Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the crystal structure of the title compound, [Zn(C18H14NO2)2]·C2H6O, the Zn atom displays a highly distorted octa­hedral coordination involving the O and N atoms of two mol­ecules of the Schiff base 1-[N-(2-methoxy­phenyl)imino­methyl]naphthalen-2(1H)-one, which acts as an O,N,O′-tridentate ligand. The ethanol mol­ecule is bound to the methoxy group of one ligand mol­ecule via a hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105018044/av1245sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105018044/av1245Isup2.hkl
Contains datablock I

CCDC reference: 278545

Comment top

Schiff-bases derived from 2-hydroxy-1-naphthaldehyde are interesting ligands with excellent donor abilities. Such derivatives having N, O or other heteroatom donors are good chelating agents (Elerman et al., 1992; Elmali et al., 1993; Bashirpoor et al., 1997; Cindrić et al., 2004; Popović, Roje, Pavlović, Matković-Čalogović & Giester, 2001; Popović, Roje, Pavlović, Matković-Čalogović, Rajić & Giester, 2001; Popović et al., 2004).

In the crystal structure of the title compound, (I), the Zn atom displays a highly distorted octahedral coordination involving four O and two N atoms of two molecules of the Schiff base acting as a tridentate ligand (Fig. 1). Coordination of the ZnII ion by the two methoxy O atoms is weakened, which is reflected in the lengthening of the Zn—O(methoxy) distances [2.4778 (18) and 2.556 (2) Å] in comparison with the Zn—O(oxo) bond lengths [1.9674 (18) and 1.9722 (18) Å]. In a previously reported structure (Shol'nikova et al., 1970), the Zn—O bond distances were also found in a wide range (1.965–2.406 Å). The Zn—N [2.025 (2) and 2.0260 (19) Å] distances in (I) are comparable with the corresponding values reported in the literature (Mukherjee et al., 2000; Rajsekhar et al., 2003).

Delocalization of the π electrons accounts for the O11—C12, O21—C22, N1—C111 and N2—C211 bond lengths [1.285 (3), 1.305 (3), 1.299 (3) and 1.288 (3) Å, respectively] being intermediate between single- and double-bond values (Allen et al., 1987). Bond lengths in the naphthalene moieties are mostly as expected; shortening of the C13—C14 and C23—-C24 bonds [1.353 (4) and 1.342 (4) Å] is consistent with the quinoid effect (Exelby & Grinter, 1965).

The six-membered chelate rings, Zn1/O11/C12/C11/C111/N1 and Zn1/O21/C22/C21/C211/N2, are almost planar. The angles between the planes of the naphthalene rings and the phenyl rings of the N-substituents [40.11 (8) and 53.55 (8)°] indicate non-planarity of the Schiff base ligands.

In addition to van der Waals interactions, the crystal packing in (I) is stabilized by weak intermolecular C—H···O hydrogen bonds. The ethanol solvent molecule is linked to the methoxy group of one ligand molecule by an O—H···O hydrogen bond (Table 2).

Experimental top

For the preparation of the ligand, 2-hydroxy-1-naphthaldehyde (1.72 g, 10 mmol) and o-anisidine (1.23 g, 10 mmol) were dissolved in ethanol (40 ml) and the solution was refluxed for 1 h. The resulting yellow product was filtered off, washed with ethanol and dried in vacuo (yield 2.12 g, 76.5%). Elemental analysis, found (calculated) for C18H15NO2: C 77.86 (77.96), H 5.68 (5.45), N 5.00 (5.05)%. The title compound was prepared by mixing zinc(II) acetate dihydrate (0.25 g, 1.14 mmol), the above ligand (0.63 g, 2.28 mmol) and triethylamine (0.23 g, 2.28 mmol) in ethanol (45 ml). After refluxing for 3 h, the reaction mixture was left to stand at room temperature for about a week. Only a few yellow single crystals of (I) were obtained. After a period of time, the crystals deteriorated into a yellow powder. Elemental analysis, found (calculated) for C36H28N2O4Zn: C 70.28 (69.96), H 5.04 (4.57), N 4.32 (4.53)%. Elemental analysis (CHN) was performed at the Central Analytical Laboratory of the Ruđer Bošković Institute, Zagreb.

Refinement top

All H atoms were positioned geometrically, each riding on their carrier atom, with C—H distances in the range 0.93–0.97 Å and an O—H distance of 0.82 Å, and with Uiso(H) = 1.5 (for methyl and hydroxyl H atoms) or 1.2 (for methylene and aromatic H atoms) times Ueq of the parent atom. [Please check added text.]

Computing details top

Data collection: STADI4 (Stoe & Cie, 1995); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Bis{1-[N-(2-methoxyphenyl)iminomethyl]naphthalen-2(1H)-onato- κ3O,N,O'}zinc(II) ethanol solvate top
Crystal data top
[Zn(C18H14NO2)2]·C2H6OZ = 2
Mr = 664.06F(000) = 692
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2078 (15) ÅCell parameters from 60 reflections
b = 10.9122 (14) Åθ = 10.2–18.0°
c = 16.7214 (10) ŵ = 0.80 mm1
α = 96.550 (16)°T = 295 K
β = 98.113 (8)°Needle, yellow
γ = 115.592 (12)°0.58 × 0.11 × 0.09 mm
V = 1630.8 (4) Å3
Data collection top
Philips PW1100 upgraded by Stoe
diffractometer
5673 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ω scansh = 1414
Absorption correction: ψ scan
X-RED (Stoe & Cie, 1995)
k = 1515
Tmin = 0.90, Tmax = 0.93l = 023
9774 measured reflections5 standard reflections every 120 min
9462 independent reflections intensity decay: 4.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1019P)2 + 0.0196P]
where P = (Fo2 + 2Fc2)/3
9462 reflections(Δ/σ)max < 0.001
419 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn(C18H14NO2)2]·C2H6Oγ = 115.592 (12)°
Mr = 664.06V = 1630.8 (4) Å3
Triclinic, P1Z = 2
a = 10.2078 (15) ÅMo Kα radiation
b = 10.9122 (14) ŵ = 0.80 mm1
c = 16.7214 (10) ÅT = 295 K
α = 96.550 (16)°0.58 × 0.11 × 0.09 mm
β = 98.113 (8)°
Data collection top
Philips PW1100 upgraded by Stoe
diffractometer
5673 reflections with I > 2σ(I)
Absorption correction: ψ scan
X-RED (Stoe & Cie, 1995)
Rint = 0.091
Tmin = 0.90, Tmax = 0.935 standard reflections every 120 min
9774 measured reflections intensity decay: 4.1%
9462 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.03Δρmax = 0.69 e Å3
9462 reflectionsΔρmin = 0.63 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.97035 (3)0.64365 (3)0.723042 (17)0.05448 (12)
O110.9710 (2)0.7663 (2)0.64536 (12)0.0720 (5)
O120.8677 (2)0.49016 (19)0.82038 (11)0.0663 (5)
O211.1768 (2)0.69808 (18)0.77828 (11)0.0627 (4)
O220.7029 (2)0.4771 (2)0.64923 (11)0.0685 (5)
O310.3442 (4)0.9517 (3)0.8860 (2)0.1299 (11)
H310.28550.87880.85450.195*
N10.8834 (2)0.7313 (2)0.79930 (11)0.0516 (4)
N20.9601 (2)0.4742 (2)0.65327 (11)0.0501 (4)
C110.8168 (3)0.8559 (2)0.70050 (16)0.0534 (5)
C120.8943 (3)0.8336 (3)0.63995 (17)0.0613 (6)
C130.8847 (4)0.8902 (4)0.5671 (2)0.0792 (9)
H130.93270.87570.52640.095*
C140.8081 (3)0.9639 (4)0.5556 (2)0.0805 (9)
H140.80911.00230.50870.097*
C150.7267 (3)0.9840 (3)0.61299 (18)0.0643 (7)
C160.6392 (3)1.0558 (3)0.5979 (2)0.0742 (8)
H160.64141.09490.55120.089*
C170.5539 (4)1.0677 (3)0.6500 (2)0.0836 (9)
H170.49531.11180.63840.100*
C180.5546 (4)1.0138 (3)0.7207 (2)0.0807 (9)
H180.49621.02230.75680.097*
C190.6398 (3)0.9479 (3)0.73868 (18)0.0672 (7)
H190.63780.91280.78690.081*
C1100.7307 (3)0.9316 (2)0.68617 (16)0.0568 (6)
C1110.8221 (3)0.8072 (3)0.77553 (15)0.0537 (5)
H1110.77510.83340.81290.064*
C1120.8725 (3)0.6969 (3)0.87846 (14)0.0533 (5)
C1130.8627 (3)0.5682 (3)0.88848 (14)0.0542 (5)
C1140.8481 (3)0.5276 (3)0.96369 (16)0.0638 (6)
H1140.83920.44100.96990.077*
C1150.8465 (3)0.6150 (4)1.02872 (18)0.0785 (9)
H1150.83650.58691.07890.094*
C1160.8596 (4)0.7426 (4)1.02103 (17)0.0802 (9)
H1160.85890.80101.06580.096*
C1170.8739 (3)0.7852 (3)0.94632 (16)0.0666 (7)
H1170.88450.87290.94140.080*
C1180.8186 (4)0.3457 (3)0.8171 (2)0.0725 (7)
H1A0.88470.33250.85810.109*
H1B0.81800.30280.76360.109*
H1C0.72000.30440.82760.109*
C211.1729 (3)0.4766 (3)0.74245 (15)0.0530 (5)
C221.2349 (3)0.6136 (3)0.78679 (15)0.0564 (6)
C231.3735 (3)0.6663 (3)0.84453 (19)0.0702 (7)
H231.41910.75860.87120.084*
C241.4397 (3)0.5866 (3)0.8614 (2)0.0751 (8)
H241.53030.62550.89890.090*
C251.3748 (3)0.4444 (3)0.82358 (18)0.0651 (7)
C261.4392 (4)0.3589 (4)0.8477 (2)0.0842 (9)
H261.52690.39740.88760.101*
C271.3765 (4)0.2238 (5)0.8144 (3)0.0947 (11)
H271.42040.16910.83070.114*
C281.2429 (5)0.1650 (4)0.7543 (3)0.0964 (11)
H281.19920.07140.73050.116*
C291.1774 (4)0.2445 (3)0.7306 (2)0.0782 (8)
H291.08810.20310.69190.094*
C2101.2415 (3)0.3883 (3)0.76334 (17)0.0590 (6)
C2111.0484 (3)0.4218 (3)0.67385 (15)0.0538 (5)
H2111.02930.33910.64050.065*
C2120.8515 (3)0.4114 (2)0.57855 (14)0.0516 (5)
C2130.7158 (3)0.4153 (3)0.57614 (15)0.0556 (5)
C2140.6079 (3)0.3604 (3)0.50485 (18)0.0682 (7)
H2140.51710.36160.50350.082*
C2150.6361 (3)0.3032 (3)0.43491 (17)0.0725 (8)
H2150.56410.26840.38630.087*
C2160.7667 (3)0.2966 (3)0.43559 (16)0.0673 (7)
H2160.78250.25610.38830.081*
C2170.8756 (3)0.3510 (3)0.50751 (15)0.0591 (6)
H2170.96510.34730.50840.071*
C2180.5632 (4)0.4713 (4)0.6555 (2)0.0815 (9)
H2A0.54110.52600.61990.122*
H2B0.56670.50710.71140.122*
H2C0.48740.37690.63960.122*
C310.2657 (5)0.8758 (6)1.0085 (4)0.143 (2)
H31A0.21040.78240.97780.214*
H31B0.21470.89051.04980.214*
H31C0.36290.89081.03450.214*
C320.2797 (6)0.9742 (5)0.9519 (3)0.1190 (15)
H32A0.18190.96470.92990.143*
H32B0.34021.06820.98270.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.06121 (19)0.06208 (19)0.05160 (17)0.03526 (14)0.02026 (12)0.01400 (12)
O110.0831 (12)0.0935 (14)0.0735 (12)0.0568 (12)0.0434 (10)0.0418 (11)
O120.0906 (13)0.0610 (10)0.0550 (10)0.0363 (10)0.0260 (9)0.0197 (8)
O210.0607 (10)0.0575 (10)0.0692 (11)0.0284 (8)0.0115 (8)0.0068 (8)
O220.0603 (10)0.0989 (14)0.0541 (10)0.0421 (10)0.0187 (8)0.0118 (9)
O310.133 (3)0.096 (2)0.148 (3)0.0442 (19)0.034 (2)0.0072 (19)
N10.0592 (11)0.0583 (11)0.0472 (10)0.0322 (9)0.0178 (8)0.0168 (8)
N20.0480 (10)0.0571 (11)0.0461 (10)0.0231 (9)0.0156 (8)0.0106 (8)
C110.0557 (13)0.0498 (12)0.0596 (13)0.0251 (10)0.0171 (10)0.0188 (10)
C120.0606 (14)0.0671 (15)0.0679 (15)0.0307 (12)0.0273 (12)0.0336 (13)
C130.0793 (19)0.101 (2)0.083 (2)0.0474 (18)0.0457 (16)0.0532 (18)
C140.0718 (17)0.094 (2)0.088 (2)0.0363 (16)0.0270 (15)0.0569 (18)
C150.0598 (14)0.0520 (14)0.0774 (17)0.0195 (11)0.0113 (13)0.0281 (12)
C160.0721 (17)0.0578 (15)0.087 (2)0.0245 (14)0.0037 (15)0.0305 (14)
C170.093 (2)0.0668 (18)0.104 (3)0.0521 (18)0.0092 (19)0.0143 (17)
C180.101 (2)0.080 (2)0.082 (2)0.0615 (19)0.0163 (17)0.0095 (16)
C190.0843 (18)0.0646 (16)0.0640 (16)0.0466 (15)0.0122 (13)0.0067 (12)
C1100.0584 (13)0.0434 (12)0.0631 (14)0.0191 (10)0.0076 (11)0.0129 (10)
C1110.0572 (13)0.0568 (13)0.0551 (13)0.0306 (11)0.0185 (10)0.0140 (10)
C1120.0509 (12)0.0729 (15)0.0462 (11)0.0335 (11)0.0178 (9)0.0181 (10)
C1130.0510 (12)0.0687 (15)0.0495 (12)0.0290 (11)0.0169 (10)0.0218 (11)
C1140.0594 (14)0.0842 (18)0.0574 (14)0.0350 (13)0.0199 (11)0.0316 (13)
C1150.0764 (18)0.126 (3)0.0524 (15)0.0559 (19)0.0263 (13)0.0346 (16)
C1160.087 (2)0.124 (3)0.0463 (14)0.062 (2)0.0225 (13)0.0110 (15)
C1170.0749 (16)0.0851 (19)0.0554 (14)0.0496 (15)0.0180 (12)0.0130 (13)
C1180.0800 (19)0.0595 (16)0.0789 (19)0.0288 (14)0.0230 (15)0.0221 (14)
C210.0507 (12)0.0595 (14)0.0574 (13)0.0291 (11)0.0209 (10)0.0147 (11)
C220.0502 (12)0.0626 (14)0.0584 (13)0.0255 (11)0.0192 (10)0.0112 (11)
C230.0504 (13)0.0702 (17)0.0800 (19)0.0221 (13)0.0084 (12)0.0066 (14)
C240.0468 (13)0.091 (2)0.0826 (19)0.0276 (14)0.0115 (13)0.0150 (16)
C250.0526 (13)0.0890 (19)0.0732 (16)0.0416 (14)0.0306 (12)0.0288 (14)
C260.0708 (18)0.117 (3)0.100 (2)0.066 (2)0.0341 (17)0.037 (2)
C270.094 (2)0.117 (3)0.120 (3)0.080 (2)0.040 (2)0.044 (2)
C280.113 (3)0.084 (2)0.124 (3)0.065 (2)0.048 (2)0.029 (2)
C290.0823 (19)0.0753 (19)0.091 (2)0.0474 (17)0.0222 (16)0.0155 (16)
C2100.0568 (13)0.0726 (16)0.0650 (15)0.0390 (12)0.0286 (11)0.0201 (12)
C2110.0541 (12)0.0557 (13)0.0564 (13)0.0262 (11)0.0225 (10)0.0105 (10)
C2120.0507 (12)0.0533 (12)0.0477 (11)0.0176 (10)0.0171 (9)0.0146 (10)
C2130.0573 (13)0.0618 (14)0.0488 (12)0.0246 (11)0.0182 (10)0.0171 (10)
C2140.0565 (14)0.0785 (18)0.0624 (16)0.0241 (13)0.0096 (12)0.0186 (13)
C2150.0730 (18)0.0739 (18)0.0481 (14)0.0164 (14)0.0045 (12)0.0085 (12)
C2160.0711 (17)0.0660 (16)0.0488 (13)0.0150 (13)0.0217 (12)0.0076 (11)
C2170.0626 (14)0.0562 (14)0.0552 (14)0.0198 (11)0.0254 (11)0.0126 (11)
C2180.0686 (17)0.107 (2)0.082 (2)0.0487 (17)0.0283 (15)0.0195 (18)
C310.096 (3)0.167 (5)0.161 (5)0.046 (3)0.025 (3)0.076 (4)
C320.120 (3)0.097 (3)0.151 (4)0.053 (3)0.054 (3)0.019 (3)
Geometric parameters (Å, º) top
Zn1—O111.9674 (18)C19—H190.9300
Zn1—O122.4778 (18)C214—C2151.387 (4)
Zn1—O211.9722 (18)C214—H2140.9300
Zn1—O222.556 (2)C114—C1151.368 (4)
Zn1—N12.0260 (19)C114—H1140.9300
Zn1—N22.025 (2)C116—C1151.364 (5)
O21—C221.305 (3)C116—H1160.9300
N2—C2111.288 (3)C12—C131.438 (4)
N2—C2121.420 (3)C17—C161.349 (5)
C210—C251.412 (4)C17—C181.380 (5)
C210—C291.416 (4)C17—H170.9300
C210—C211.460 (3)C118—H1A0.9600
N1—C1111.299 (3)C118—H1B0.9600
N1—C1121.423 (3)C118—H1C0.9600
O12—C1131.363 (3)C26—C271.338 (5)
O12—C1181.425 (3)C26—H260.9300
O22—C2131.378 (3)C23—C241.342 (4)
O22—C2181.419 (3)C23—H230.9300
O11—C121.285 (3)C16—H160.9300
C21—C221.407 (4)C115—H1150.9300
C21—C2111.437 (4)C218—H2A0.9600
C212—C2171.397 (3)C218—H2B0.9600
C212—C2131.399 (3)C218—H2C0.9600
C217—C2161.387 (4)C27—C281.411 (6)
C217—H2170.9300C27—H270.9300
C213—C2141.374 (4)C29—C281.364 (5)
C112—C1131.396 (4)C29—H290.9300
C112—C1171.397 (4)C24—H240.9300
C211—H2110.9300C14—C131.353 (4)
C22—C231.431 (4)C14—H140.9300
C25—C261.418 (4)C13—H130.9300
C25—C241.420 (4)C18—H180.9300
C111—C111.420 (3)C28—H280.9300
C111—H1110.9300C216—C2151.364 (4)
C15—C1101.411 (4)C216—H2160.9300
C15—C141.412 (4)C215—H2150.9300
C15—C161.435 (4)O31—C321.410 (5)
C113—C1141.387 (3)O31—H310.8200
C117—C1161.387 (4)C32—C311.486 (7)
C117—H1170.9300C32—H32A0.9700
C11—C121.430 (4)C32—H32B0.9700
C11—C1101.459 (3)C31—H31A0.9600
C19—C181.372 (4)C31—H31B0.9600
C19—C1101.414 (4)C31—H31C0.9600
O11—Zn1—O21109.25 (9)C117—C116—H116120.0
O11—Zn1—N2104.67 (8)O11—C12—C11125.2 (2)
O21—Zn1—N290.74 (8)O11—C12—C13117.5 (2)
O11—Zn1—N191.26 (8)C11—C12—C13117.3 (2)
O21—Zn1—N1107.75 (8)C15—C110—C19116.5 (2)
N2—Zn1—N1150.26 (8)C15—C110—C11119.4 (2)
O11—Zn1—O12155.69 (8)C19—C110—C11123.9 (2)
O21—Zn1—O1292.20 (7)C16—C17—C18119.3 (3)
N2—Zn1—O1285.80 (7)C16—C17—H17120.3
N1—Zn1—O1270.78 (7)C18—C17—H17120.3
C22—O21—Zn1125.37 (16)O12—C118—H1A109.5
C211—N2—C212119.0 (2)O12—C118—H1B109.5
C211—N2—Zn1122.62 (17)H1A—C118—H1B109.5
C212—N2—Zn1118.39 (16)O12—C118—H1C109.5
C25—C210—C29116.5 (3)H1A—C118—H1C109.5
C25—C210—C21119.5 (2)H1B—C118—H1C109.5
C29—C210—C21123.9 (3)C27—C26—C25121.4 (3)
C111—N1—C112117.8 (2)C27—C26—H26119.3
C111—N1—Zn1122.20 (16)C25—C26—H26119.3
C112—N1—Zn1119.62 (15)C24—C23—C22122.1 (3)
C113—O12—C118118.9 (2)C24—C23—H23119.0
C113—O12—Zn1108.46 (14)C22—C23—H23119.0
C118—O12—Zn1132.64 (17)C17—C16—C15121.4 (3)
C213—O22—C218118.5 (2)C17—C16—H16119.3
C12—O11—Zn1127.09 (16)C15—C16—H16119.3
C22—C21—C211122.4 (2)C116—C115—C114121.0 (3)
C22—C21—C210119.4 (2)C116—C115—H115119.5
C211—C21—C210118.1 (2)C114—C115—H115119.5
C217—C212—C213119.0 (2)O22—C218—H2A109.5
C217—C212—N2123.3 (2)O22—C218—H2B109.5
C213—C212—N2117.6 (2)H2A—C218—H2B109.5
C216—C217—C212120.3 (3)O22—C218—H2C109.5
C216—C217—H217119.9H2A—C218—H2C109.5
C212—C217—H217119.9H2B—C218—H2C109.5
C214—C213—O22125.0 (2)C26—C27—C28119.3 (3)
C214—C213—C212120.4 (2)C26—C27—H27120.3
O22—C213—C212114.6 (2)C28—C27—H27120.3
C113—C112—C117118.7 (2)C28—C29—C210121.9 (3)
C113—C112—N1117.5 (2)C28—C29—H29119.1
C117—C112—N1123.8 (2)C210—C29—H29119.1
N2—C211—C21127.3 (2)C23—C24—C25121.6 (3)
N2—C211—H211116.3C23—C24—H24119.2
C21—C211—H211116.3C25—C24—H24119.2
O21—C22—C21124.8 (2)C13—C14—C15121.8 (3)
O21—C22—C23116.9 (2)C13—C14—H14119.1
C21—C22—C23118.2 (2)C15—C14—H14119.1
C210—C25—C26120.4 (3)C14—C13—C12122.2 (3)
C210—C25—C24118.8 (2)C14—C13—H13118.9
C26—C25—C24120.8 (3)C12—C13—H13118.9
N1—C111—C11129.1 (2)C19—C18—C17121.2 (3)
N1—C111—H111115.4C19—C18—H18119.4
C11—C111—H111115.4C17—C18—H18119.4
C110—C15—C14119.3 (2)C29—C28—C27120.5 (4)
C110—C15—C16119.5 (3)C29—C28—H28119.7
C14—C15—C16121.2 (3)C27—C28—H28119.7
O12—C113—C114124.8 (2)C215—C216—C217119.3 (3)
O12—C113—C112115.2 (2)C215—C216—H216120.3
C114—C113—C112120.0 (2)C217—C216—H216120.3
C116—C117—C112120.2 (3)C216—C215—C214121.7 (3)
C116—C117—H117119.9C216—C215—H215119.2
C112—C117—H117119.9C214—C215—H215119.2
C111—C11—C12121.8 (2)C32—O31—H31109.5
C111—C11—C110118.3 (2)O31—C32—C31112.5 (4)
C12—C11—C110119.9 (2)O31—C32—H32A109.1
C18—C19—C110122.0 (3)C31—C32—H32A109.1
C18—C19—H19119.0O31—C32—H32B109.1
C110—C19—H19119.0C31—C32—H32B109.1
C213—C214—C215119.3 (3)H32A—C32—H32B107.8
C213—C214—H214120.4C32—C31—H31A109.5
C215—C214—H214120.4C32—C31—H31B109.5
C115—C114—C113120.1 (3)H31A—C31—H31B109.5
C115—C114—H114120.0C32—C31—H31C109.5
C113—C114—H114120.0H31A—C31—H31C109.5
C115—C116—C117120.0 (3)H31B—C31—H31C109.5
C115—C116—H116120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O21i0.821.972.781 (4)169
C23—H23···O31ii0.932.533.263 (6)136
C27—H27···O31iii0.932.483.225 (6)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C18H14NO2)2]·C2H6O
Mr664.06
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.2078 (15), 10.9122 (14), 16.7214 (10)
α, β, γ (°)96.550 (16), 98.113 (8), 115.592 (12)
V3)1630.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.58 × 0.11 × 0.09
Data collection
DiffractometerPhilips PW1100 upgraded by Stoe
diffractometer
Absorption correctionψ scan
X-RED (Stoe & Cie, 1995)
Tmin, Tmax0.90, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
9774, 9462, 5673
Rint0.091
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.165, 1.03
No. of reflections9462
No. of parameters419
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.63

Computer programs: STADI4 (Stoe & Cie, 1995), STADI4, X-RED (Stoe & Cie, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Zn1—O111.9674 (18)N2—C2121.420 (3)
Zn1—O122.4778 (18)N1—C1111.299 (3)
Zn1—O211.9722 (18)N1—C1121.423 (3)
Zn1—O222.556 (2)O12—C1131.363 (3)
Zn1—N12.0260 (19)O22—C2131.378 (3)
Zn1—N22.025 (2)O11—C121.285 (3)
O21—C221.305 (3)C23—C241.342 (4)
N2—C2111.288 (3)C14—C131.353 (4)
O11—Zn1—O21109.25 (9)N2—Zn1—N1150.26 (8)
O11—Zn1—N2104.67 (8)O11—Zn1—O12155.69 (8)
O21—Zn1—N290.74 (8)O21—Zn1—O1292.20 (7)
O11—Zn1—N191.26 (8)N2—Zn1—O1285.80 (7)
O21—Zn1—N1107.75 (8)N1—Zn1—O1270.78 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H31···O21i0.821.972.781 (4)169
C23—H23···O31ii0.932.533.263 (6)136
C27—H27···O31iii0.932.483.225 (6)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds