Download citation
Download citation
link to html
In the title centrosymmetric dimer, [Pb2(sbc)2(phen)2]·2H2O [sbc is the 2-sulfonatobenzoate dianion (C7H4O5S) and phen is 1,10-phenanthroline (C12H8N2)], each PbII ion is six-coordinated by four O atoms, viz. carboxyl­ate and sulfonate O atoms from two sbc anions, and two N atoms from a 1,10-phenanthroline ligand. One 1,10-phenanthroline ligand and the carboxyl­ate group of one sbc ligand are chelated to each PbII cation, and the sulfonate group of the other sbc unit is monodentate. One O atom of the chelated carboxyl­ate group also bridges to the other PbII cation, so that each pair of PbII ions is bridged by two sbc anions and has the same coordination environment, forming a dinuclear ring. Each pair of PbII ions is thus connected by two different kinds of bridges, namely a carboxyl­ate short bridge and a carboxyl­ate–sulfonate long bridge. There is also a special position of \overline 1 site symmetry at the centre of the two PbII cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016889/av1191sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016889/av1191Isup2.hkl
Contains datablock I

CCDC reference: 251284

Comment top

Lead(II) is capable of exhibiting variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Wang & Vittal, 2003). Of these, a number of polymeric PbII compounds have been structurally characterized (Cecconi et al., 2003; Bridgewater & Parkin, 2000; Ying et al., 2003). The absence of crystal field-stabilization energy effects also allows PbII cations to adopt a range of different coordination geometries, not restricted to octahedral, tetrahedral or square-planar (Foreman et al., 2000). 2-Sulfobenzenecarboxylate (sbc) is a very interesting ligand, with both carboxylate and sulfonate as potential coordinating groups. It can form not only short bridges between metal ions via one carboxylate end or one sulfonate end, but also a long bridge via the benzene ring. Thus, we have selected the Pb-sbc system to extend this research and we present here the crystal structure of the title compound, [Pb(sbc)(phen)]2·2H2O, (I). \sch

In (I), each PbII ion coordinates to three O atoms from two carboxylate groups of two sbc anions, with a typical range of Pb—O(carboxylate) distances [2.574 (3)–2.595 (4) Å; Foreman et al., 2000], one sulfonate O atom from one sbc anion, with Pb—O distances of 2.646 (4) Å, and two N atoms from one 1,10-phenanthroline ligand, with Pb—N distances of 2.540 (4) and 2.569 (4) Å. The coordination numbers of the two PbII ions are equivalent, but although both PbII cations are six-coordinated, due to the absence of crystal field-stabilization energy effects, the coordination geometries of the PbII cations are not octahedral (Fig. 1). The two N atoms of 1,10-phenanthroline and two O atoms of the carboxylate are chelated to each PbII cation, and the sulfonate group of the other sbc is monodentate. One O atom of the chelated carboxylate group also bridges to the other PbII cation, with Pb—O distances of 2.734 (3) Å. Thus, each pair of PbII ions has the same coordination environment and is bridged by two sbc anions, forming a centrosymmetric dinuclear ring. Each pair of PbII ions is therefore connected by two different kinds of bridges, namely a carboxylate short bridge and a carboxylate-sulfonate long bridge. There is also a special position of 1 site symmetry at the centre of the two PbII cations.

The S1—O3, S1—O4 and S1—O5 distances are 1.469 (4), 1.465 (4) and 1.428 (4) Å, respectively, and all fall within the typical range of S—O bond distances in the sulfonate anion (1.40–1.49 Å; Onoda et al., 2001). The similarity of the three S—O bond distances suggests that strong conjugation of the sulfonate is predominant in (I). In addition, each sbc anion acts as a tetradentate ligand, connecting two PbII ions through its bridging and chelating carboxylate group and its monodentate sulfonate group. This coordination mode is quite different from that in the above-mentioned polymeric PbII compounds, in which the carboxylate groups are either bidentate chelating or monodentate bridging.

It should be noted that hydrogen-bonding interactions and ππ interactions play an important role in the solid-state structure of (I), as shown in Fig. 2. Adjacent units are connected by hydrogen-bond and ππ stacking, resulting in a packing framework stucture.

Experimental top

The title compound was synthesized by adding a solution of 1,10-phenanthroline (0.04 g, 0.2 mmol), 2-sulfobenzenecarboxylic acid (0.04 g, 0.2 mmol) and 2,2'-dithiosalicylic acid (0.06 g, 0.2 mmol) in dimethylformamide (10 ml) dropwise to a stirred solution of lead nitrate (0.07 g, 0.2 mmol) in water (10 ml) at 298 K. The reaction mixture was filtered and the filtrate allowed to stand for about 6 weeks until colourless prism crystals of (I) were obtained. Crystals suitable for X-ray diffraction were collected by filtration, washed with water and ethanol, and dried in air.

Refinement top

The water H atoms were refined subject to the restraint O—H = 0.82 (2) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the PbII ion in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms labelled with an asterisk (*) are at the symmetry position (2 − x, 1 − y, 1 − z).
[Figure 2] Fig. 2. A perspective view of the molecular packing of (I) along the a axis, illustrating the hydrogen-bonding and ππ interactions. Hydrogen-bonding interactions are shown as dashed lines and H atoms not involved in hydrogen bonds have been omitted for clarity.
Bis(µ-2-sulfobenzenecarboxylato)bis[(1,10-phenanthroline)lead(II)] dihydrate top
Crystal data top
[Pb2(C7H4O5S)2(C12H8N2)2]·2H2OZ = 2
Mr = 605.57F(000) = 576
Triclinic, P1Dx = 2.151 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 7.3232 (7) ÅCell parameters from 3352 reflections
b = 10.8613 (10) Åθ = 2.3–25.3°
c = 12.0558 (11) ŵ = 9.18 mm1
α = 97.280 (1)°T = 298 K
β = 100.320 (2)°Prism, colourless
γ = 91.150 (1)°0.20 × 0.15 × 0.10 mm
V = 934.89 (15) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
3352 independent reflections
Radiation source: fine-focus sealed tube3162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: numerical
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.034, Tmax = 0.227k = 1312
6867 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.2266P]
where P = (Fo2 + 2Fc2)/3
3352 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Pb2(C7H4O5S)2(C12H8N2)2]·2H2Oγ = 91.150 (1)°
Mr = 605.57V = 934.89 (15) Å3
Triclinic, P1Z = 2
a = 7.3232 (7) ÅMo Kα radiation
b = 10.8613 (10) ŵ = 9.18 mm1
c = 12.0558 (11) ÅT = 298 K
α = 97.280 (1)°0.20 × 0.15 × 0.10 mm
β = 100.320 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3352 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2002)
3162 reflections with I > 2σ(I)
Tmin = 0.034, Tmax = 0.227Rint = 0.024
6867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.75 e Å3
3352 reflectionsΔρmin = 0.60 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.8489 (9)0.2030 (7)0.0765 (5)0.0880 (18)
Pb10.79333 (2)0.605327 (14)0.565670 (14)0.02970 (8)
S10.48519 (17)0.59828 (12)0.31857 (11)0.0378 (3)
O10.9269 (5)0.5524 (3)0.3827 (3)0.0406 (8)
O30.5714 (5)0.7016 (3)0.4036 (3)0.0421 (8)
O40.5278 (5)0.4785 (3)0.3587 (3)0.0460 (9)
O50.2910 (6)0.6107 (5)0.2809 (4)0.0726 (13)
N11.0069 (5)0.7936 (3)0.5696 (3)0.0329 (9)
N20.7212 (5)0.8020 (3)0.6897 (3)0.0342 (9)
C11.1442 (7)0.7912 (5)0.5113 (5)0.0443 (13)
H11.15530.71980.46200.053*
C21.2725 (8)0.8897 (5)0.5200 (5)0.0497 (14)
H21.36790.88340.47830.060*
C31.2562 (8)0.9946 (5)0.5900 (6)0.0510 (14)
H31.33911.06210.59580.061*
C41.1125 (7)1.0015 (5)0.6545 (5)0.0422 (12)
C51.0891 (9)1.1089 (5)0.7302 (6)0.0633 (18)
H51.17201.17700.73940.076*
C60.9492 (10)1.1136 (5)0.7885 (6)0.0615 (17)
H60.93601.18550.83670.074*
C70.8204 (8)1.0110 (5)0.7784 (5)0.0462 (13)
C80.6732 (9)1.0109 (5)0.8386 (5)0.0552 (15)
H80.65661.08010.88900.066*
C90.5534 (9)0.9084 (5)0.8229 (5)0.0516 (14)
H90.45500.90720.86200.062*
C100.5833 (8)0.8068 (5)0.7471 (5)0.0435 (12)
H100.50130.73800.73600.052*
C110.9914 (7)0.8976 (4)0.6410 (4)0.0352 (11)
C120.8402 (7)0.9032 (4)0.7041 (4)0.0335 (10)
C130.8885 (6)0.4964 (5)0.2831 (4)0.0339 (11)
C140.7694 (7)0.5571 (4)0.1918 (4)0.0326 (10)
C150.5935 (7)0.6029 (4)0.1977 (4)0.0321 (10)
C160.4948 (7)0.6532 (5)0.1064 (5)0.0425 (12)
H160.37520.67910.10900.051*
C170.5708 (8)0.6652 (5)0.0125 (5)0.0487 (14)
H170.50470.70190.04700.058*
C180.7449 (9)0.6230 (6)0.0059 (5)0.0501 (14)
H180.79620.63120.05810.060*
C190.8436 (8)0.5685 (5)0.0942 (5)0.0418 (12)
H190.96050.53910.08870.050*
O20.9549 (5)0.3944 (3)0.2529 (3)0.0468 (9)
H6A0.885 (15)0.276 (11)0.123 (10)0.14 (4)*
H6B0.89 (2)0.136 (14)0.107 (13)0.24 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.099 (4)0.079 (4)0.066 (3)0.006 (3)0.015 (3)0.022 (3)
Pb10.03257 (11)0.02643 (11)0.02964 (12)0.00129 (7)0.00979 (8)0.00342 (7)
S10.0344 (6)0.0425 (7)0.0372 (7)0.0036 (5)0.0131 (5)0.0004 (6)
O10.0406 (19)0.051 (2)0.0289 (19)0.0055 (16)0.0103 (15)0.0053 (16)
O30.054 (2)0.0365 (19)0.034 (2)0.0015 (17)0.0135 (17)0.0068 (16)
O40.060 (2)0.0359 (19)0.045 (2)0.0084 (17)0.0216 (19)0.0020 (17)
O50.042 (2)0.111 (4)0.067 (3)0.004 (2)0.017 (2)0.009 (3)
N10.038 (2)0.029 (2)0.032 (2)0.0002 (17)0.0090 (18)0.0005 (17)
N20.039 (2)0.030 (2)0.034 (2)0.0045 (17)0.0108 (18)0.0012 (17)
C10.044 (3)0.038 (3)0.053 (4)0.002 (2)0.019 (3)0.001 (3)
C20.043 (3)0.050 (3)0.059 (4)0.003 (3)0.020 (3)0.004 (3)
C30.040 (3)0.043 (3)0.068 (4)0.009 (2)0.007 (3)0.008 (3)
C40.044 (3)0.031 (3)0.049 (3)0.005 (2)0.007 (2)0.000 (2)
C50.063 (4)0.035 (3)0.086 (5)0.017 (3)0.014 (4)0.013 (3)
C60.072 (4)0.035 (3)0.073 (5)0.003 (3)0.016 (4)0.017 (3)
C70.059 (3)0.035 (3)0.042 (3)0.001 (2)0.009 (3)0.005 (2)
C80.075 (4)0.042 (3)0.050 (4)0.006 (3)0.026 (3)0.014 (3)
C90.064 (4)0.051 (3)0.046 (3)0.012 (3)0.031 (3)0.001 (3)
C100.048 (3)0.041 (3)0.043 (3)0.000 (2)0.017 (3)0.002 (2)
C110.040 (3)0.031 (2)0.033 (3)0.002 (2)0.007 (2)0.001 (2)
C120.044 (3)0.026 (2)0.029 (3)0.001 (2)0.006 (2)0.0017 (19)
C130.033 (2)0.040 (3)0.028 (3)0.002 (2)0.008 (2)0.000 (2)
C140.039 (3)0.028 (2)0.029 (3)0.001 (2)0.006 (2)0.0043 (19)
C150.036 (2)0.029 (2)0.031 (3)0.0027 (19)0.009 (2)0.002 (2)
C160.034 (3)0.046 (3)0.046 (3)0.001 (2)0.004 (2)0.006 (3)
C170.061 (4)0.049 (3)0.037 (3)0.006 (3)0.003 (3)0.017 (3)
C180.064 (4)0.055 (3)0.036 (3)0.005 (3)0.018 (3)0.010 (3)
C190.045 (3)0.046 (3)0.036 (3)0.004 (2)0.012 (2)0.003 (2)
O20.061 (2)0.0337 (19)0.041 (2)0.0103 (17)0.0004 (18)0.0045 (16)
Geometric parameters (Å, º) top
O6—H6A0.92 (12)C5—C61.341 (9)
O6—H6B0.88 (14)C5—H50.9300
Pb1—N12.540 (4)C6—C71.424 (8)
Pb1—N22.569 (4)C6—H60.9300
Pb1—O12.574 (3)C7—C81.403 (8)
Pb1—O2i2.595 (4)C7—C121.408 (7)
Pb1—O32.646 (4)C8—C91.376 (8)
Pb1—O1i2.734 (3)C8—H80.9300
S1—O51.428 (4)C9—C101.388 (8)
S1—O41.465 (4)C9—H90.9300
S1—O31.469 (4)C10—H100.9300
S1—C151.785 (5)C11—C121.450 (7)
O1—C131.256 (6)C13—O21.256 (6)
O1—Pb1i2.734 (3)C13—C141.507 (7)
N1—C11.324 (6)C14—C191.400 (7)
N1—C111.350 (6)C14—C151.400 (7)
N2—C101.321 (6)C15—C161.384 (7)
N2—C121.363 (6)C16—C171.367 (8)
C1—C21.391 (8)C16—H160.9300
C1—H10.9300C17—C181.376 (8)
C2—C31.351 (8)C17—H170.9300
C2—H20.9300C18—C191.380 (9)
C3—C41.413 (8)C18—H180.9300
C3—H30.9300C19—H190.9300
C4—C111.396 (7)O2—Pb1i2.595 (4)
C4—C51.421 (8)
H6A—O6—H6B114 (10)C6—C5—H5119.5
N1—Pb1—N265.03 (12)C4—C5—H5119.5
N1—Pb1—O177.52 (12)C5—C6—C7121.5 (6)
N2—Pb1—O1137.24 (12)C5—C6—H6119.2
N1—Pb1—O2i74.86 (12)C7—C6—H6119.2
N2—Pb1—O2i78.37 (12)C8—C7—C12117.6 (5)
O1—Pb1—O2i111.94 (12)C8—C7—C6123.6 (5)
N1—Pb1—O384.87 (12)C12—C7—C6118.8 (5)
N2—Pb1—O382.95 (11)C9—C8—C7120.0 (5)
O1—Pb1—O373.54 (11)C9—C8—H8120.0
O2i—Pb1—O3156.80 (12)C7—C8—H8120.0
N1—Pb1—O1i95.32 (12)C8—C9—C10118.2 (5)
N2—Pb1—O1i127.26 (11)C8—C9—H9120.9
O1—Pb1—O1i74.01 (12)C10—C9—H9120.9
O2i—Pb1—O1i48.91 (11)N2—C10—C9123.9 (5)
O3—Pb1—O1i146.69 (10)N2—C10—H10118.0
O5—S1—O4112.8 (3)C9—C10—H10118.0
O5—S1—O3113.1 (3)N1—C11—C4122.6 (5)
O4—S1—O3110.9 (2)N1—C11—C12118.9 (4)
O5—S1—C15106.9 (3)C4—C11—C12118.4 (4)
O4—S1—C15106.3 (2)N2—C12—C7121.9 (5)
O3—S1—C15106.3 (2)N2—C12—C11118.2 (4)
C13—O1—Pb1142.7 (3)C7—C12—C11119.9 (4)
C13—O1—Pb1i90.1 (3)O1—C13—O2123.2 (5)
Pb1—O1—Pb1i105.99 (12)O1—C13—C14119.4 (4)
S1—O3—Pb1107.52 (18)O2—C13—C14117.2 (4)
C1—N1—C11117.9 (4)C19—C14—C15118.3 (5)
C1—N1—Pb1122.7 (3)C19—C14—C13116.4 (4)
C11—N1—Pb1119.2 (3)C15—C14—C13125.3 (4)
C10—N2—C12118.4 (4)C16—C15—C14119.9 (5)
C10—N2—Pb1123.3 (3)C16—C15—S1117.1 (4)
C12—N2—Pb1118.1 (3)C14—C15—S1123.0 (4)
N1—C1—C2123.5 (5)C17—C16—C15120.9 (5)
N1—C1—H1118.2C17—C16—H16119.6
C2—C1—H1118.2C15—C16—H16119.6
C3—C2—C1118.9 (5)C16—C17—C18120.1 (5)
C3—C2—H2120.6C16—C17—H17120.0
C1—C2—H2120.6C18—C17—H17120.0
C2—C3—C4119.7 (5)C17—C18—C19120.1 (5)
C2—C3—H3120.1C17—C18—H18119.9
C4—C3—H3120.1C19—C18—H18119.9
C11—C4—C3117.3 (5)C18—C19—C14120.6 (5)
C11—C4—C5120.3 (5)C18—C19—H19119.7
C3—C4—C5122.3 (5)C14—C19—H19119.7
C6—C5—C4121.0 (5)C13—O2—Pb1i96.6 (3)
N1—Pb1—O1—C13148.4 (6)C7—C8—C9—C100.2 (9)
N2—Pb1—O1—C13119.6 (5)C12—N2—C10—C91.0 (8)
O2i—Pb1—O1—C13143.8 (5)Pb1—N2—C10—C9173.5 (4)
O3—Pb1—O1—C1360.1 (5)C8—C9—C10—N20.7 (9)
O1i—Pb1—O1—C13112.3 (6)C1—N1—C11—C40.5 (7)
N1—Pb1—O1—Pb1i99.33 (14)Pb1—N1—C11—C4175.0 (4)
N2—Pb1—O1—Pb1i128.15 (15)C1—N1—C11—C12178.9 (5)
O2i—Pb1—O1—Pb1i31.51 (16)Pb1—N1—C11—C126.6 (6)
O3—Pb1—O1—Pb1i172.39 (15)C3—C4—C11—N10.2 (8)
O1i—Pb1—O1—Pb1i0.0C5—C4—C11—N1179.5 (5)
O5—S1—O3—Pb1136.2 (2)C3—C4—C11—C12178.6 (5)
O4—S1—O3—Pb18.3 (2)C5—C4—C11—C121.1 (8)
C15—S1—O3—Pb1106.9 (2)C10—N2—C12—C70.5 (7)
N1—Pb1—O3—S1142.3 (2)Pb1—N2—C12—C7174.4 (4)
N2—Pb1—O3—S1152.2 (2)C10—N2—C12—C11180.0 (4)
O1—Pb1—O3—S163.87 (19)Pb1—N2—C12—C115.2 (6)
O2i—Pb1—O3—S1171.3 (2)C8—C7—C12—N20.4 (8)
O1i—Pb1—O3—S150.5 (3)C6—C7—C12—N2179.5 (5)
N2—Pb1—N1—C1179.4 (4)C8—C7—C12—C11179.2 (5)
O1—Pb1—N1—C120.6 (4)C6—C7—C12—C110.9 (8)
O2i—Pb1—N1—C196.6 (4)N1—C11—C12—N20.9 (7)
O3—Pb1—N1—C194.8 (4)C4—C11—C12—N2179.4 (5)
O1i—Pb1—N1—C151.8 (4)N1—C11—C12—C7179.6 (5)
N2—Pb1—N1—C116.4 (3)C4—C11—C12—C71.1 (7)
O1—Pb1—N1—C11165.2 (4)Pb1—O1—C13—O2106.1 (6)
O2i—Pb1—N1—C1177.6 (3)Pb1i—O1—C13—O211.1 (5)
O3—Pb1—N1—C1191.0 (3)Pb1—O1—C13—C1479.0 (7)
O1i—Pb1—N1—C11122.4 (3)Pb1i—O1—C13—C14163.8 (4)
N1—Pb1—N2—C10179.6 (4)O1—C13—C14—C19125.3 (5)
O1—Pb1—N2—C10148.3 (4)O2—C13—C14—C1949.9 (6)
O2i—Pb1—N2—C10101.9 (4)O1—C13—C14—C1554.2 (7)
O3—Pb1—N2—C1092.0 (4)O2—C13—C14—C15130.6 (5)
O1i—Pb1—N2—C10103.5 (4)C19—C14—C15—C162.6 (7)
N1—Pb1—N2—C125.9 (3)C13—C14—C15—C16177.8 (5)
O1—Pb1—N2—C1237.1 (4)C19—C14—C15—S1178.3 (4)
O2i—Pb1—N2—C1272.7 (3)C13—C14—C15—S11.2 (7)
O3—Pb1—N2—C1293.5 (3)O5—S1—C15—C1619.0 (5)
O1i—Pb1—N2—C1271.1 (4)O4—S1—C15—C16139.8 (4)
C11—N1—C1—C20.1 (8)O3—S1—C15—C16102.0 (4)
Pb1—N1—C1—C2174.2 (4)O5—S1—C15—C14160.1 (4)
N1—C1—C2—C31.0 (9)O4—S1—C15—C1439.4 (5)
C1—C2—C3—C41.3 (9)O3—S1—C15—C1478.9 (4)
C2—C3—C4—C110.7 (8)C14—C15—C16—C173.7 (8)
C2—C3—C4—C5179.5 (6)S1—C15—C16—C17177.2 (4)
C11—C4—C5—C61.1 (10)C15—C16—C17—C182.4 (9)
C3—C4—C5—C6178.7 (6)C16—C17—C18—C190.1 (9)
C4—C5—C6—C70.9 (11)C17—C18—C19—C140.9 (9)
C5—C6—C7—C8179.3 (7)C15—C14—C19—C180.4 (8)
C5—C6—C7—C120.9 (10)C13—C14—C19—C18179.9 (5)
C12—C7—C8—C90.7 (9)O1—C13—O2—Pb1i11.8 (5)
C6—C7—C8—C9179.2 (6)C14—C13—O2—Pb1i163.3 (4)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O2i0.92 (12)1.88 (12)2.770 (7)163 (10)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C7H4O5S)2(C12H8N2)2]·2H2O
Mr605.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3232 (7), 10.8613 (10), 12.0558 (11)
α, β, γ (°)97.280 (1), 100.320 (2), 91.150 (1)
V3)934.89 (15)
Z2
Radiation typeMo Kα
µ (mm1)9.18
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2002)
Tmin, Tmax0.034, 0.227
No. of measured, independent and
observed [I > 2σ(I)] reflections
6867, 3352, 3162
Rint0.024
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.05
No. of reflections3352
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.75, 0.60

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Pb1—N12.540 (4)Pb1—O1i2.734 (3)
Pb1—N22.569 (4)S1—O51.428 (4)
Pb1—O12.574 (3)S1—O41.465 (4)
Pb1—O2i2.595 (4)S1—O31.469 (4)
Pb1—O32.646 (4)
N1—Pb1—N265.03 (12)O1—Pb1—O373.54 (11)
N1—Pb1—O177.52 (12)O2i—Pb1—O3156.80 (12)
N2—Pb1—O1137.24 (12)N1—Pb1—O1i95.32 (12)
N1—Pb1—O2i74.86 (12)N2—Pb1—O1i127.26 (11)
N2—Pb1—O2i78.37 (12)O1—Pb1—O1i74.01 (12)
O1—Pb1—O2i111.94 (12)O2i—Pb1—O1i48.91 (11)
N1—Pb1—O384.87 (12)O3—Pb1—O1i146.69 (10)
N2—Pb1—O382.95 (11)
N1—Pb1—O1—Pb1i99.33 (14)O3—Pb1—O1—Pb1i172.39 (15)
N2—Pb1—O1—Pb1i128.15 (15)O1i—Pb1—O1—Pb1i0.0
O2i—Pb1—O1—Pb1i31.51 (16)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O2i0.92 (12)1.88 (12)2.770 (7)163 (10)
Symmetry code: (i) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds