 3%
4641 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.27 e Å3
4641 reflectionsΔρmin = 0.33 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.8412 (4)0.10803 (16)0.0605 (3)0.0361 (9)
C30.8691 (4)0.05829 (17)0.1143 (3)0.0451 (10)
H30.92210.05930.18110.054*
C40.8199 (4)0.00293 (18)0.0725 (3)0.0426 (10)
C50.6835 (4)0.04236 (16)0.0883 (3)0.0407 (10)
H50.70240.07880.05870.049*
C60.6049 (4)0.03795 (17)0.1851 (3)0.0376 (9)
C70.5753 (4)0.01663 (17)0.2284 (3)0.0466 (11)
H70.51930.02030.29310.056*
C80.6280 (4)0.06499 (17)0.1764 (3)0.0455 (11)
H80.60920.10130.20660.055*
C90.7086 (4)0.05971 (16)0.0797 (3)0.0353 (9)
C100.7365 (4)0.00604 (16)0.0320 (3)0.0369 (9)
C110.8896 (4)0.16626 (16)0.0930 (3)0.0367 (9)
C120.8493 (5)0.21454 (18)0.0317 (4)0.0519 (12)
H120.79080.21030.03140.062*
C130.8948 (5)0.26922 (19)0.0630 (4)0.0584 (13)
H130.86680.30150.02150.07*
C140.9817 (5)0.2752 (2)0.1558 (4)0.0596 (12)
H141.01280.31170.1770.071*
C151.0229 (5)0.2282 (2)0.2173 (4)0.0595 (13)
H151.08130.23280.28040.071*
C160.9780 (5)0.17356 (18)0.1861 (3)0.0475 (11)
H161.00730.14160.22780.057*
C170.5470 (4)0.09079 (17)0.2439 (3)0.0439 (10)
H17A0.44030.09650.2160.053*
H17B0.60290.12440.22150.053*
C180.7170 (4)0.08318 (15)0.4293 (3)0.0346 (9)
C190.7727 (5)0.06153 (17)0.5414 (3)0.0451 (11)
H190.71670.04590.59880.054*
C200.9233 (5)0.06817 (17)0.5478 (4)0.0469 (11)
C211.0550 (5)0.0570 (2)0.6385 (4)0.0690 (14)
H21A1.14060.04430.59980.104*
H21B1.08120.09190.68190.104*
H21C1.02810.02770.69260.104*
C220.5044 (4)0.19781 (16)0.4128 (3)0.0350 (9)
C230.6299 (4)0.22270 (17)0.4791 (3)0.0446 (10)
H230.67440.20470.54770.053*
C240.6880 (5)0.27429 (18)0.4425 (4)0.0471 (11)
H240.77020.29130.4880.056*
C250.6251 (5)0.30105 (17)0.3390 (4)0.0425 (10)
C260.4958 (5)0.27638 (17)0.2757 (3)0.0461 (11)
H260.44890.29490.20850.055*
C270.4378 (4)0.22524 (17)0.3118 (3)0.0424 (10)
H270.35320.20890.26810.051*
N10.5644 (3)0.08534 (12)0.3748 (2)0.0367 (8)
N20.8244 (4)0.10124 (16)0.3699 (3)0.0574 (10)
N30.6905 (5)0.34931 (17)0.2971 (4)0.0590 (12)
H310.753 (5)0.3677 (19)0.343 (4)0.072*
H320.648 (5)0.3635 (19)0.232 (4)0.072*
O10.7609 (3)0.10986 (11)0.0345 (2)0.0438 (7)
O20.8475 (3)0.04320 (12)0.1212 (3)0.0640 (9)
O30.9597 (3)0.09197 (13)0.4456 (3)0.0630 (9)
O40.2989 (3)0.11764 (11)0.3856 (2)0.0503 (7)
O50.4815 (3)0.11605 (11)0.5678 (2)0.0482 (7)
S10.44815 (11)0.12814 (4)0.44347 (9)0.0391 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.039 (2)0.040 (2)0.030 (2)0.0017 (18)0.0054 (18)0.0009 (19)
C30.061 (3)0.046 (3)0.031 (2)0.003 (2)0.015 (2)0.002 (2)
C40.050 (3)0.042 (3)0.035 (2)0.005 (2)0.003 (2)0.007 (2)
C50.051 (2)0.034 (2)0.037 (2)0.000 (2)0.004 (2)0.0019 (19)
C60.037 (2)0.043 (3)0.033 (2)0.0018 (19)0.0038 (19)0.0013 (19)
C70.052 (3)0.051 (3)0.041 (2)0.007 (2)0.022 (2)0.002 (2)
C80.056 (3)0.034 (2)0.049 (3)0.010 (2)0.015 (2)0.001 (2)
C90.035 (2)0.035 (2)0.036 (2)0.0026 (19)0.0064 (19)0.0043 (19)
C100.037 (2)0.039 (3)0.034 (2)0.0025 (19)0.0011 (19)0.003 (2)
C110.039 (2)0.037 (2)0.035 (2)0.0008 (19)0.0048 (18)0.005 (2)
C120.064 (3)0.044 (3)0.051 (3)0.002 (2)0.022 (2)0.001 (2)
C130.068 (3)0.039 (3)0.069 (3)0.001 (2)0.014 (3)0.006 (2)
C140.072 (3)0.049 (3)0.059 (3)0.009 (3)0.009 (3)0.004 (3)
C150.068 (3)0.062 (3)0.051 (3)0.013 (3)0.019 (2)0.003 (3)
C160.057 (3)0.044 (3)0.043 (3)0.002 (2)0.014 (2)0.006 (2)
C170.050 (3)0.048 (3)0.034 (2)0.007 (2)0.004 (2)0.002 (2)
C180.037 (2)0.027 (2)0.041 (2)0.0003 (18)0.012 (2)0.0036 (19)
C190.046 (3)0.047 (3)0.043 (3)0.006 (2)0.010 (2)0.008 (2)
C200.058 (3)0.042 (3)0.040 (3)0.007 (2)0.003 (2)0.002 (2)
C210.064 (3)0.073 (3)0.066 (3)0.021 (3)0.013 (3)0.010 (3)
C220.037 (2)0.033 (2)0.034 (2)0.0015 (18)0.0023 (19)0.0017 (18)
C230.053 (3)0.043 (3)0.037 (2)0.003 (2)0.002 (2)0.003 (2)
C240.048 (3)0.047 (3)0.045 (3)0.005 (2)0.003 (2)0.007 (2)
C250.051 (3)0.032 (2)0.046 (3)0.003 (2)0.009 (2)0.004 (2)
C260.057 (3)0.037 (3)0.043 (3)0.005 (2)0.002 (2)0.006 (2)
C270.048 (3)0.038 (2)0.039 (2)0.005 (2)0.004 (2)0.003 (2)
N10.038 (2)0.0416 (19)0.0308 (18)0.0027 (15)0.0058 (15)0.0010 (16)
N20.042 (2)0.075 (3)0.054 (2)0.0060 (19)0.0008 (19)0.016 (2)
N30.072 (3)0.045 (3)0.059 (3)0.010 (2)0.001 (2)0.008 (2)
O10.0543 (17)0.0363 (17)0.0438 (16)0.0018 (13)0.0184 (14)0.0019 (13)
O20.095 (2)0.0427 (19)0.060 (2)0.0093 (17)0.0343 (18)0.0151 (16)
O30.0405 (18)0.076 (2)0.072 (2)0.0109 (17)0.0038 (16)0.0103 (19)
O40.0307 (15)0.0575 (19)0.0623 (19)0.0052 (14)0.0039 (14)0.0009 (15)
O50.0614 (18)0.0533 (19)0.0325 (16)0.0027 (14)0.0173 (13)0.0048 (13)
S10.0403 (6)0.0371 (6)0.0416 (6)0.0015 (5)0.0117 (5)0.0013 (5)
Geometric parameters (Å, º) top
C2—C31.339 (5)C17—H17A0.97
C2—O11.349 (4)C17—H17B0.97
C2—C111.474 (5)C18—N21.289 (4)
C3—C41.450 (5)C18—C191.402 (5)
C3—H30.93C18—N11.420 (4)
C4—O21.239 (4)C19—C201.332 (5)
C4—C101.460 (5)C19—H190.93
C5—C61.361 (5)C20—O31.351 (4)
C5—C101.395 (5)C20—C211.487 (5)
C5—H50.93C21—H21A0.96
C6—C71.391 (5)C21—H21B0.96
C6—C171.509 (5)C21—H21C0.96
C7—C81.370 (5)C22—C271.381 (5)
C7—H70.93C22—C231.394 (5)
C8—C91.372 (5)C22—S11.736 (4)
C8—H80.93C23—C241.382 (5)
C9—O11.370 (4)C23—H230.93
C9—C101.389 (5)C24—C251.387 (5)
C11—C121.383 (5)C24—H240.93
C11—C161.386 (5)C25—N31.367 (5)
C12—C131.387 (5)C25—C261.402 (5)
C12—H120.93C26—C271.371 (5)
C13—C141.371 (5)C26—H260.93
C13—H130.93C27—H270.93
C14—C151.363 (6)N1—S11.676 (3)
C14—H140.93N2—O31.408 (4)
C15—C161.384 (5)N3—H310.83 (4)
C15—H150.93N3—H320.86 (4)
C16—H160.93O4—S11.427 (3)
C17—N11.476 (4)O5—S11.433 (2)
C3—C2—O1121.8 (4)H17A—C17—H17B108
C3—C2—C11127.1 (3)N2—C18—C19112.4 (4)
O1—C2—C11111.2 (3)N2—C18—N1118.6 (3)
C2—C3—C4122.5 (4)C19—C18—N1129.0 (3)
C2—C3—H3118.7C20—C19—C18105.0 (4)
C4—C3—H3118.7C20—C19—H19127.5
O2—C4—C3122.6 (4)C18—C19—H19127.5
O2—C4—C10122.9 (4)C19—C20—O3109.2 (4)
C3—C4—C10114.5 (4)C19—C20—C21135.9 (4)
C6—C5—C10122.1 (4)O3—C20—C21114.9 (4)
C6—C5—H5119C20—C21—H21A109.5
C10—C5—H5119C20—C21—H21B109.5
C5—C6—C7118.8 (4)H21A—C21—H21B109.5
C5—C6—C17121.3 (4)C20—C21—H21C109.5
C7—C6—C17119.9 (3)H21A—C21—H21C109.5
C8—C7—C6120.5 (4)H21B—C21—H21C109.5
C8—C7—H7119.7C27—C22—C23119.8 (4)
C6—C7—H7119.7C27—C22—S1119.2 (3)
C7—C8—C9119.9 (4)C23—C22—S1120.4 (3)
C7—C8—H8120.1C24—C23—C22119.7 (4)
C9—C8—H8120.1C24—C23—H23120.1
O1—C9—C8116.5 (3)C22—C23—H23120.1
O1—C9—C10122.3 (3)C23—C24—C25120.8 (4)
C8—C9—C10121.2 (4)C23—C24—H24119.6
C9—C10—C5117.5 (3)C25—C24—H24119.6
C9—C10—C4119.0 (3)N3—C25—C24120.9 (4)
C5—C10—C4123.5 (4)N3—C25—C26120.5 (4)
C12—C11—C16118.5 (4)C24—C25—C26118.6 (4)
C12—C11—C2121.3 (3)C27—C26—C25120.7 (4)
C16—C11—C2120.2 (3)C27—C26—H26119.7
C11—C12—C13121.0 (4)C25—C26—H26119.7
C11—C12—H12119.5C26—C27—C22120.3 (4)
C13—C12—H12119.5C26—C27—H27119.8
C14—C13—C12119.2 (4)C22—C27—H27119.8
C14—C13—H13120.4C18—N1—C17115.4 (3)
C12—C13—H13120.4C18—N1—S1114.8 (2)
C15—C14—C13120.8 (4)C17—N1—S1114.2 (2)
C15—C14—H14119.6C18—N2—O3104.9 (3)
C13—C14—H14119.6C25—N3—H31119 (3)
C14—C15—C16120.1 (4)C25—N3—H32117 (3)
C14—C15—H15120H31—N3—H32123 (5)
C16—C15—H15120C2—O1—C9119.8 (3)
C15—C16—C11120.4 (4)C20—O3—N2108.5 (3)
C15—C16—H16119.8O4—S1—O5119.89 (16)
C11—C16—H16119.8O4—S1—N1105.50 (16)
N1—C17—C6111.7 (3)O5—S1—N1105.49 (15)
N1—C17—H17A109.3O4—S1—C22109.70 (17)
C6—C17—H17A109.3O5—S1—C22110.20 (17)
N1—C17—H17B109.3N1—S1—C22104.81 (16)
C6—C17—H17B109.3
O1—C2—C3—C42.1 (6)C18—C19—C20—C21178.0 (5)
C11—C2—C3—C4178.1 (4)C27—C22—C23—C240.8 (5)
C2—C3—C4—O2178.9 (4)S1—C22—C23—C24170.0 (3)
C2—C3—C4—C100.6 (6)C22—C23—C24—C251.5 (6)
C10—C5—C6—C70.7 (6)C23—C24—C25—N3174.2 (4)
C10—C5—C6—C17179.4 (3)C23—C24—C25—C263.6 (6)
C5—C6—C7—C81.7 (6)N3—C25—C26—C27174.3 (4)
C17—C6—C7—C8179.5 (4)C24—C25—C26—C273.5 (6)
C6—C7—C8—C91.0 (6)C25—C26—C27—C221.3 (6)
C7—C8—C9—O1178.4 (3)C23—C22—C27—C260.9 (5)
C7—C8—C9—C100.8 (6)S1—C22—C27—C26170.0 (3)
O1—C9—C10—C5177.3 (3)N2—C18—N1—C1718.5 (5)
C8—C9—C10—C51.9 (5)C19—C18—N1—C17158.9 (4)
O1—C9—C10—C42.2 (5)N2—C18—N1—S1117.6 (3)
C8—C9—C10—C4178.7 (3)C19—C18—N1—S165.1 (5)
C6—C5—C10—C91.1 (5)C6—C17—N1—C1865.7 (4)
C6—C5—C10—C4179.4 (4)C6—C17—N1—S1158.0 (2)
O2—C4—C10—C9179.0 (4)C19—C18—N2—O30.6 (4)
C3—C4—C10—C91.5 (5)N1—C18—N2—O3178.3 (3)
O2—C4—C10—C51.5 (6)C3—C2—O1—C91.5 (5)
C3—C4—C10—C5178.0 (3)C11—C2—O1—C9178.7 (3)
C3—C2—C11—C12178.1 (4)C8—C9—O1—C2179.9 (3)
O1—C2—C11—C121.7 (5)C10—C9—O1—C20.7 (5)
C3—C2—C11—C162.3 (6)C19—C20—O3—N20.3 (4)
O1—C2—C11—C16177.8 (3)C21—C20—O3—N2178.6 (3)
C16—C11—C12—C130.6 (6)C18—N2—O3—C200.2 (4)
C2—C11—C12—C13179.8 (4)C18—N1—S1—O4171.8 (2)
C11—C12—C13—C140.3 (6)C17—N1—S1—O451.6 (3)
C12—C13—C14—C150.2 (7)C18—N1—S1—O544.0 (3)
C13—C14—C15—C160.4 (7)C17—N1—S1—O5179.5 (3)
C14—C15—C16—C110.7 (6)C18—N1—S1—C2272.4 (3)
C12—C11—C16—C150.8 (6)C17—N1—S1—C2264.2 (3)
C2—C11—C16—C15179.7 (4)C27—C22—S1—O423.4 (3)
C5—C6—C17—N1140.6 (4)C23—C22—S1—O4165.8 (3)
C7—C6—C17—N140.7 (5)C27—C22—S1—O5157.4 (3)
N2—C18—C19—C200.7 (5)C23—C22—S1—O531.7 (3)
N1—C18—C19—C20178.2 (4)C27—C22—S1—N189.5 (3)
C18—C19—C20—O30.6 (4)C23—C22—S1—N181.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.342.680 (5)101
C17—H17A···O40.972.452.916 (4)109
C27—H27···O40.932.572.940 (5)104
N3—H32···O5i0.86 (5)2.29 (4)3.120 (5)164 (4)
N3—H31···O2ii0.83 (4)2.25 (4)2.951 (5)142 (4)
C16—H16···N2iii0.932.493.309 (5)148
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC26H21N3O5S
Mr487.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.824 (2), 23.183 (4), 11.305 (3)
β (°) 96.185 (2)
V3)2299.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.48 × 0.36 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.923, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
4875, 4641, 2022
Rint0.080
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 0.97
No. of reflections4641
No. of parameters322
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C2—C31.339 (5)C18—N21.289 (4)
C2—O11.349 (4)C18—N11.420 (4)
C2—C111.474 (5)C19—C201.332 (5)
C4—O21.239 (4)C25—N31.367 (5)
C6—C171.509 (5)N1—S11.676 (3)
C9—O11.370 (4)O4—S11.427 (3)
C17—N11.476 (4)O5—S11.433 (2)
C2—C3—C4122.5 (4)O4—S1—O5119.89 (16)
N1—C17—C6111.7 (3)O5—S1—N1105.49 (15)
C18—N1—C17115.4 (3)O4—S1—C22109.70 (17)
C18—N1—S1114.8 (2)
O1—C2—C11—C16177.8 (3)C6—C17—N1—S1158.0 (2)
C5—C6—C17—N1140.6 (4)C18—N1—S1—C2272.4 (3)
N2—C18—N1—S1117.6 (3)C27—C22—S1—N189.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.342.680 (5)101
C17—H17A···O40.972.452.916 (4)109
C27—H27···O40.932.572.940 (5)104
N3—H32···O5i0.86 (5)2.29 (4)3.120 (5)164 (4)
N3—H31···O2ii0.83 (4)2.25 (4)2.951 (5)142 (4)
C16—H16···N2iii0.932.493.309 (5)148
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+2, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds