Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The novel μ-oxo-diiron complex [Fe2O(BPHPA)2](ClO4)4 [BPHPA is (6-hydroxy­methyl-2-pyridyl­methyl)­bis(2-pyridyl­methyl)­amine, C19H20N4O], contains a binuclear centrosymmetric [Fe2O(BPHPA)2]4+ cation (the bridging O atom lies on an inversion centre) and four perchlorate anions. Each iron ion is coordinated by four N atoms [Fe—N = 2.117 (5)–2.196 (5) Å] and one O atom [Fe—O = 2.052 (5) Å] from a BPHPA ligand, and by one bridging oxo atom [Fe—O = 1.7896 (9) Å], forming a distorted octahedron. There are hydrogen bonds between the hydroxy group and perchlorate O atoms [O—H...O = 2.654 (7) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104028148/av1198sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104028148/av1198Isup2.hkl
Contains datablock I

CCDC reference: 243531

Comment top

TPA [tris(2-pyridylmethyl)amine] is a versatile tetradentate ligand, which forms stable complexes with a large number of transition metal ions (Gultneh et al., 2003; Jitsukawa et al., 2001; Mandon et al., 2002; Zhang et al., 2003); in particular, (µ-oxo)diiron(III)TPA complexes are well established by mimicing the structure of non-heme diiron proteins, such as monooxygenase (Feig et al., 1994). Besides the µ-oxo atom, these complexes often have one or two additional oxoanionic bridges (carboxylate or phosphte) or are coordinated by other small molecules (e.g. water) (Dong et al., 1995; Kojima et al., 1993; Norman et al., 1990). While only one (µ-oxo)diiron(III)TPA complex coordinated with a pentadentate TPA ligand and one bridging oxo atom has been reported (Lange et al., 1999), it is interesting to design more of these pentadentate TPA ligands in order to obtain (µ-oxo)diiron(III)TPA complexes that may significantly affect the catalytic oxidation reaction. We have obtained a novel dinuclear iron(III)–oxo–TPA complex, [(BPHPA)2Fe2O]4ClO4, (I), with a pentadentate TPA ligand substituted by a hydroxymethyl group in the α position [BPHPA is bis(2-pyridylmethyl)(6-hydroxymethyl-2-pyridylmethyl)-amine]. We report here the synthesis, crystal structure, spectroscopic properties and H2O2 dismutation activity of (I).

The crystal structure of the title complex is composed of a binuclear [(BPHPA)2Fe2O]4+ cation and four perchlorate anions as illustrated in Fig. 1.

This µ-oxo dimer has a linear Fe—O—Fe structure, because the bridging O atom lies on the inversion center. The geometry at each iron cation is distorted octahedral, with trans ligand chelating angles of less than 180° (Table 1). The flexibility of the TPA ligand is illustrated by the fact that there are? five angles smaller than 90° and two angles larger than 90°. The lengths of the Fe—N bonds range from 2.117 (5) to 2.196 (5) Å, the Fe—Oligand distance is 2.052 (5) Å and the Fe—Ooxo distance is 1.7896 (9) Å.

The Fe—Ooxo bond distance in (I) is similar to the corresponding bond distance [1.789 (1) Å] in [Fe2(µ-O)(6-C6H4O-TPA)]2(BPh4)2 (II) (Lange et al., 1999), which is the only published structure of a (µ-oxo)diiron(III)TPA complex coordinated by five atoms of substituted TPA ligand with one oxo bridge, in which the TPA ligand is substituted by one phenol group in the α position of a pyridine ring. However, the Fe—Namine distance [2.196 (5) Å] and the mean Fe—Npy distance [2.128 Å] in (I) are both shorter than the equivalent distances in the structure of (II) (by 0.014 and 0.039 Å, respectively). Hydrogen bonds exist between the OH group of the hydroxymethyl group and an O atom of a perchlorate anion [O1—H···O8 = 2.654 (7) Å] as shown in the packing diagram (Fig. 2).

The IR spectra of the diiron complex and ligand show the typical aromatic and aliphatic bands. The coordination of the pyridine moieties causes a shift of the aromatic C=N bands to higher wavenumbers. Two strong new bands in the spectrum of the diiron complex can be assigned to v(Cl—O) of ClO4 at 1089 and 622 cm−1. The presence of Fe—O—Fe linkage is also confirmed by the appearance of v(Fe—O—Fe) at 833 cm−1.

The intense peak in the UV range is slightly blue-shifted compared with that in the free ligand (from 262 to 252 nm) and is assigned to a ligand-centered ππ* transition. Upon metalation of the ligand, four peaks appear at 323, 358, 487 and 658 nm, which are assign to oxo-to-FeIII LMCT transitions (Norman et al., 1990).

The diiron–oxo complex also shows H2O2 dismutation activity in acetonitrile with a complex (1 mM)/H2O2 ratio of 1:1000 at 298 K. The turnover of the reaction for the first 20 min is 188; however, the complex has no catalytic activity for the oxidation of cyclohexane or cyclohexene. Further study of the reactive mechanism is in process.

Experimental top

To a solution of the BPHPA ligand [prepared as described by He et al. (2000)] (0.006 g, 0.187 mol) in methanol (2 ml) was added a solution of Fe(ClO4)3·9H2O (0.097 g, 0.187 mmol) in methanol (2 mm l). The solution was stirred for 20 min and diethyl ether was added dropwise until a solid precipitated completely, then the precipitate was collected by filtration and dried in vacuo. Yield 0.063 g (58%). The complex was redissolved in CH3CN and left to stand at room temperature for a week, yielding red crystals. ESI-MS: m/z [((BPHPAFe)2O) + ClO4-2H]+ 865, [(BPHPAFe)2O]-2H]2+ 383; IR (KBr cm−1): 3434 (m), 3079 (w), 2927 (w), 1606 (s), 1581 (w), 1484 (m), 1444 (s), 1349 (w), 1311 (w), 1288 (w), 1089 (s) (ClO4), 1025 (s), 902 (w), 881 (w), 833 (s) (Fe—O—Fe), 765 (s), 734 (w), 649 (w), 622 (s) (ClO4), 532 (w) UV λmax nm (εmax M−1 cm−1): 252 (2.8 x 104), 323 (1.0 x 104), 358 (8.5 x 103), 487 (613), 658 (178).

Refinement top

H atoms bonded to C atoms were placed at calculated positions, with C—H distances of 0.93 and 0.97 Å, and treated as riding atoms. The H atom of the hydroxy group was located from difference maps and refined isotropically, with an O—H distance restraint of 0.85 (s.u.?) Å.

Computing details top

Data collection: SMART (Siemens,1996); cell refinement: SMART and SAINT (Siemens,1994); data reduction: SAINT? and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of [(BPPA)2(FeIII)2O]4ClO4, (I), showing 30% probability displacement ellipsoids. Unlabelled ball-and-stick atoms were generated by the symmetry operation (1/2 − x, 3/2 − y, −z).
[Figure 2] Fig. 2. A packing diagram of (I). H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.
µ-Oxo-bis{[(6-hydroxymethyl-2-pyridylmethyl)bis(2-pyridylmethyl)amine -κ5N,N',N'',N''',O]iron(III)} tetrakis(perchlorate) top
Crystal data top
[Fe2O(C19H20N4O)2](ClO4)4F(000) = 2384
Mr = 1166.28Dx = 1.697 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3348 reflections
a = 24.0733 (9) Åθ = 1.8–25.1°
b = 9.9223 (3) ŵ = 0.96 mm1
c = 20.5055 (8) ÅT = 293 K
β = 111.220 (2)°Block, red
V = 4565.9 (3) Å30.34 × 0.28 × 0.16 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
4002 independent reflections
Radiation source: fine-focus sealed tube3000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2825
Tmin = 0.713, Tmax = 0.856k = 1111
7191 measured reflectionsl = 1224
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0536P)2 + 58.9568P]
where P = (Fo2 + 2Fc2)/3
4002 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.66 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
[Fe2O(C19H20N4O)2](ClO4)4V = 4565.9 (3) Å3
Mr = 1166.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.0733 (9) ŵ = 0.96 mm1
b = 9.9223 (3) ÅT = 293 K
c = 20.5055 (8) Å0.34 × 0.28 × 0.16 mm
β = 111.220 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4002 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3000 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.856Rint = 0.045
7191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0751 restraint
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0536P)2 + 58.9568P]
where P = (Fo2 + 2Fc2)/3
4002 reflectionsΔρmax = 0.66 e Å3
326 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.29296 (4)0.79664 (9)0.08823 (5)0.0304 (3)
O10.3169 (2)0.6180 (5)0.1415 (3)0.0451 (12)
O20.25000.75000.00000.0445 (17)
O30.4608 (4)0.3527 (12)0.0495 (4)0.144 (4)
O40.4874 (4)0.4481 (9)0.1561 (5)0.119 (3)
O50.4691 (4)0.2171 (8)0.1403 (5)0.130 (3)
O60.3914 (3)0.3699 (7)0.1005 (5)0.102 (3)
O70.1601 (3)0.3947 (9)0.1270 (4)0.108 (3)
O80.2578 (3)0.3888 (5)0.1329 (3)0.0619 (15)
O90.2360 (3)0.4851 (6)0.2249 (3)0.0765 (19)
O100.2281 (3)0.2526 (6)0.2063 (3)0.0686 (17)
N10.2182 (2)0.8654 (6)0.1099 (3)0.0360 (13)
N20.2995 (2)1.0166 (5)0.0817 (3)0.0330 (12)
N30.3697 (2)0.8181 (6)0.0602 (3)0.0377 (13)
N40.3547 (2)0.8471 (6)0.1896 (3)0.0366 (13)
C10.1858 (3)0.7920 (8)0.1383 (4)0.0444 (17)
H10.19890.70620.15510.053*
C20.1338 (3)0.8394 (9)0.1435 (4)0.057 (2)
H20.11220.78700.16360.068*
C30.1144 (3)0.9659 (10)0.1180 (4)0.062 (2)
H30.07890.99890.11990.074*
C40.1473 (3)1.0440 (8)0.0899 (4)0.051 (2)
H40.13501.13070.07390.062*
C50.1996 (3)0.9903 (7)0.0859 (3)0.0402 (16)
C60.2364 (3)1.0635 (7)0.0511 (4)0.0420 (16)
H6A0.22061.04580.00120.050*
H6B0.23461.15980.05810.050*
C70.3320 (3)1.0455 (7)0.0336 (4)0.0440 (17)
H7A0.35281.13080.04670.053*
H7B0.30341.05440.01370.053*
C80.3762 (3)0.9382 (7)0.0349 (3)0.0394 (16)
C90.4190 (3)0.9582 (8)0.0047 (4)0.0502 (19)
H90.42331.04190.01330.060*
C100.4547 (3)0.8514 (9)0.0020 (5)0.060 (2)
H100.48310.86200.01860.072*
C110.4482 (3)0.7299 (8)0.0297 (4)0.0490 (19)
H110.47270.65790.02890.059*
C120.4057 (3)0.7147 (7)0.0586 (4)0.0428 (16)
H120.40140.63190.07750.051*
C130.3296 (3)1.0761 (7)0.1530 (3)0.0401 (16)
H13A0.35141.15620.14940.048*
H13B0.29971.10270.17200.048*
C140.3716 (3)0.9777 (7)0.2016 (3)0.0344 (14)
C150.4222 (3)1.0126 (8)0.2575 (4)0.0476 (18)
H150.43401.10220.26590.057*
C160.4549 (4)0.9118 (9)0.3004 (4)0.059 (2)
H160.48890.93370.33840.071*
C170.4379 (3)0.7788 (8)0.2880 (4)0.052 (2)
H170.46000.71060.31700.063*
C180.3866 (3)0.7498 (7)0.2306 (3)0.0399 (16)
C190.3628 (3)0.6109 (7)0.2110 (4)0.0505 (19)
H19A0.39450.55060.21080.061*
H19B0.34610.57710.24440.061*
Cl10.45259 (9)0.3448 (2)0.11403 (12)0.0582 (5)
Cl20.21960 (9)0.38082 (18)0.17381 (10)0.0492 (5)
H200.297 (3)0.546 (5)0.133 (4)0.07 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0316 (5)0.0293 (5)0.0298 (5)0.0013 (4)0.0104 (4)0.0016 (4)
O10.051 (3)0.035 (3)0.047 (3)0.005 (2)0.015 (2)0.003 (2)
O20.034 (4)0.058 (4)0.037 (4)0.005 (3)0.008 (3)0.011 (3)
O30.122 (7)0.235 (12)0.093 (6)0.048 (7)0.062 (6)0.026 (7)
O40.092 (5)0.110 (6)0.157 (8)0.039 (5)0.047 (5)0.045 (6)
O50.112 (7)0.067 (5)0.179 (9)0.026 (5)0.015 (6)0.040 (5)
O60.063 (4)0.077 (5)0.185 (8)0.003 (4)0.069 (5)0.010 (5)
O70.064 (4)0.144 (7)0.094 (5)0.021 (5)0.002 (4)0.024 (5)
O80.087 (4)0.051 (3)0.064 (3)0.016 (3)0.046 (3)0.008 (3)
O90.121 (6)0.045 (3)0.080 (4)0.010 (3)0.056 (4)0.015 (3)
O100.101 (5)0.044 (3)0.069 (4)0.000 (3)0.040 (4)0.012 (3)
N10.033 (3)0.044 (3)0.031 (3)0.004 (2)0.011 (2)0.010 (2)
N20.033 (3)0.030 (3)0.036 (3)0.003 (2)0.012 (2)0.003 (2)
N30.037 (3)0.043 (3)0.035 (3)0.004 (3)0.015 (2)0.001 (2)
N40.034 (3)0.043 (3)0.031 (3)0.001 (2)0.011 (2)0.001 (2)
C10.043 (4)0.051 (4)0.043 (4)0.001 (3)0.019 (3)0.004 (3)
C20.045 (4)0.074 (6)0.057 (5)0.006 (4)0.025 (4)0.004 (4)
C30.036 (4)0.081 (7)0.071 (6)0.006 (4)0.021 (4)0.025 (5)
C40.032 (4)0.049 (4)0.064 (5)0.009 (3)0.006 (4)0.015 (4)
C50.036 (4)0.045 (4)0.032 (3)0.003 (3)0.002 (3)0.007 (3)
C60.038 (4)0.037 (4)0.043 (4)0.006 (3)0.005 (3)0.001 (3)
C70.059 (4)0.030 (4)0.046 (4)0.005 (3)0.022 (4)0.006 (3)
C80.031 (3)0.040 (4)0.042 (4)0.007 (3)0.007 (3)0.001 (3)
C90.040 (4)0.053 (5)0.059 (5)0.013 (4)0.020 (4)0.008 (4)
C100.045 (4)0.073 (6)0.071 (6)0.011 (4)0.033 (4)0.005 (5)
C110.038 (4)0.057 (5)0.057 (5)0.000 (3)0.022 (4)0.013 (4)
C120.039 (4)0.043 (4)0.043 (4)0.002 (3)0.010 (3)0.006 (3)
C130.042 (4)0.036 (4)0.037 (4)0.005 (3)0.009 (3)0.007 (3)
C140.037 (4)0.037 (4)0.030 (3)0.005 (3)0.011 (3)0.005 (3)
C150.043 (4)0.055 (5)0.038 (4)0.009 (3)0.007 (3)0.006 (3)
C160.051 (5)0.075 (6)0.040 (4)0.018 (4)0.003 (4)0.000 (4)
C170.039 (4)0.063 (5)0.045 (4)0.010 (4)0.004 (3)0.012 (4)
C180.041 (4)0.041 (4)0.039 (4)0.000 (3)0.017 (3)0.001 (3)
C190.061 (5)0.046 (4)0.046 (4)0.013 (4)0.020 (4)0.012 (3)
Cl10.0503 (11)0.0496 (11)0.0760 (14)0.0032 (9)0.0245 (10)0.0023 (10)
Cl20.0592 (11)0.0429 (10)0.0476 (10)0.0020 (8)0.0218 (9)0.0027 (8)
Geometric parameters (Å, º) top
Fe1—O21.7896 (9)C3—H30.9300
Fe1—O12.052 (5)C4—C51.396 (9)
Fe1—N12.117 (5)C4—H40.9300
Fe1—N42.132 (5)C5—C61.510 (10)
Fe1—N32.134 (5)C6—H6A0.9700
Fe1—N22.196 (5)C6—H6B0.9700
O1—C191.455 (9)C7—C81.498 (9)
O1—H200.84 (6)C7—H7A0.9700
O2—Fe1i1.7896 (9)C7—H7B0.9700
O3—Cl11.409 (8)C8—C91.395 (9)
O4—Cl11.404 (8)C9—C101.378 (11)
O5—Cl11.378 (7)C9—H90.9300
O6—Cl11.418 (6)C10—C111.365 (11)
O7—Cl21.413 (7)C10—H100.9300
O8—Cl21.454 (5)C11—C121.363 (10)
O9—Cl21.423 (6)C11—H110.9300
O10—Cl21.415 (6)C12—H120.9300
N1—C11.346 (9)C13—C141.496 (9)
N1—C51.349 (9)C13—H13A0.9700
N2—C71.492 (8)C13—H13B0.9700
N2—C61.492 (8)C14—C151.379 (9)
N2—C131.499 (8)C15—C161.376 (11)
N3—C81.332 (8)C15—H150.9300
N3—C121.351 (8)C16—C171.377 (11)
N4—C181.328 (8)C16—H160.9300
N4—C141.354 (8)C17—C181.393 (10)
C1—C21.376 (10)C17—H170.9300
C1—H10.9300C18—C191.491 (10)
C2—C31.374 (12)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.374 (11)
O2—Fe1—O1105.26 (15)N2—C7—H7B109.0
O2—Fe1—N194.12 (14)C8—C7—H7B109.0
O1—Fe1—N1105.2 (2)H7A—C7—H7B107.8
O2—Fe1—N4172.06 (15)N3—C8—C9120.7 (7)
O1—Fe1—N473.8 (2)N3—C8—C7117.4 (6)
N1—Fe1—N493.7 (2)C9—C8—C7121.6 (6)
O2—Fe1—N389.61 (14)C10—C9—C8118.6 (7)
O1—Fe1—N397.2 (2)C10—C9—H9120.7
N1—Fe1—N3155.3 (2)C8—C9—H9120.7
N4—Fe1—N382.7 (2)C11—C10—C9119.7 (7)
O2—Fe1—N2102.90 (14)C11—C10—H10120.1
O1—Fe1—N2151.4 (2)C9—C10—H10120.1
N1—Fe1—N277.1 (2)C12—C11—C10119.7 (7)
N4—Fe1—N277.6 (2)C12—C11—H11120.2
N3—Fe1—N278.3 (2)C10—C11—H11120.2
C19—O1—Fe1122.1 (4)N3—C12—C11121.1 (7)
C19—O1—H20109 (6)N3—C12—H12119.5
Fe1—O1—H20127 (6)C11—C12—H12119.5
Fe1—O2—Fe1i180.00 (5)C14—C13—N2111.4 (5)
C1—N1—C5119.1 (6)C14—C13—H13A109.3
C1—N1—Fe1126.0 (5)N2—C13—H13A109.3
C5—N1—Fe1114.5 (4)C14—C13—H13B109.3
C7—N2—C6111.1 (5)N2—C13—H13B109.3
C7—N2—C13112.6 (5)H13A—C13—H13B108.0
C6—N2—C13110.3 (5)N4—C14—C15120.5 (6)
C7—N2—Fe1107.3 (4)N4—C14—C13114.6 (5)
C6—N2—Fe1104.5 (4)C15—C14—C13124.8 (6)
C13—N2—Fe1110.6 (4)C16—C15—C14118.5 (7)
C8—N3—C12120.2 (6)C16—C15—H15120.8
C8—N3—Fe1115.5 (4)C14—C15—H15120.8
C12—N3—Fe1123.8 (5)C15—C16—C17121.1 (7)
C18—N4—C14120.9 (6)C15—C16—H16119.5
C18—N4—Fe1119.1 (5)C17—C16—H16119.5
C14—N4—Fe1117.4 (4)C16—C17—C18117.8 (7)
N1—C1—C2122.4 (7)C16—C17—H17121.1
N1—C1—H1118.8C18—C17—H17121.1
C2—C1—H1118.8N4—C18—C17121.2 (7)
C3—C2—C1118.4 (8)N4—C18—C19115.1 (6)
C3—C2—H2120.8C17—C18—C19123.7 (7)
C1—C2—H2120.8O1—C19—C18107.5 (6)
C4—C3—C2120.5 (7)O1—C19—H19A110.2
C4—C3—H3119.8C18—C19—H19A110.2
C2—C3—H3119.8O1—C19—H19B110.2
C3—C4—C5118.6 (7)C18—C19—H19B110.2
C3—C4—H4120.7H19A—C19—H19B108.5
C5—C4—H4120.7O5—Cl1—O4114.0 (6)
N1—C5—C4121.1 (7)O5—Cl1—O3107.5 (7)
N1—C5—C6116.1 (6)O4—Cl1—O3106.3 (6)
C4—C5—C6122.7 (7)O5—Cl1—O6111.7 (5)
N2—C6—C5109.5 (5)O4—Cl1—O6109.8 (5)
N2—C6—H6A109.8O3—Cl1—O6107.2 (5)
C5—C6—H6A109.8O7—Cl2—O10110.2 (5)
N2—C6—H6B109.8O7—Cl2—O9111.9 (5)
C5—C6—H6B109.8O10—Cl2—O9110.7 (4)
H6A—C6—H6B108.2O7—Cl2—O8107.5 (4)
N2—C7—C8113.0 (5)O10—Cl2—O8107.9 (4)
N2—C7—H7A109.0O9—Cl2—O8108.7 (4)
C8—C7—H7A109.0
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H20···O80.84 (6)1.82 (3)2.654 (7)169 (8)

Experimental details

Crystal data
Chemical formula[Fe2O(C19H20N4O)2](ClO4)4
Mr1166.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.0733 (9), 9.9223 (3), 20.5055 (8)
β (°) 111.220 (2)
V3)4565.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.34 × 0.28 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.713, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
7191, 4002, 3000
Rint0.045
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.191, 1.09
No. of reflections4002
No. of parameters326
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0536P)2 + 58.9568P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.66, 0.48

Computer programs: SMART (Siemens,1996), SMART and SAINT (Siemens,1994), SAINT? and XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Fe1—O21.7896 (9)Fe1—N42.132 (5)
Fe1—O12.052 (5)Fe1—N32.134 (5)
Fe1—N12.117 (5)Fe1—N22.196 (5)
O2—Fe1—O1105.26 (15)N1—Fe1—N3155.3 (2)
O2—Fe1—N194.12 (14)N4—Fe1—N382.7 (2)
O1—Fe1—N1105.2 (2)O2—Fe1—N2102.90 (14)
O2—Fe1—N4172.06 (15)O1—Fe1—N2151.4 (2)
O1—Fe1—N473.8 (2)N1—Fe1—N277.1 (2)
N1—Fe1—N493.7 (2)N4—Fe1—N277.6 (2)
O2—Fe1—N389.61 (14)N3—Fe1—N278.3 (2)
O1—Fe1—N397.2 (2)Fe1—O2—Fe1i180.00 (5)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H20···O80.84 (6)1.82 (3)2.654 (7)169 (8)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds