Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C15H13ClN2·H2O, (I), and C19H13NO, (II), form monoclinic crystals. Arranged in a `head-to-tail' manner, the mol­ecules of the amine form (I) lie along the b axis in layers that are linked by a network of hydrogen bonds involving the endocyclic N atom, the H atom at the exocyclic N atom and all the atoms of the solvent water mol­ecule. Molecules of (II), with the phenoxy group nearly perpendicular to the acridine moiety, are arranged in pairs related by a center of symmetry and stabilized via two C—H...N contacts; the latter are linked via a network of further C—H...N contacts and non-specific dispersive interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104025156/av1203sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104025156/av1203Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104025156/av1203IIsup3.hkl
Contains datablock II

CCDC references: 264802; 264803

Comment top

The practically and cognitively interesting 9-aminoacridine molecule has the potential to coexist, in the liquid and gaseous phases, in the amine and imine tautomeric forms (Rak et al., 1997), even though it has been established that only the amine tautomer is present in the crystalline phase (Chaudhuri, 1983). It has recently been found that the electron-withdrawing and -donating substituents at the exocyclic N atom have a greater affinity for, respectively, the imine and amine forms of 9-aminoacridines (Wróblewska et al., 2004). Two examples confirm this rule; molecules of the imine form are present in crystals of 9-(trichloroacetylimino)acridine (Meszko et al., 2002) and 9-(phenylsulfonylimino)acridine (Kuz'mina & Struchkov, 1981), both of which contain strongly electron-attracting substituents at the exocyclic N atom (the former compound crystallizes as a monohydrate). In order to obtain more evidence supporting the expected regularity, further 9-aminoacridine derivatives need to be synthesized and their structures and properties determined. This publication focuses on the refinement of the structure of (I), in which 9-aminoacridine is substituted at the exocyclic N atom with CH2CH2Cl – a substituent that, according to our recent work (Wróblewska et al., 2004), should display an affinity for the imine form of 9-aminoacridine (the logarithm of the equilibrium constant for the amine–imine tautomerization and the mean charge of CH2CH2Cl predicted for the gaseous phase are 1.59 and 0.14, respectively). The other compound investigated here, (II), the phenoxy-substituted acridine, serves as an intermediate in the syntheses of numerous acridine derivatives, among them 9-aminoacridines (Albert, 1966). Their biological relevance is well established, and 9-aminoacridines are capable of interacting specifically with adjacent molecules. The mechanisms of these interactions undoubtedly depend on the form in which the 9-aminoacridines occur (Barbe et al., 1996; Wróblewska et al., 2004). Investigation of these mechanisms? was the reason for undertaking the present work.

Crystals of (I) contain molecules of the amine form (Fig. 1), eight of which occupy the unit cell (Fig. 2). The acridine moiety is nearly planar in the crystalline phase (Table 1), with atoms C9, N10 and N15 arranged almost linearly [N10···C9—N15 = 176.7 (2) °]. The NCH2CH2Cl group is twisted relative to the acridine skeleton, at an angle of 22.8 (1)° (this is the angle between the plane containing atoms N15, C16 and C17 and the mean plane delineated by all the non-H atoms of the acridine nucleus). The value of the N15—C16—C17—Cl18 angle (Table 1) indicates that the conformation of the (NCH2CH2Cl) substituent is of the s-cis type. Molecules of (I) are arranged `head-to-tail' in layers along the b axis. Molecules of (I) and water are linked by a network of hydrogen bonds involving the endocylic N atom, the H atom at the exocyclic N atom and all three water atoms (Fig. 2 and Table 2). These multidirectional hydrogen bonds are the principal factor in stabilizing the lattice and, most probably, in forcing the introduction of (I) into the lattice in the amine tautometric form.

Four molecules of (II) (Fig. 3) occupy the unit cell (Fig.4). The acridine moiety is nearly planar in the crystalline phase (Table 3), with atoms C9, N10 and O15 arranged almost linearly [N10···C9—O15 = 176.0 (2)°]. The values of the C11—C9—O15—C16 and C13—C9—O15—C16 angles (Table 3) and the angle between mean planes delineated by all the non-H atoms of acridine and the phenyl nuclei [85.2 (1)°] testify to the almost perpendicular arrangement of the two fragments. Molecules of (II) are arranged in pairs stabilized by two C17—H17···N10 contacts (Table 4). Adjacent pairs, which form a herring-bone pattern in the crystal [the angle between these pairs – i.e. the mean planes delineated by the respective non-H atoms of the acridine nuclei – is 40.1 (2)°], are linked through a network of C19—H19···N10 contacts (Table 4) and non-specific dispersive interactions.

Experimental top

9-(2-Chloroethylamino)acridine was obtained by heating (1.5 h at 373 K) a mixture of 9-phenoxyacridine and 2-chloroethylamine in phenol (Dupre & Robinson, 1945). The product was purified chromatographically (silica gel 60, toluene/diethylamine, 10/1 v/v). Analysis found: C 65.56, H 5.32, N 10.22%; calculated: C 65.45, H 5.45, N 10.18%. Yellow crystals suitable for X-ray analysis were grown from cyclohexane (m.p. 348–350 K). 9-Phenoxyacridine was synthesized following the literature procedure (Albert, 1966). The product was purified chromatographically (silica gel 60, toluene/methanol, 10/1 v/v) and yellow crystals suitable for X-ray investigation were grown from toluene (m.p. 398–399 K).

Refinement top

All H atoms where found in difference Fourier maps and were refined without constraints [C—H = 0.92 (4)–0.98 (3) Å in (I) and 0.955 (15)–1.016 (15) Å in (II)]. Parameters of C—H···N contacts in (II) were calculated assuming a C—H bond length of 1.08 Å (Steiner, 1997).

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1989) for (I); KM4CCD Software (Kuma Diffraction, 1995–1999) for (II). Cell refinement: KM-4 Software for (I); KM4CCD Software for (II). Data reduction: KM-4 Software for (I); KM4CCD Software for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. The N15—H15···O19 hydrogen bond is represented by a dashed line.
[Figure 2] Fig. 2. The arrangement of the molecules of (I) in the unit cell, viewed along the b axis. H atoms not involved in hydrogen bonds have been omitted. Hydrogen bonds are represented by dashed lines. Symmetry codes are as in Table 2.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The arrangement of the molecules of (II) in the unit cell, viewed along the a axis. H atoms not involved in C—H···N interactions have been omitted. The C—H···N interactions are represented by dashed lines. Symmetry codes are as in Table 4.
(I) 9-(2-chloroethylamino)acridine monohydrate top
Crystal data top
C15H13ClN2·H2OF(000) = 1152
Mr = 274.74Dx = 1.388 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 14.052 (3) Åθ = 5–25°
b = 11.330 (2) ŵ = 2.51 mm1
c = 17.283 (3) ÅT = 293 K
β = 107.20 (3)°Prism, yellow
V = 2628.6 (10) Å30.4 × 0.4 × 0.35 mm
Z = 8
Data collection top
Kuma KM-4
diffractometer
Rint = 0.038
Radiation source: fine-focus sealed tubeθmax = 81.1°, θmin = 5.1°
Graphite monochromatorh = 188
θ/2θ scansk = 1014
5227 measured reflectionsl = 2122
2909 independent reflections3 standard reflections every 200 reflections
1793 reflections with I > 2σ(I) intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0538P)2 + 2.9481P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2909 reflectionsΔρmax = 0.34 e Å3
228 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00079 (10)
Crystal data top
C15H13ClN2·H2OV = 2628.6 (10) Å3
Mr = 274.74Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.052 (3) ŵ = 2.51 mm1
b = 11.330 (2) ÅT = 293 K
c = 17.283 (3) Å0.4 × 0.4 × 0.35 mm
β = 107.20 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.038
5227 measured reflections3 standard reflections every 200 reflections
2909 independent reflections intensity decay: 2.5%
1793 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136All H-atom parameters refined
S = 1.04Δρmax = 0.34 e Å3
2909 reflectionsΔρmin = 0.37 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3630 (2)0.1946 (2)0.43440 (14)0.0478 (6)
H10.348 (2)0.193 (2)0.3781 (18)0.053 (8)*
C20.3817 (2)0.0902 (2)0.47443 (16)0.0540 (7)
H20.381 (2)0.020 (3)0.4454 (19)0.068 (10)*
C30.4086 (2)0.0873 (2)0.55918 (16)0.0510 (7)
H30.422 (2)0.012 (3)0.588 (2)0.070 (10)*
C40.4179 (2)0.1889 (2)0.60156 (14)0.0455 (6)
H40.438 (2)0.189 (2)0.6606 (18)0.050 (7)*
C50.4175 (2)0.6046 (2)0.62351 (15)0.0482 (6)
H50.439 (2)0.591 (3)0.681 (2)0.066 (9)*
C60.4042 (2)0.7146 (2)0.59147 (18)0.0548 (7)
H60.415 (3)0.779 (3)0.625 (2)0.081 (11)*
C70.3730 (2)0.7301 (3)0.50762 (18)0.0544 (7)
H70.358 (3)0.806 (3)0.484 (2)0.088 (12)*
C80.3558 (2)0.6354 (2)0.45724 (15)0.0446 (6)
H80.3310 (19)0.648 (2)0.3994 (16)0.044 (7)*
C90.35264 (17)0.41649 (19)0.43715 (12)0.0343 (5)
N100.41450 (16)0.39637 (18)0.60992 (11)0.0409 (5)
C110.36840 (17)0.3039 (2)0.47552 (12)0.0341 (5)
C120.39901 (17)0.3003 (2)0.56203 (13)0.0361 (5)
C130.36966 (16)0.5183 (2)0.48793 (13)0.0338 (5)
C140.40056 (18)0.5032 (2)0.57327 (13)0.0367 (5)
N150.32497 (17)0.43216 (19)0.35597 (11)0.0422 (5)
H150.333 (2)0.499 (3)0.3391 (18)0.051 (8)*
C160.2696 (2)0.3541 (2)0.29262 (14)0.0465 (6)
H16A0.228 (2)0.304 (2)0.3142 (17)0.051 (8)*
H16B0.311 (3)0.307 (3)0.271 (2)0.071 (10)*
C170.2099 (2)0.4234 (3)0.22029 (15)0.0522 (7)
H17A0.249 (2)0.475 (3)0.1963 (19)0.058 (8)*
H17B0.175 (2)0.372 (3)0.1778 (19)0.062 (9)*
Cl180.12332 (6)0.51965 (8)0.24439 (5)0.0699 (3)
O190.38779 (12)0.63302 (15)0.26947 (9)0.0491 (4)
H19A0.397 (3)0.609 (4)0.217 (2)0.096 (12)*
H19B0.451 (3)0.628 (3)0.301 (2)0.082 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0681 (18)0.0393 (13)0.0302 (11)0.0023 (12)0.0056 (11)0.0024 (10)
C20.078 (2)0.0357 (13)0.0420 (13)0.0035 (13)0.0081 (13)0.0025 (11)
C30.0686 (19)0.0376 (14)0.0427 (13)0.0021 (12)0.0099 (12)0.0074 (11)
C40.0592 (17)0.0444 (14)0.0314 (11)0.0010 (12)0.0112 (11)0.0060 (10)
C50.0595 (17)0.0446 (14)0.0368 (12)0.0021 (12)0.0088 (11)0.0073 (11)
C60.073 (2)0.0388 (14)0.0533 (15)0.0029 (13)0.0197 (14)0.0115 (12)
C70.073 (2)0.0375 (14)0.0551 (16)0.0009 (13)0.0222 (14)0.0014 (12)
C80.0569 (16)0.0380 (13)0.0392 (12)0.0025 (11)0.0148 (11)0.0056 (10)
C90.0340 (12)0.0381 (12)0.0290 (10)0.0015 (9)0.0066 (8)0.0010 (9)
N100.0530 (13)0.0397 (11)0.0270 (8)0.0004 (9)0.0073 (8)0.0000 (8)
C110.0369 (12)0.0353 (11)0.0277 (10)0.0001 (9)0.0059 (8)0.0007 (8)
C120.0399 (13)0.0374 (12)0.0301 (10)0.0003 (10)0.0089 (9)0.0020 (9)
C130.0334 (12)0.0341 (11)0.0331 (10)0.0001 (9)0.0086 (9)0.0007 (9)
C140.0387 (13)0.0391 (13)0.0308 (10)0.0007 (10)0.0079 (9)0.0022 (9)
N150.0548 (13)0.0392 (11)0.0268 (9)0.0072 (9)0.0028 (8)0.0051 (8)
C160.0611 (18)0.0442 (14)0.0289 (11)0.0038 (13)0.0053 (11)0.0001 (10)
C170.0627 (19)0.0578 (17)0.0284 (11)0.0055 (14)0.0019 (11)0.0038 (11)
Cl180.0613 (5)0.0852 (6)0.0608 (4)0.0124 (4)0.0142 (3)0.0270 (4)
O190.0484 (10)0.0600 (10)0.0384 (8)0.0005 (8)0.0122 (7)0.0057 (7)
Geometric parameters (Å, º) top
C9—C111.425 (3)C5—C61.354 (4)
C9—C131.427 (3)C5—C141.417 (3)
C9—N151.352 (3)C5—H50.96 (3)
N10—C121.345 (3)C6—C71.395 (4)
N10—C141.353 (3)C6—H60.92 (4)
N15—H150.84 (3)C7—C81.358 (4)
N15—C161.443 (3)C7—H70.94 (4)
C16—C171.504 (3)C8—C131.420 (3)
C17—Cl181.773 (3)C8—H80.97 (3)
C1—C21.357 (4)C11—C121.429 (3)
C1—C111.418 (3)C13—C141.419 (3)
C1—H10.93 (3)C16—H16A0.97 (3)
C2—C31.401 (4)C16—H16B0.94 (4)
C2—H20.94 (3)C17—H17A0.98 (3)
C3—C41.350 (4)C17—H17B0.95 (3)
C3—H30.98 (3)O19—H19A1.00 (4)
C4—C121.422 (3)O19—H19B0.90 (4)
C4—H40.98 (3)
C9—N15—H15117 (2)C6—C7—H7121 (2)
C9—N15—C16129.2 (2)C7—C8—C13121.3 (2)
C11—C9—C13117.6 (2)C7—C8—H8118.9 (16)
C11—C9—N15123.9 (2)C13—C8—H8119.7 (16)
C12—N10—C14117.4 (2)C1—C11—C9124.78 (19)
C13—C9—N15118.5 (2)C1—C11—C12117.0 (2)
N15—C16—C17110.7 (2)C9—C11—C12118.0 (2)
C16—C17—Cl18112.2 (2)N10—C12—C4116.7 (2)
C2—C1—C11122.2 (2)N10—C12—C11124.4 (2)
C2—C1—H1117.6 (17)C4—C12—C11118.9 (2)
C11—C1—H1120.2 (17)C14—C13—C8117.9 (2)
C1—C2—C3120.3 (2)C14—C13—C9119.0 (2)
C1—C2—H2120 (2)C8—C13—C9123.1 (2)
C3—C2—H2120 (2)N10—C14—C5117.6 (2)
C4—C3—C2120.0 (2)N10—C14—C13123.5 (2)
C4—C3—H3120 (2)C5—C14—C13118.9 (2)
C2—C3—H3120 (2)C16—N15—H15113 (2)
C3—C4—C12121.4 (2)N15—C16—H16A108.7 (17)
C3—C4—H4121.2 (16)C17—C16—H16A112.1 (17)
C12—C4—H4117.4 (16)N15—C16—H16B113 (2)
C6—C5—C14121.2 (2)C17—C16—H16B103 (2)
C6—C5—H5122.3 (19)H16A—C16—H16B109 (3)
C14—C5—H5116.5 (19)C16—C17—H17A115.2 (19)
C5—C6—C7120.2 (3)Cl18—C17—H17A103.7 (18)
C5—C6—H6120 (2)C16—C17—H17B110.9 (19)
C7—C6—H6120 (2)Cl18—C17—H17B108.9 (19)
C8—C7—C6120.5 (3)H17A—C17—H17B105 (3)
C8—C7—H7118 (2)H19A—O19—H19B100 (3)
C9—N15—H15—C16172 (2)C14—N10—C12—C110.4 (3)
C9—N15—C16—C17149.7 (3)C3—C4—C12—N10177.3 (3)
C11—C9—C13—C140.4 (3)C3—C4—C12—C110.7 (4)
C11—C9—N15—H15163 (2)C1—C11—C12—N10175.2 (2)
C11—C9—N15—C1626.9 (4)C9—C11—C12—N100.3 (3)
C12—N10—C14—C130.8 (3)C1—C11—C12—C42.6 (3)
N15—C16—C17—Cl1859.9 (3)C9—C11—C12—C4178.2 (2)
C11—C1—C2—C30.8 (5)C7—C8—C13—C141.0 (4)
C1—C2—C3—C41.3 (5)C7—C8—C13—C9179.9 (3)
C2—C3—C4—C121.3 (5)N15—C9—C13—C14178.8 (2)
C14—C5—C6—C70.2 (5)N15—C9—C13—C82.1 (3)
C5—C6—C7—C80.2 (5)C11—C9—C13—C8179.5 (2)
C6—C7—C8—C130.5 (5)C12—N10—C14—C5179.5 (2)
C2—C1—C11—C9178.0 (3)C6—C5—C14—N10179.3 (3)
C2—C1—C11—C122.7 (4)C6—C5—C14—C130.4 (4)
N15—C9—C11—C13.9 (4)C8—C13—C14—N10178.7 (2)
C13—C9—C11—C1174.5 (2)C9—C13—C14—N100.4 (4)
N15—C9—C11—C12179.1 (2)C8—C13—C14—C50.9 (3)
C13—C9—C11—C120.7 (3)C9—C13—C14—C5179.9 (2)
C14—N10—C12—C4177.5 (2)C13—C9—N15—C16154.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O190.84 (3)2.21 (3)2.996 (3)157 (3)
O19—H19A···N10i1.00 (4)1.93 (4)2.908 (3)166 (3)
O19—H19B···N10ii0.90 (4)2.07 (4)2.957 (3)169 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1.
(II) 9-Phenoxyacridine top
Crystal data top
C19H13NOF(000) = 568
Mr = 271.30Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8411 reflections
a = 9.400 (3) Åθ = 3.7–29.0°
b = 10.301 (3) ŵ = 0.08 mm1
c = 14.955 (4) ÅT = 100 K
β = 106.89 (3)°Prism, yellow
V = 1385.6 (7) Å30.5 × 0.5 × 0.2 mm
Z = 4
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
3308 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 29.0°, θmin = 3.7°
ω scansh = 1212
17261 measured reflectionsk = 1214
3641 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.4293P]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H13NOV = 1385.6 (7) Å3
Mr = 271.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.400 (3) ŵ = 0.08 mm1
b = 10.301 (3) ÅT = 100 K
c = 14.955 (4) Å0.5 × 0.5 × 0.2 mm
β = 106.89 (3)°
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
3308 reflections with I > 2σ(I)
17261 measured reflectionsRint = 0.038
3641 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.07Δρmax = 0.33 e Å3
3641 reflectionsΔρmin = 0.24 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40970 (12)0.32673 (10)0.45547 (7)0.0199 (2)
H10.4607 (16)0.3973 (15)0.4322 (10)0.030 (4)*
C20.25823 (12)0.31650 (11)0.42525 (7)0.0228 (2)
H20.1995 (18)0.3785 (16)0.3778 (11)0.036 (4)*
C30.18362 (11)0.21753 (10)0.46085 (7)0.0220 (2)
H30.0744 (16)0.2134 (14)0.4382 (10)0.027 (3)*
C40.26163 (11)0.12980 (10)0.52465 (7)0.0193 (2)
H40.2114 (16)0.0595 (15)0.5508 (10)0.030 (4)*
C50.71990 (12)0.04360 (10)0.71688 (7)0.0209 (2)
H50.6574 (16)0.1125 (15)0.7363 (10)0.029 (4)*
C60.87133 (12)0.04110 (11)0.75046 (7)0.0244 (2)
H60.9243 (17)0.1088 (15)0.7969 (11)0.032 (4)*
C70.95607 (12)0.05573 (11)0.72090 (8)0.0245 (2)
H71.0661 (18)0.0557 (15)0.7467 (11)0.034 (4)*
C80.88709 (11)0.14837 (10)0.65785 (7)0.0212 (2)
H80.9454 (17)0.2154 (15)0.6364 (10)0.031 (4)*
C90.64990 (11)0.24061 (9)0.55635 (6)0.01609 (19)
N100.49290 (9)0.04515 (8)0.61944 (6)0.01696 (18)
C110.49501 (10)0.23634 (9)0.52209 (6)0.01595 (19)
C120.42091 (10)0.13481 (9)0.55682 (6)0.01575 (19)
C130.72841 (11)0.14904 (9)0.62084 (6)0.01678 (19)
C140.64269 (11)0.05166 (9)0.65066 (6)0.01667 (19)
O150.72711 (8)0.34171 (7)0.53074 (5)0.01975 (17)
C160.76284 (10)0.33091 (9)0.44710 (7)0.01637 (19)
C170.72803 (10)0.22247 (9)0.38962 (7)0.0181 (2)
H170.6705 (16)0.1500 (14)0.4045 (10)0.026 (3)*
C180.77383 (11)0.21988 (11)0.30876 (7)0.0232 (2)
H180.7512 (17)0.1427 (16)0.2698 (11)0.033 (4)*
C190.85183 (12)0.32302 (12)0.28585 (7)0.0259 (2)
H190.8829 (17)0.3227 (15)0.2292 (11)0.033 (4)*
C200.88308 (11)0.43128 (11)0.34377 (8)0.0238 (2)
H200.9370 (17)0.5042 (16)0.3258 (10)0.034 (4)*
C210.83817 (10)0.43659 (10)0.42441 (7)0.0200 (2)
H210.8585 (16)0.5101 (15)0.4651 (10)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0240 (5)0.0169 (4)0.0197 (4)0.0015 (4)0.0078 (4)0.0013 (3)
C20.0234 (5)0.0221 (5)0.0223 (5)0.0052 (4)0.0057 (4)0.0026 (4)
C30.0181 (4)0.0245 (5)0.0232 (5)0.0018 (4)0.0055 (4)0.0019 (4)
C40.0183 (4)0.0194 (4)0.0216 (4)0.0012 (3)0.0081 (4)0.0021 (3)
C50.0254 (5)0.0196 (5)0.0187 (4)0.0026 (4)0.0081 (4)0.0010 (4)
C60.0269 (5)0.0244 (5)0.0199 (5)0.0057 (4)0.0036 (4)0.0007 (4)
C70.0202 (5)0.0264 (5)0.0241 (5)0.0014 (4)0.0018 (4)0.0039 (4)
C80.0186 (5)0.0214 (5)0.0232 (5)0.0024 (4)0.0051 (4)0.0045 (4)
C90.0202 (4)0.0138 (4)0.0161 (4)0.0025 (3)0.0082 (3)0.0029 (3)
N100.0194 (4)0.0166 (4)0.0166 (4)0.0003 (3)0.0079 (3)0.0009 (3)
C110.0194 (4)0.0147 (4)0.0150 (4)0.0002 (3)0.0069 (3)0.0018 (3)
C120.0178 (4)0.0158 (4)0.0150 (4)0.0001 (3)0.0069 (3)0.0024 (3)
C130.0181 (4)0.0166 (4)0.0160 (4)0.0010 (3)0.0056 (3)0.0036 (3)
C140.0205 (4)0.0160 (4)0.0148 (4)0.0004 (3)0.0071 (3)0.0022 (3)
O150.0246 (4)0.0159 (3)0.0208 (3)0.0060 (3)0.0099 (3)0.0029 (3)
C160.0137 (4)0.0166 (4)0.0186 (4)0.0004 (3)0.0045 (3)0.0017 (3)
C170.0170 (4)0.0176 (4)0.0198 (4)0.0016 (3)0.0056 (3)0.0000 (3)
C180.0214 (5)0.0293 (5)0.0190 (5)0.0001 (4)0.0059 (4)0.0018 (4)
C190.0202 (5)0.0379 (6)0.0206 (5)0.0027 (4)0.0077 (4)0.0078 (4)
C200.0156 (4)0.0254 (5)0.0302 (5)0.0010 (4)0.0065 (4)0.0126 (4)
C210.0149 (4)0.0166 (4)0.0270 (5)0.0010 (3)0.0038 (4)0.0033 (4)
Geometric parameters (Å, º) top
C1—C21.3671 (15)C9—C131.3969 (14)
C1—C111.4278 (14)C9—O151.3854 (11)
C1—H10.988 (15)N10—C121.3490 (13)
C2—C31.4252 (15)N10—C141.3502 (13)
C2—H20.994 (16)O15—C161.3907 (12)
C3—C41.3632 (15)C11—C121.4349 (13)
C3—H30.984 (14)C13—C141.4364 (13)
C4—C121.4343 (14)C16—C171.3893 (14)
C4—H41.004 (15)C16—C211.3933 (13)
C5—C61.3652 (16)C17—C181.3967 (14)
C5—C141.4327 (14)C17—H170.984 (14)
C5—H51.016 (15)C18—C191.3892 (16)
C6—C71.4247 (16)C18—H180.973 (16)
C6—H61.008 (16)C19—C201.3901 (17)
C7—C81.3657 (15)C19—H190.974 (16)
C7—H70.993 (16)C20—C211.3897 (15)
C8—C131.4322 (14)C20—H200.986 (16)
C8—H80.991 (16)C21—H210.955 (15)
C9—C111.3966 (14)
C2—C1—C11120.02 (9)C9—C11—C1123.35 (9)
C2—C1—H1120.4 (9)C9—C11—C12117.01 (8)
C11—C1—H1119.6 (9)C1—C11—C12119.64 (9)
C1—C2—C3120.66 (9)N10—C12—C4118.19 (9)
C1—C2—H2119.7 (9)N10—C12—C11123.50 (9)
C3—C2—H2119.6 (9)C4—C12—C11118.29 (9)
C4—C3—C2120.84 (9)C9—C13—C8123.51 (9)
C4—C3—H3120.5 (8)C9—C13—C14117.03 (9)
C2—C3—H3118.7 (8)C8—C13—C14119.47 (9)
C3—C4—C12120.52 (9)N10—C14—C5118.22 (9)
C3—C4—H4122.2 (8)N10—C14—C13123.37 (9)
C12—C4—H4117.3 (8)C5—C14—C13118.40 (9)
C6—C5—C14120.40 (10)C17—C16—C21121.50 (9)
C6—C5—H5122.4 (8)O15—C16—C21115.41 (9)
C14—C5—H5117.2 (8)C16—C17—C18118.33 (9)
C5—C6—C7121.08 (10)C16—C17—H17121.0 (8)
C5—C6—H6119.6 (9)C18—C17—H17120.6 (8)
C7—C6—H6119.3 (9)C19—C18—C17121.10 (10)
C8—C7—C6120.49 (10)C19—C18—H18121.1 (9)
C8—C7—H7120.0 (9)C17—C18—H18117.8 (9)
C6—C7—H7119.5 (9)C18—C19—C20119.41 (10)
C7—C8—C13120.16 (10)C18—C19—H19121.7 (9)
C7—C8—H8120.9 (9)C20—C19—H19118.8 (9)
C13—C8—H8118.9 (9)C21—C20—C19120.65 (9)
C9—O15—C16118.11 (7)C21—C20—H20121.1 (9)
C11—C9—C13121.15 (9)C19—C20—H20118.3 (9)
C11—C9—O15119.76 (8)C20—C21—C16118.99 (10)
C12—N10—C14117.93 (8)C20—C21—H21121.9 (9)
C13—C9—O15118.97 (9)C16—C21—H21119.1 (9)
O15—C16—C17123.08 (8)
C11—C1—C2—C31.13 (15)C7—C8—C13—C9179.87 (9)
C1—C2—C3—C41.00 (16)C7—C8—C13—C140.06 (14)
C2—C3—C4—C120.45 (15)C12—N10—C14—C5179.74 (8)
C14—C5—C6—C70.10 (15)C6—C5—C14—N10179.97 (9)
C5—C6—C7—C80.13 (16)C6—C5—C14—C130.02 (14)
C6—C7—C8—C130.05 (15)C9—C13—C14—N100.13 (13)
O15—C9—C11—C14.72 (14)C8—C13—C14—N10179.96 (8)
C13—C9—C11—C1179.35 (9)C9—C13—C14—C5179.92 (8)
O15—C9—C11—C12175.34 (8)C8—C13—C14—C50.09 (13)
C13—C9—C11—C120.59 (13)C9—O15—C16—C171.67 (13)
C2—C1—C11—C9179.91 (9)C11—C9—C13—C140.54 (13)
C2—C1—C11—C120.16 (14)C11—C9—O15—C1684.92 (11)
C14—N10—C12—C4178.91 (8)C12—N10—C14—C130.21 (13)
C14—N10—C12—C110.15 (13)C13—C9—O15—C1699.06 (10)
C3—C4—C12—N10179.49 (9)O15—C16—C17—C18177.76 (9)
C3—C4—C12—C111.69 (14)C9—O15—C16—C21178.92 (8)
C9—C11—C12—N100.24 (13)C21—C16—C17—C181.61 (14)
C1—C11—C12—N10179.70 (9)C16—C17—C18—C190.21 (15)
C9—C11—C12—C4178.52 (8)C17—C18—C19—C200.85 (16)
C1—C11—C12—C41.55 (13)C18—C19—C20—C210.54 (15)
O15—C9—C13—C84.40 (14)C19—C20—C21—C160.82 (15)
C11—C9—C13—C8179.64 (8)C17—C16—C21—C201.92 (14)
O15—C9—C13—C14175.42 (8)O15—C16—C21—C20177.50 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N10i1.082.403.430 (2)159
C19—H19···N10ii1.082.483.422 (2)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC15H13ClN2·H2OC19H13NO
Mr274.74271.30
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)293100
a, b, c (Å)14.052 (3), 11.330 (2), 17.283 (3)9.400 (3), 10.301 (3), 14.955 (4)
β (°) 107.20 (3) 106.89 (3)
V3)2628.6 (10)1385.6 (7)
Z84
Radiation typeCu KαMo Kα
µ (mm1)2.510.08
Crystal size (mm)0.4 × 0.4 × 0.350.5 × 0.5 × 0.2
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM-4 CCD κ-geometry
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5227, 2909, 1793 17261, 3641, 3308
Rint0.0380.038
(sin θ/λ)max1)0.6410.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.04 0.043, 0.115, 1.07
No. of reflections29093641
No. of parameters228242
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.34, 0.370.33, 0.24

Computer programs: KM-4 Software (Kuma Diffraction, 1989), KM4CCD Software (Kuma Diffraction, 1995–1999), KM-4 Software, KM4CCD Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
C9—C111.425 (3)N10—C141.353 (3)
C9—C131.427 (3)N15—C161.443 (3)
C9—N151.352 (3)C16—C171.504 (3)
N10—C121.345 (3)C17—Cl181.773 (3)
C9—N15—H15117 (2)C12—N10—C14117.4 (2)
C9—N15—C16129.2 (2)C13—C9—N15118.5 (2)
C11—C9—C13117.6 (2)N15—C16—C17110.7 (2)
C11—C9—N15123.9 (2)C16—C17—Cl18112.2 (2)
C9—N15—H15—C16172 (2)C11—C9—N15—C1626.9 (4)
C9—N15—C16—C17149.7 (3)C12—N10—C14—C130.8 (3)
C11—C9—C13—C140.4 (3)N15—C16—C17—Cl1859.9 (3)
C11—C9—N15—H15163 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N15—H15···O190.84 (3)2.21 (3)2.996 (3)157 (3)
O19—H19A···N10i1.00 (4)1.93 (4)2.908 (3)166 (3)
O19—H19B···N10ii0.90 (4)2.07 (4)2.957 (3)169 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
C9—C111.3966 (14)N10—C121.3490 (13)
C9—C131.3969 (14)N10—C141.3502 (13)
C9—O151.3854 (11)O15—C161.3907 (12)
C9—O15—C16118.11 (7)C12—N10—C14117.93 (8)
C11—C9—C13121.15 (9)C13—C9—O15118.97 (9)
C11—C9—O15119.76 (8)O15—C16—C17123.08 (8)
C9—O15—C16—C171.67 (13)C12—N10—C14—C130.21 (13)
C11—C9—C13—C140.54 (13)C13—C9—O15—C1699.06 (10)
C11—C9—O15—C1684.92 (11)O15—C16—C17—C18177.76 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N10i1.082.403.430 (2)159
C19—H19···N10ii1.082.483.422 (2)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds