Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the two isomorphous title compounds, viz. tris­[2,2′-bi(4,5-di­hydro-1,3-oxazole)-κ2N,N′]copper(II) diperchlorate, [Cu(C6H8N2O2)3](ClO4)2, (I), and tris­[2,2′-bi(4,5-di­hydro-1,3-oxazole)-κ2N,N′]­nickel(II) diperchlorate, [Ni(C6H8N2O2)3](ClO4)2, (II), the MII ions each have a distorted octahedral coordination geometry formed via six N atoms from three 2,2′-bioxazoline ligands. For each ligand, the two five-membered rings are nearly coplanar. It is noteworthy that the Jahn–Teller effect is stronger in (I) than in (II). The three-dimensional supramolecular structures of (I) and (II) are formed via weak hydrogen-bonding interactions between O atoms from per­chlorate anions and H atoms from 2,2′-bioxazoline ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010402815X/av1208sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010402815X/av1208Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010402815X/av1208IIsup3.hkl
Contains datablock II

CCDC references: 268087; 268088

Comment top

Recently, studies of transition metal coordination compounds and supramolecules as new hybrid materials based on multifunctional organic ligands have attracted considerable interest, due to their potential use in catalysis, magnetism, electrical conductivity and molecular recognition (Hagrman et al., 1999; Inoue et al., 1996; Zaworotko, 1997). At present, the rational design of new compounds and the modification of their structures is still a challenge. A current synthetic strategy widely used in this area is to select organic building blocks that are attractive for assembling functional compounds and supramolecules. 2,2'-Bithiazoline has been used for assembling coordination compounds showing interesting magnetic properties (Liu et al., 2003). As the analogue of 2,2'-bithiazoline, 2,2'-bisoxazoline is also a good ligand, used for fabricating novel topologies (Patra et al., 2001; Walther et al., 1999; Ozarowski et al., 1988). It may act as a bidentate terminal ligand or as a bridging ligand (Haddleton et al., 1998; Patra et al., 2003). In our laboratory, chiral or achiral bisoxazolines have been used to construct novel coordination compounds. We obtained the two title novel mononuclear transition metal compounds, [Cu(C6H8N2O2)3](ClO4)2, (I), and [Ni(C6H8N2O2)3](ClO4)2, (II). The syntheses and structures of these two compounds are reported here. \sch

Selected geometric parameters for (I) are listed in Table 1. As shown in Fig. 1, the asymmetric unit of (I) consists of two counterions: two perchlorate anions, and a discrete [Cu(C6H8N2O2)3]2+ cation built from one Cu atom and three 2,2'-bisoxazoline molecules. The local coordination geometry around the Cu centre can be described as a distorted octahedron, formed by six N atoms from three 2,2'-bisoxazoline molecules. The Cu atom and the four N atoms (N1, N2, N3 and N6) in the equatorial plane are nearly coplanar, and the Cu—N bond distances are similar. The average Cu—N bond distance for atoms N1, N2, N3 and N6 is 2.018 Å, compared with the value of 2.020 Å in [CuBrL1]n {L1 is 2,2'-bis[(4S)-4-benzyl-2-oxazoline]; Haddleton et al., 1998}, but slightly longer than the value of 1.972 Å in the compound [(Cu2L3)(ClO4)2] {L is 2,2'-bis[(4R)-benzyl-1,3-oxazoline]; Patra et al., 2001}, in which the Cu atom is tri-coordinated. However, the Cu–N bond distances for atoms N4 and N5 in the axial positions are 2.597 (3) and 2.410 (3) Å, respectively, much longer than the other Cu—N distances in (I), which results in a distorted octahedral coordination environment around the CuII centre. It is noted that there is a much more pronounced Jahn-Teller distortion in (I) than in the related [(CuL3)(ClO4)2] [Cu—N bond distances in the range 2.028 (6)–2.364 (6) Å, L is 2,2'-bis[(4R)-benzyl-1,3-oxazoline]; Patra et al., 2003]. This is in agreement with the smaller chelating angles of 73.35 (12) (N3—Cu—N4) and 75.57 (12)° (N5—Cu—N6), compared with 79.97 (13)° for N1—Cu—N2. For three bisoxazoline molecules, the double-bond distances between C and N atoms in 2,2'-bisoxazoline ligands are in the range 1.255 (5)–1.273 (5) Å, which is similar to those reported previously (Walther et al., 1999). The two five-membered rings of each bisoxazoline molecule are approximately coplanar, with the dihedral angles varying from 4.45 (2) to 5.97 (3)°.

The structure of compound (II) is depicted in Fig. 2. Similar to (I), (II) is also an ionic complex. Each Ni atom of the cation in (II) lies approximately on a threefold axis and is coordinated by six N atoms from three 2,2'-bisoxazoline molecules, which form a slightly distorted octahedral geometry. Selected geometric parameters for (II) are listed in Table 3. The Ni—N bond distances, in the range 2.089 (3)–2.127 (3) Å, are comparable with the range of 2.070 (3)–2.085 (5) Å in the related 2,2'-bpy nickel(II) hexafluorophosphate, in which two hexafluorophosphate ions act as counter-ions (2,2'-bpy is 2,2'-bipyridine; Breu et al., 2000), and with similar corresponding Cu—N chelating angles of 77.95 (12) (N1—Ni—N2), 78.53 (12) (N3—Ni—N4) and 78.53 (12)° (N5—Ni—N6). All 2,2'-bisoxazoline molecules in (II) act as bidentate terminal ligands.

There are extensive hydrogen-bonding interactions between the perchlorate anions and the discrete cations in the structures of (I) and (II). The crystal packing of (I) and (II) is stabilized by intermolecular C—H···O(perchlorate) hydrogen bonds, leading to three-dimensional supramolecular structures (Figs. 3 and 4). The hydrogen-bonding geometries in (I) and (II) are listed in Tables 2 and 4, respectively.

Experimental top

All organic solvents and common materials used for synthesis were of reagent grade and used without further purification. 2,2'-Bisoxazoline was prepared according to the literature method of Evans et al. (1998). Compound (I) was synthesized by adding an acetonitrile solution (20 ml) containing copper(II) perchlorate hexahydrate (0.181 g, 0.5 mmol) dropwise with continuous stirring to a dichloromethane solution (10 ml) of 2,2'-bisoxazoline (1.5 mmol, 0.21 g) over a period of 20 min. Slow evaporation of the resulting blue solution at room temperature yielded blue crystals of (I) within 4 d. Compound (II) was prepared in the same way as (I), using nickel(II) perchlorate hexahydrate. Slow evaporation of the resulting green solution at room temperature yielded green crystals of (II) within 7 d. Elemental analysis: compound (I), calculated: C 31.65, H 3.52, N 12.31, Cl 10.40%; found: C 31.45, H 3.54, N 12.36, Cl 10.44%; compound (II), calculated: C 31.86, H 3.54, N 12.39, Cl 10.47%; found: C 31.82, H 3.55, N 12.43, Cl 10.50%.

Refinement top

In compound (I), there is positional disorder of the perchlorate atoms O7 and O8 over two sites, O7 and O7' and O8 and O8'; the site-occupancy factors were assigned as 50% and 50%, respectively. For both compounds, all H atoms were located in difference Fourier maps and were then regenerated in ideal positions and refined using a riding model, with C—H distances of 0.95–0.97 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of (I), viewed along the a axis, with hydrogen bonds shown as dashed lines.
[Figure 4] Fig. 4. The crystal packing of (II), viewed along the a axis, with hydrogen bonds shown as dashed lines.
(I) tris[2,2'-bi(4,5-dihydrooxazole)-k2N,N']copper(II) diperchlorate top
Crystal data top
[Cu(C6H8N2O2)3](ClO4)2F(000) = 1396
Mr = 682.87Dx = 1.687 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 350 reflections
a = 9.3766 (19) Åθ = 1.7–27.5°
b = 17.734 (4) ŵ = 1.09 mm1
c = 16.350 (3) ÅT = 293 K
β = 98.54 (3)°Block, blue
V = 2688.7 (10) Å30.23 × 0.15 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6132 independent reflections
Radiation source: rotating anode2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
oscillation scansθmax = 27.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.732, Tmax = 0.862k = 022
6132 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
6132 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C6H8N2O2)3](ClO4)2V = 2688.7 (10) Å3
Mr = 682.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3766 (19) ŵ = 1.09 mm1
b = 17.734 (4) ÅT = 293 K
c = 16.350 (3) Å0.23 × 0.15 × 0.14 mm
β = 98.54 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6132 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
2689 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.862Rint = 0.067
6132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.83Δρmax = 0.45 e Å3
6132 reflectionsΔρmin = 0.29 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.34984 (5)0.11920 (3)0.24188 (3)0.04296 (16)
O10.0648 (3)0.16522 (19)0.39957 (19)0.0746 (10)
O20.0468 (3)0.21241 (17)0.23332 (19)0.0605 (8)
O30.5435 (3)0.21256 (19)0.05641 (19)0.0636 (9)
O40.6565 (3)0.29840 (18)0.1906 (2)0.0649 (9)
O50.4107 (3)0.12169 (18)0.2177 (2)0.0668 (9)
O60.6396 (3)0.04954 (17)0.31838 (19)0.0607 (9)
N10.2623 (4)0.1275 (2)0.3489 (2)0.0480 (9)
N20.1576 (3)0.1674 (2)0.1977 (2)0.0477 (9)
N30.4229 (3)0.14216 (19)0.13609 (18)0.0408 (8)
N40.5201 (3)0.23477 (19)0.2704 (2)0.0471 (9)
N50.2936 (4)0.01005 (19)0.2046 (2)0.0491 (9)
N60.5239 (3)0.0611 (2)0.29325 (19)0.0444 (9)
C10.1381 (5)0.1558 (2)0.3373 (3)0.0480 (11)
C20.2970 (5)0.1109 (3)0.4374 (2)0.0622 (13)
H2A0.37460.14270.46360.075*
H2B0.32400.05840.44670.075*
C30.1548 (5)0.1285 (3)0.4697 (3)0.0808 (16)
H3A0.10960.08270.48550.097*
H3B0.17120.16200.51700.097*
C40.0787 (4)0.1799 (2)0.2531 (3)0.0461 (11)
C50.0748 (4)0.1926 (3)0.1179 (3)0.0618 (13)
H5A0.04450.15010.08220.074*
H5B0.13080.22700.08930.074*
C60.0539 (5)0.2321 (3)0.1457 (3)0.0665 (14)
H6A0.04730.28630.13890.080*
H6B0.14350.21450.11410.080*
C70.5053 (4)0.1977 (2)0.1299 (3)0.0443 (10)
C80.3910 (4)0.1070 (3)0.0549 (2)0.0602 (13)
H8A0.28780.10420.03670.072*
H8B0.43160.05670.05520.072*
C90.4637 (5)0.1604 (3)0.0001 (3)0.0830 (17)
H9A0.52770.13280.03080.100*
H9B0.39230.18660.03890.100*
C100.5596 (4)0.2452 (2)0.2012 (3)0.0455 (11)
C110.6050 (5)0.2886 (3)0.3261 (3)0.0622 (13)
H11A0.67320.26240.36680.075*
H11B0.54260.31940.35470.075*
C120.6829 (5)0.3365 (3)0.2700 (3)0.0827 (17)
H12A0.64450.38730.26580.099*
H12B0.78540.33880.29050.099*
C130.4040 (5)0.0477 (2)0.2336 (3)0.0496 (11)
C140.1938 (5)0.0632 (3)0.1599 (3)0.0668 (14)
H14A0.17110.04890.10210.080*
H14B0.10500.06550.18360.080*
C150.2727 (5)0.1394 (3)0.1687 (3)0.0665 (14)
H15A0.21990.17590.19680.080*
H15B0.28550.15940.11500.080*
C160.5262 (4)0.0102 (3)0.2842 (2)0.0449 (11)
C170.6641 (5)0.0818 (3)0.3412 (3)0.0633 (13)
H17A0.65150.10980.39060.076*
H17B0.72090.11180.30830.076*
C180.7348 (5)0.0056 (3)0.3631 (3)0.0752 (16)
H18A0.82970.00350.34630.090*
H18B0.74460.00330.42220.090*
Cl10.22425 (15)0.11517 (9)0.42087 (8)0.0770 (4)
O70.2245 (7)0.1710 (3)0.4804 (3)0.174 (2)
O80.1318 (5)0.0601 (3)0.4402 (4)0.182 (3)
O90.1850 (5)0.1498 (3)0.3460 (2)0.1315 (18)
O100.3622 (4)0.0838 (2)0.4265 (2)0.1041 (13)
Cl20.21048 (14)0.02020 (8)0.11150 (8)0.0697 (4)
O110.2340 (5)0.0774 (3)0.0527 (3)0.1433 (18)
O120.1253 (5)0.0420 (2)0.1853 (2)0.1221 (16)
O130.1366 (4)0.0390 (3)0.0782 (3)0.1281 (17)
O140.3418 (4)0.0115 (3)0.1246 (2)0.1238 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0413 (3)0.0455 (3)0.0436 (3)0.0061 (3)0.0112 (2)0.0068 (3)
O10.082 (2)0.084 (3)0.067 (2)0.032 (2)0.0426 (18)0.011 (2)
O20.0498 (18)0.061 (2)0.073 (2)0.0176 (16)0.0159 (15)0.0046 (18)
O30.066 (2)0.078 (2)0.049 (2)0.0056 (18)0.0184 (16)0.0170 (19)
O40.0563 (19)0.052 (2)0.091 (2)0.0177 (17)0.0254 (17)0.0034 (19)
O50.0557 (18)0.046 (2)0.102 (2)0.0009 (18)0.0210 (17)0.005 (2)
O60.0502 (18)0.054 (2)0.077 (2)0.0177 (17)0.0036 (16)0.0147 (18)
N10.056 (2)0.044 (2)0.048 (2)0.0069 (19)0.0169 (16)0.0055 (18)
N20.0428 (19)0.048 (2)0.054 (2)0.0075 (17)0.0113 (17)0.0050 (19)
N30.0386 (18)0.047 (2)0.036 (2)0.0035 (17)0.0044 (14)0.0035 (17)
N40.046 (2)0.040 (2)0.055 (2)0.0031 (17)0.0057 (18)0.0045 (19)
N50.044 (2)0.040 (2)0.064 (2)0.0000 (19)0.0088 (17)0.0064 (19)
N60.048 (2)0.045 (2)0.041 (2)0.0009 (18)0.0078 (16)0.0005 (18)
C10.062 (3)0.036 (3)0.050 (3)0.007 (2)0.018 (2)0.004 (2)
C20.082 (3)0.060 (3)0.047 (3)0.011 (3)0.014 (2)0.000 (3)
C30.100 (4)0.093 (4)0.055 (3)0.034 (4)0.031 (3)0.012 (3)
C40.039 (2)0.036 (2)0.066 (3)0.007 (2)0.016 (2)0.001 (2)
C50.047 (2)0.078 (4)0.061 (3)0.008 (3)0.009 (2)0.011 (3)
C60.055 (3)0.068 (4)0.074 (4)0.017 (3)0.001 (2)0.001 (3)
C70.037 (2)0.047 (3)0.050 (3)0.006 (2)0.011 (2)0.009 (2)
C80.052 (3)0.082 (4)0.046 (3)0.004 (3)0.004 (2)0.004 (3)
C90.089 (4)0.117 (5)0.045 (3)0.003 (4)0.017 (3)0.015 (3)
C100.039 (2)0.038 (3)0.059 (3)0.001 (2)0.008 (2)0.012 (2)
C110.064 (3)0.046 (3)0.075 (3)0.006 (3)0.005 (3)0.004 (3)
C120.077 (4)0.066 (4)0.111 (5)0.025 (3)0.033 (3)0.025 (4)
C130.053 (3)0.037 (3)0.063 (3)0.004 (2)0.022 (2)0.007 (2)
C140.055 (3)0.061 (3)0.086 (4)0.010 (3)0.013 (3)0.001 (3)
C150.068 (3)0.049 (3)0.087 (4)0.009 (3)0.026 (3)0.010 (3)
C160.044 (3)0.048 (3)0.046 (3)0.003 (2)0.016 (2)0.008 (2)
C170.059 (3)0.066 (3)0.059 (3)0.008 (3)0.011 (2)0.001 (3)
C180.061 (3)0.086 (4)0.071 (3)0.018 (3)0.013 (3)0.006 (3)
Cl10.0924 (10)0.0773 (10)0.0661 (9)0.0303 (9)0.0271 (7)0.0259 (8)
O70.299 (7)0.133 (5)0.104 (4)0.074 (5)0.072 (4)0.001 (4)
O80.120 (4)0.133 (5)0.309 (8)0.009 (3)0.082 (4)0.107 (5)
O90.136 (3)0.167 (5)0.092 (3)0.062 (3)0.018 (3)0.051 (3)
O100.070 (2)0.117 (3)0.124 (3)0.026 (2)0.009 (2)0.025 (3)
Cl20.0722 (9)0.0699 (9)0.0668 (9)0.0064 (8)0.0089 (7)0.0050 (8)
O110.180 (5)0.115 (4)0.129 (4)0.013 (4)0.004 (3)0.055 (3)
O120.169 (4)0.107 (4)0.084 (3)0.030 (3)0.000 (3)0.027 (3)
O130.088 (3)0.153 (4)0.135 (4)0.043 (3)0.011 (3)0.051 (3)
O140.080 (3)0.180 (5)0.116 (3)0.002 (3)0.032 (2)0.031 (3)
Geometric parameters (Å, º) top
Cu—N12.045 (3)C5—C61.522 (6)
Cu—N22.028 (3)C5—H5A0.9700
Cu—N31.995 (3)C5—H5B0.9700
Cu—N42.597 (3)C6—H6A0.9700
Cu—N52.410 (4)C6—H6B0.9700
Cu—N62.006 (3)C7—C101.466 (6)
O1—C11.321 (5)C8—C91.534 (6)
O1—C31.470 (5)C8—H8A0.9700
O2—C41.308 (4)C8—H8B0.9700
O2—C61.467 (5)C9—H9A0.9700
O3—C71.330 (4)C9—H9B0.9700
O3—C91.436 (6)C11—C121.515 (6)
O4—C101.339 (4)C11—H11A0.9700
O4—C121.451 (5)C11—H11B0.9700
O5—C131.342 (5)C12—H12A0.9700
O5—C151.452 (5)C12—H12B0.9700
O6—C161.324 (5)C13—C161.469 (6)
O6—C181.448 (5)C14—C151.537 (6)
N1—C11.256 (5)C14—H14A0.9700
N1—C21.465 (5)C14—H14B0.9700
N2—C41.270 (5)C15—H15A0.9700
N2—C51.485 (5)C15—H15B0.9700
N3—C71.265 (5)C17—C181.525 (6)
N3—C81.457 (5)C17—H17A0.9700
N4—C101.255 (5)C17—H17B0.9700
N4—C111.469 (5)C18—H18A0.9700
N5—C131.262 (5)C18—H18B0.9700
N5—C141.448 (5)Cl1—O91.370 (4)
N6—C161.273 (5)Cl1—O81.374 (5)
N6—C171.474 (5)Cl1—O71.389 (5)
C1—C41.470 (6)Cl1—O101.398 (4)
C2—C31.537 (6)Cl2—O111.393 (4)
C2—H2A0.9700Cl2—O121.399 (4)
C2—H2B0.9700Cl2—O141.399 (4)
C3—H3A0.9700Cl2—O131.410 (4)
C3—H3B0.9700
N1—Cu—N279.97 (14)O3—C7—C10119.7 (4)
N1—Cu—N3163.80 (14)N3—C8—C9102.7 (4)
N1—Cu—N495.96 (13)N3—C8—H8A111.2
N1—Cu—N5100.61 (13)C9—C8—H8A111.2
N1—Cu—N694.79 (13)N3—C8—H8B111.2
N2—Cu—N390.40 (13)C9—C8—H8B111.2
N2—Cu—N4102.82 (12)H8A—C8—H8B109.1
N2—Cu—N599.28 (13)O3—C9—C8104.8 (4)
N2—Cu—N6171.97 (14)O3—C9—H9A110.8
N3—Cu—N473.35 (12)C8—C9—H9A110.8
N3—Cu—N593.74 (13)O3—C9—H9B110.8
N3—Cu—N696.04 (13)C8—C9—H9B110.8
N4—Cu—N5154.34 (11)H9A—C9—H9B108.9
N4—Cu—N683.69 (12)N4—C10—O4121.1 (4)
N5—Cu—N675.57 (13)N4—C10—C7121.2 (4)
C1—O1—C3103.9 (3)O4—C10—C7117.7 (4)
C4—O2—C6104.8 (3)N4—C11—C12104.7 (4)
C7—O3—C9105.6 (3)N4—C11—H11A110.8
C10—O4—C12104.0 (3)C12—C11—H11A110.8
C13—O5—C15104.8 (3)N4—C11—H11B110.8
C16—O6—C18104.7 (3)C12—C11—H11B110.8
C1—N1—C2107.1 (3)H11A—C11—H11B108.9
C1—N1—Cu112.4 (3)O4—C12—C11104.3 (4)
C2—N1—Cu140.6 (3)O4—C12—H12A110.9
C4—N2—C5106.9 (3)C11—C12—H12A110.9
C4—N2—Cu113.6 (3)O4—C12—H12B110.9
C5—N2—Cu139.5 (3)C11—C12—H12B110.9
C7—N3—C8107.8 (3)H12A—C12—H12B108.9
C7—N3—Cu121.4 (3)N5—C13—O5120.3 (4)
C8—N3—Cu130.7 (3)N5—C13—C16120.0 (4)
C10—N4—C11105.0 (4)O5—C13—C16119.7 (4)
C10—N4—Cu102.1 (3)N5—C14—C15105.0 (3)
C11—N4—Cu152.3 (3)N5—C14—H14A110.7
C13—N5—C14106.1 (4)C15—C14—H14A110.7
C13—N5—Cu105.8 (3)N5—C14—H14B110.7
C14—N5—Cu147.9 (3)C15—C14—H14B110.7
C16—N6—C17106.3 (4)H14A—C14—H14B108.8
C16—N6—Cu119.2 (3)O5—C15—C14103.8 (3)
C17—N6—Cu134.5 (3)O5—C15—H15A111.0
N1—C1—O1120.8 (4)C14—C15—H15A111.0
N1—C1—C4118.1 (4)O5—C15—H15B111.0
O1—C1—C4121.1 (4)C14—C15—H15B111.0
N1—C2—C3102.8 (3)H15A—C15—H15B109.0
N1—C2—H2A111.2N6—C16—O6120.0 (4)
C3—C2—H2A111.2N6—C16—C13119.3 (4)
N1—C2—H2B111.2O6—C16—C13120.7 (4)
C3—C2—H2B111.2N6—C17—C18103.1 (4)
H2A—C2—H2B109.1N6—C17—H17A111.2
O1—C3—C2104.4 (3)C18—C17—H17A111.1
O1—C3—H3A110.9N6—C17—H17B111.1
C2—C3—H3A110.9C18—C17—H17B111.1
O1—C3—H3B110.9H17A—C17—H17B109.1
C2—C3—H3B110.9O6—C18—C17105.4 (3)
H3A—C3—H3B108.9O6—C18—H18A110.7
N2—C4—O2119.9 (4)C17—C18—H18A110.7
N2—C4—C1115.9 (4)O6—C18—H18B110.7
O2—C4—C1124.2 (4)C17—C18—H18B110.7
N2—C5—C6102.2 (3)H18A—C18—H18B108.8
N2—C5—H5A111.3O9—Cl1—O8115.4 (3)
C6—C5—H5A111.3O9—Cl1—O7106.2 (3)
N2—C5—H5B111.3O8—Cl1—O7106.4 (4)
C6—C5—H5B111.3O9—Cl1—O10111.1 (3)
H5A—C5—H5B109.2O8—Cl1—O10108.1 (3)
O2—C6—C5105.0 (3)O7—Cl1—O10109.4 (3)
O2—C6—H6A110.8O11—Cl2—O12113.9 (3)
C5—C6—H6A110.8O11—Cl2—O14110.2 (3)
O2—C6—H6B110.8O12—Cl2—O14112.5 (3)
C5—C6—H6B110.8O11—Cl2—O13108.2 (3)
H6A—C6—H6B108.8O12—Cl2—O13106.7 (3)
N3—C7—O3118.4 (4)O14—Cl2—O13104.7 (3)
N3—C7—C10121.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O7i0.972.493.346 (3)145
C15—H15A···O90.972.553.134 (6)119
C2—H2B···O100.972.573.516 (6)163
C8—H8A···O130.972.473.215 (5)133
C8—H8B···O14ii0.972.563.338 (4)137
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
(II) tris[2,2'-bi(4,5-dihydrooxazole)-k2N,N']nickel(II) diperchlorate top
Crystal data top
[Ni(C6H8N2O2)3](ClO4)2F(000) = 1392
Mr = 678.04Dx = 1.651 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 345 reflections
a = 9.3911 (19) Åθ = 1.7–27.5°
b = 17.683 (4) ŵ = 0.99 mm1
c = 16.743 (3) ÅT = 293 K
β = 101.14 (3)°Block, green
V = 2728.0 (9) Å30.21 × 0.17 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5940 independent reflections
Radiation source: rolating anode2979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
oscillation scansθmax = 27.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 012
Tmin = 0.804, Tmax = 0.896k = 022
21381 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
5940 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C6H8N2O2)3](ClO4)2V = 2728.0 (9) Å3
Mr = 678.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3911 (19) ŵ = 0.99 mm1
b = 17.683 (4) ÅT = 293 K
c = 16.743 (3) Å0.21 × 0.17 × 0.11 mm
β = 101.14 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5940 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
2979 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.896Rint = 0.061
21381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.93Δρmax = 0.62 e Å3
5940 reflectionsΔρmin = 0.34 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.39912 (5)0.12931 (3)0.24517 (3)0.04193 (14)
N10.3211 (3)0.13468 (17)0.35590 (17)0.0497 (8)
N20.1888 (3)0.17470 (17)0.20645 (19)0.0487 (8)
N30.4455 (3)0.14860 (18)0.12980 (17)0.0494 (8)
N40.5180 (3)0.23227 (17)0.26417 (19)0.0478 (8)
N50.3385 (3)0.01582 (17)0.21778 (18)0.0506 (8)
N60.5924 (3)0.07173 (18)0.29429 (18)0.0487 (8)
O10.1250 (4)0.16979 (19)0.4076 (2)0.0876 (10)
O20.0121 (3)0.21525 (16)0.24855 (19)0.0672 (8)
O30.5574 (3)0.22775 (18)0.05702 (18)0.0772 (9)
O40.6680 (3)0.30441 (16)0.20577 (18)0.0734 (9)
O50.4294 (4)0.10238 (16)0.2196 (2)0.0797 (9)
O60.6930 (3)0.04385 (16)0.31415 (18)0.0738 (9)
O70.2469 (6)0.1671 (3)0.4718 (3)0.1495 (17)
O80.1607 (7)0.0499 (3)0.4468 (4)0.203 (3)
O90.1506 (5)0.1349 (3)0.3428 (2)0.175 (2)
O100.3661 (5)0.0845 (3)0.4022 (3)0.1426 (17)
O110.2292 (5)0.0735 (2)0.0370 (2)0.1295 (15)
O120.1200 (4)0.0515 (2)0.17209 (19)0.1083 (12)
O130.1204 (4)0.0414 (2)0.0752 (2)0.1062 (12)
O140.3384 (3)0.0115 (2)0.1142 (2)0.0938 (10)
C10.1921 (5)0.1620 (2)0.3455 (2)0.0549 (10)
C20.3653 (5)0.1185 (3)0.4434 (2)0.0772 (14)
H2A0.44690.14980.46810.093*
H2B0.39120.06570.45280.093*
C30.2289 (7)0.1383 (3)0.4769 (3)0.112 (2)
H3A0.18930.09350.49790.135*
H3B0.25140.17530.52030.135*
C40.1212 (4)0.1844 (2)0.2635 (3)0.0493 (10)
C50.0900 (4)0.1989 (2)0.1305 (2)0.0658 (12)
H5A0.05960.15610.09510.079*
H5B0.13630.23600.10130.079*
C60.0388 (5)0.2335 (3)0.1614 (3)0.0747 (13)
H6A0.04240.28780.15310.090*
H6B0.12950.21160.13360.090*
C70.5219 (4)0.2066 (2)0.1266 (2)0.0534 (10)
C80.4076 (4)0.1185 (3)0.0471 (2)0.0699 (13)
H8A0.30320.11660.02860.084*
H8B0.44730.06820.04380.084*
C90.4771 (6)0.1751 (3)0.0026 (3)0.0891 (16)
H9A0.54210.14960.03240.107*
H9B0.40340.20160.04110.107*
C100.5699 (4)0.2499 (2)0.2028 (3)0.0529 (10)
C110.5915 (5)0.2824 (2)0.3301 (3)0.0671 (12)
H11A0.65160.25340.37300.081*
H11B0.52140.31120.35320.081*
C120.6844 (6)0.3346 (3)0.2881 (3)0.0979 (17)
H12A0.64970.38640.28710.117*
H12B0.78520.33330.31560.117*
C130.4440 (5)0.0292 (2)0.2395 (2)0.0544 (10)
C140.2159 (5)0.0295 (3)0.1720 (3)0.0773 (14)
H14A0.18850.01220.11620.093*
H14B0.13200.02700.19780.093*
C150.2775 (6)0.1091 (3)0.1758 (3)0.0865 (15)
H15A0.22320.14250.20480.104*
H15B0.27370.12900.12140.104*
C160.5804 (4)0.0008 (2)0.2837 (2)0.0537 (10)
C170.7428 (4)0.0871 (2)0.3380 (2)0.0645 (12)
H17A0.74300.11170.38990.077*
H17B0.79440.11870.30570.077*
C180.8099 (5)0.0087 (3)0.3501 (3)0.0833 (15)
H18A0.89160.00450.32270.100*
H18B0.84310.00190.40750.100*
Cl20.20326 (13)0.01923 (7)0.09911 (7)0.0716 (3)
Cl10.22549 (15)0.10577 (8)0.41391 (8)0.0829 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0385 (2)0.0434 (3)0.0434 (3)0.0009 (2)0.00666 (19)0.0025 (2)
N10.057 (2)0.0462 (18)0.0453 (18)0.0039 (16)0.0089 (15)0.0022 (16)
N20.0425 (17)0.050 (2)0.0522 (19)0.0022 (15)0.0060 (16)0.0095 (16)
N30.0448 (18)0.064 (2)0.0380 (18)0.0047 (16)0.0048 (14)0.0005 (16)
N40.0448 (18)0.0459 (19)0.0511 (19)0.0049 (15)0.0052 (16)0.0027 (16)
N50.0438 (18)0.051 (2)0.058 (2)0.0068 (16)0.0129 (16)0.0007 (17)
N60.0490 (19)0.051 (2)0.0480 (18)0.0066 (15)0.0130 (15)0.0020 (16)
O10.095 (2)0.106 (3)0.071 (2)0.031 (2)0.0390 (19)0.0025 (19)
O20.0499 (17)0.0685 (19)0.086 (2)0.0191 (14)0.0193 (15)0.0055 (17)
O30.080 (2)0.098 (2)0.0570 (18)0.0074 (18)0.0221 (17)0.0180 (19)
O40.072 (2)0.063 (2)0.090 (2)0.0213 (16)0.0253 (18)0.0048 (18)
O50.090 (2)0.0484 (18)0.106 (2)0.0021 (16)0.0325 (19)0.0121 (17)
O60.068 (2)0.0633 (19)0.089 (2)0.0291 (16)0.0107 (18)0.0122 (17)
O70.217 (5)0.133 (4)0.114 (3)0.006 (4)0.070 (3)0.005 (3)
O80.233 (6)0.160 (5)0.213 (6)0.077 (4)0.034 (5)0.067 (4)
O90.178 (5)0.244 (5)0.092 (3)0.096 (4)0.002 (3)0.047 (3)
O100.107 (3)0.161 (4)0.147 (4)0.021 (3)0.008 (3)0.041 (3)
O110.134 (3)0.145 (4)0.103 (3)0.003 (3)0.007 (2)0.058 (3)
O120.131 (3)0.114 (3)0.074 (2)0.026 (2)0.005 (2)0.030 (2)
O130.076 (2)0.118 (3)0.125 (3)0.003 (2)0.020 (2)0.041 (2)
O140.071 (2)0.119 (3)0.095 (2)0.004 (2)0.0246 (19)0.004 (2)
C10.065 (3)0.048 (2)0.056 (3)0.003 (2)0.022 (2)0.005 (2)
C20.100 (4)0.074 (3)0.053 (3)0.011 (3)0.003 (3)0.000 (2)
C30.156 (6)0.133 (5)0.054 (3)0.050 (4)0.036 (3)0.003 (3)
C40.046 (2)0.042 (2)0.063 (3)0.0005 (17)0.016 (2)0.001 (2)
C50.051 (2)0.075 (3)0.068 (3)0.001 (2)0.002 (2)0.018 (2)
C60.056 (3)0.068 (3)0.096 (4)0.014 (2)0.004 (3)0.015 (3)
C70.046 (2)0.065 (3)0.049 (2)0.000 (2)0.0102 (19)0.007 (2)
C80.062 (3)0.097 (4)0.048 (2)0.002 (3)0.005 (2)0.010 (3)
C90.093 (4)0.121 (4)0.052 (3)0.006 (3)0.011 (3)0.006 (3)
C100.040 (2)0.050 (3)0.068 (3)0.0032 (18)0.008 (2)0.006 (2)
C110.065 (3)0.059 (3)0.075 (3)0.005 (2)0.008 (2)0.011 (2)
C120.117 (4)0.084 (4)0.097 (4)0.046 (3)0.033 (3)0.027 (3)
C130.067 (3)0.041 (2)0.060 (3)0.002 (2)0.025 (2)0.004 (2)
C140.073 (3)0.077 (4)0.079 (3)0.027 (3)0.008 (3)0.011 (3)
C150.100 (4)0.063 (3)0.103 (4)0.019 (3)0.038 (3)0.020 (3)
C160.063 (3)0.052 (3)0.052 (2)0.016 (2)0.023 (2)0.010 (2)
C170.041 (2)0.087 (3)0.060 (3)0.005 (2)0.004 (2)0.005 (2)
C180.063 (3)0.104 (4)0.077 (3)0.031 (3)0.003 (3)0.013 (3)
Cl20.0709 (8)0.0790 (8)0.0622 (7)0.0005 (6)0.0066 (6)0.0051 (7)
Cl10.0852 (9)0.0838 (9)0.0748 (8)0.0043 (7)0.0034 (7)0.0258 (7)
Geometric parameters (Å, º) top
Ni—N12.123 (3)O13—Cl21.426 (4)
Ni—N22.114 (3)O14—Cl21.447 (3)
Ni—N32.089 (3)C1—C41.461 (5)
Ni—N42.127 (3)C2—C31.535 (6)
Ni—N52.112 (3)C2—H2A0.9700
Ni—N62.105 (3)C2—H2B0.9700
N1—C11.284 (5)C3—H3A0.9700
N1—C21.471 (5)C3—H3B0.9700
N2—C41.256 (4)C5—C61.532 (5)
N2—C51.484 (4)C5—H5A0.9700
N3—C71.259 (5)C5—H5B0.9700
N3—C81.462 (4)C6—H6A0.9700
N4—C101.258 (5)C6—H6B0.9700
N4—C111.479 (5)C7—C101.482 (5)
N5—C131.267 (5)C8—C91.527 (6)
N5—C141.488 (5)C8—H8A0.9700
N6—C161.269 (4)C8—H8B0.9700
N6—C171.485 (4)C9—H9A0.9700
O1—C11.323 (5)C9—H9B0.9700
O1—C31.474 (5)C11—C121.532 (6)
O2—C41.343 (4)C11—H11A0.9700
O2—C61.468 (5)C11—H11B0.9700
O3—C71.326 (4)C12—H12A0.9700
O3—C91.463 (5)C12—H12B0.9700
O4—C101.328 (4)C13—C161.450 (6)
O4—C121.458 (5)C14—C151.518 (6)
O5—C131.337 (4)C14—H14A0.9700
O5—C151.477 (5)C14—H14B0.9700
O6—C161.339 (4)C15—H15A0.9700
O6—C181.475 (5)C15—H15B0.9700
O7—Cl11.443 (4)C17—C181.521 (5)
O8—Cl11.333 (5)C17—H17A0.9700
O9—Cl11.361 (4)C17—H17B0.9700
O10—Cl11.422 (4)C18—H18A0.9700
O11—Cl21.402 (4)C18—H18B0.9700
O12—Cl21.435 (3)
N1—Ni—N277.95 (12)O3—C7—C10121.7 (4)
N1—Ni—N3165.71 (12)N3—C8—C9103.0 (4)
N1—Ni—N495.22 (12)N3—C8—H8A111.2
N1—Ni—N596.21 (12)C9—C8—H8A111.2
N1—Ni—N695.60 (12)N3—C8—H8B111.2
N2—Ni—N390.22 (12)C9—C8—H8B111.2
N2—Ni—N498.81 (11)H8A—C8—H8B109.1
N2—Ni—N595.60 (12)O3—C9—C8105.3 (3)
N2—Ni—N6170.86 (12)O3—C9—H9A110.7
N3—Ni—N478.53 (12)C8—C9—H9A110.7
N3—Ni—N592.86 (12)O3—C9—H9B110.7
N3—Ni—N697.01 (12)C8—C9—H9B110.7
N4—Ni—N5163.19 (12)H9A—C9—H9B108.8
N4—Ni—N688.14 (12)N4—C10—O4121.6 (4)
N5—Ni—N678.53 (12)N4—C10—C7118.3 (3)
C1—N1—C2106.6 (3)O4—C10—C7120.0 (4)
C1—N1—Ni111.9 (3)N4—C11—C12104.1 (3)
C2—N1—Ni141.4 (3)N4—C11—H11A110.9
C4—N2—C5106.7 (3)C12—C11—H11A110.9
C4—N2—Ni113.5 (2)N4—C11—H11B110.9
C5—N2—Ni139.8 (3)C12—C11—H11B110.9
C7—N3—C8107.0 (3)H11A—C11—H11B109.0
C7—N3—Ni113.3 (3)O4—C12—C11104.3 (3)
C8—N3—Ni139.5 (3)O4—C12—H12A110.9
C10—N4—C11105.2 (3)C11—C12—H12A110.9
C10—N4—Ni111.4 (3)O4—C12—H12B110.9
C11—N4—Ni141.3 (3)C11—C12—H12B110.9
C13—N5—C14107.0 (3)H12A—C12—H12B108.9
C13—N5—Ni111.8 (3)N5—C13—O5120.0 (4)
C14—N5—Ni140.6 (3)N5—C13—C16118.8 (4)
C16—N6—C17107.5 (3)O5—C13—C16121.2 (4)
C16—N6—Ni112.2 (3)N5—C14—C15103.1 (4)
C17—N6—Ni140.4 (3)N5—C14—H14A111.1
C1—O1—C3103.6 (3)C15—C14—H14A111.1
C4—O2—C6104.4 (3)N5—C14—H14B111.1
C7—O3—C9103.6 (3)C15—C14—H14B111.1
C10—O4—C12104.3 (3)H14A—C14—H14B109.1
C13—O5—C15104.1 (3)O5—C15—C14105.6 (3)
C16—O6—C18104.8 (3)O5—C15—H15A110.6
N1—C1—O1120.8 (4)C14—C15—H15A110.6
N1—C1—C4118.5 (4)O5—C15—H15B110.6
O1—C1—C4120.7 (4)C14—C15—H15B110.6
N1—C2—C3103.0 (4)H15A—C15—H15B108.7
N1—C2—H2A111.2N6—C16—O6119.2 (4)
C3—C2—H2A111.2N6—C16—C13118.5 (4)
N1—C2—H2B111.2O6—C16—C13122.3 (4)
C3—C2—H2B111.2N6—C17—C18103.2 (3)
H2A—C2—H2B109.1N6—C17—H17A111.1
O1—C3—C2105.7 (4)C18—C17—H17A111.1
O1—C3—H3A110.6N6—C17—H17B111.1
C2—C3—H3A110.6C18—C17—H17B111.1
O1—C3—H3B110.6H17A—C17—H17B109.1
C2—C3—H3B110.6O6—C18—C17105.3 (3)
H3A—C3—H3B108.7O6—C18—H18A110.7
N2—C4—O2120.3 (4)C17—C18—H18A110.7
N2—C4—C1118.1 (4)O6—C18—H18B110.7
O2—C4—C1121.6 (4)C17—C18—H18B110.7
N2—C5—C6103.3 (3)H18A—C18—H18B108.8
N2—C5—H5A111.1O11—Cl2—O13109.4 (3)
C6—C5—H5A111.1O11—Cl2—O12110.4 (2)
N2—C5—H5B111.1O13—Cl2—O12107.5 (2)
C6—C5—H5B111.1O11—Cl2—O14110.7 (2)
H5A—C5—H5B109.1O13—Cl2—O14108.1 (2)
O2—C6—C5104.7 (3)O12—Cl2—O14110.7 (2)
O2—C6—H6A110.8O8—Cl1—O9116.2 (4)
C5—C6—H6A110.8O8—Cl1—O10111.8 (4)
O2—C6—H6B110.8O9—Cl1—O10108.4 (3)
C5—C6—H6B110.8O8—Cl1—O7107.1 (3)
H6A—C6—H6B108.9O9—Cl1—O7106.5 (3)
N3—C7—O3120.7 (4)O10—Cl1—O7106.2 (3)
N3—C7—C10117.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O7i0.972.483.451 (6)179
C17—H17A···O7ii0.972.503.468 (6)176
C15—H15A···O90.972.543.277 (7)133
C8—H8A···O130.972.573.345 (5)137
C8—H8B···O14iii0.972.553.347 (6)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C6H8N2O2)3](ClO4)2[Ni(C6H8N2O2)3](ClO4)2
Mr682.87678.04
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)9.3766 (19), 17.734 (4), 16.350 (3)9.3911 (19), 17.683 (4), 16.743 (3)
β (°) 98.54 (3) 101.14 (3)
V3)2688.7 (10)2728.0 (9)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.090.99
Crystal size (mm)0.23 × 0.15 × 0.140.21 × 0.17 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Rigaku R-AXIS RAPID
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.732, 0.8620.804, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
6132, 6132, 2689 21381, 5940, 2979
Rint0.0670.061
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 0.83 0.051, 0.104, 0.93
No. of reflections61325940
No. of parameters370370
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.290.62, 0.34

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Cu—N12.045 (3)Cu—N42.597 (3)
Cu—N22.028 (3)Cu—N52.410 (4)
Cu—N31.995 (3)Cu—N62.006 (3)
N1—Cu—N279.97 (14)N2—Cu—N6171.97 (14)
N1—Cu—N3163.80 (14)N3—Cu—N473.35 (12)
N1—Cu—N495.96 (13)N3—Cu—N593.74 (13)
N1—Cu—N5100.61 (13)N3—Cu—N696.04 (13)
N1—Cu—N694.79 (13)N4—Cu—N5154.34 (11)
N2—Cu—N390.40 (13)N4—Cu—N683.69 (12)
N2—Cu—N4102.82 (12)N5—Cu—N675.57 (13)
N2—Cu—N599.28 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O7i0.972.493.346 (3)145
C15—H15A···O90.972.553.134 (6)119
C2—H2B···O100.972.573.516 (6)163
C8—H8A···O130.972.473.215 (5)133
C8—H8B···O14ii0.972.563.338 (4)137
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
Selected geometric parameters (Å, º) for (II) top
Ni—N12.123 (3)Ni—N42.127 (3)
Ni—N22.114 (3)Ni—N52.112 (3)
Ni—N32.089 (3)Ni—N62.105 (3)
N1—Ni—N277.95 (12)N2—Ni—N6170.86 (12)
N1—Ni—N3165.71 (12)N3—Ni—N478.53 (12)
N1—Ni—N495.22 (12)N3—Ni—N592.86 (12)
N1—Ni—N596.21 (12)N3—Ni—N697.01 (12)
N1—Ni—N695.60 (12)N4—Ni—N5163.19 (12)
N2—Ni—N390.22 (12)N4—Ni—N688.14 (12)
N2—Ni—N498.81 (11)N5—Ni—N678.53 (12)
N2—Ni—N595.60 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O7i0.972.483.451 (6)179
C17—H17A···O7ii0.972.503.468 (6)176
C15—H15A···O90.972.543.277 (7)133
C8—H8A···O130.972.573.345 (5)137
C8—H8B···O14iii0.972.553.347 (6)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds