Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of the title compound, hepta­aqua-1κ3O,2κ2O,3κ2O-(μ3-2,6-bis{[bis­(carboxyl­ato­methyl)­amino]methyl}-4-chloro­phenolato-1κO;2κ4O,O′,N,O1;3κ4O1N′,O′′,O′′′)dinickel(II)­sodium(I) pentahydrate, [NaNi2(C16H14ClN2O9)(H2O)7]·5H2O or [Ni2(Cl-HXTA)(H2O)4{Na(H2O)3}]·5H2O, the trinuclear complex unit consists of two distorted NiNO5 octahedra bridged by a phenolate O atom and an NaO4 tetrahedron bridged to one of the Ni octahedra by a carboxylate O atom. There are four intramolecular hydrogen bonds forming four six-membered rings in the complex and the complex mol­ecules are connected to each other by a very complicated hydrogen-bond network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104011023/av1181sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104011023/av1181Isup2.hkl
Contains datablock I

CCDC reference: 245847

Comment top

In nickel enzymes, such as urease, NiII ions can catalyze the hydrolysis of urea (Jabri et al., 1995). Cl-HXTA is a versatile 'end-off'-type acidic dinucleating ligand suitable for incorporating various dinuclear cores, first reported by Que and co-workers (Murch et al., 1987). It functions as a pentavalent anionic ligand with four methoxycarbonyl chelating arms, possessing two NO3 coordination sites, and most of its dinuclear metal complexes are soluble in water. We report here the crystal structure of the title trinuclear complex, (I), containing an Ni—O—Ni—O—Na bridge with Cl-HXTA. \sch

Some features of the molecular geometry in (I) are presented in Table 1 and Fig. 1. In this trinuclear complex, both Ni2+ ions are located in similar coordination spheres. Each sphere has a distorted octahedral geometry comprised of two carboxylate groups, a tertiary N atom, two water molecules and an oxo-bridging phenolate ligand. This is in contrast with the structure of [Fe2(HXTA)OH(H2O)2] (Murch et al., 1987), in which the coordination sphere of each Fe atom has the same geometry and coordination set and there are two bridges between the FeII cations.

The average Ni—O(phenolate) bond length in (I) is 2.051 Å and this compares well with the analogous bonds in other phenolate-bridged dimers(Chiari et al., 1982, 1983). At each Ni2+ centre, the two water molecules and the tertiary N atom, as well as the bridging O atom from the phenolate ligand, are almost coplanar. The Ni1—Ni2 distance is 3.75 Å, slightly longer than that in [Ni2(Me4-tpdp)(MeCO2)(H2O)2](ClO4)2 (3.62 Å; Yamaguchi et al., 2001). The Ni1—O1—Ni2 angle [132.2 (1)°] is much larger than the Fe1—O—Fe2 angle in [Fe2(HXTA)OH(H2O)2] (102.6°; Murch et al., 1987), perhaps due to the presence of only one oxo-bridge between the two Ni2+ ions but two oxo-bridges between the two Fe2+ ions. Furthermore, in complex (I), atom O3 not only coordinates to atom Ni1 but also to an Na+ ion, at a distance of 2.307 (3) Å. Therefore, atom O3 acts as a bridge between atoms Na1 and Ni1, with an Ni1—O—Na1 angle of 124.6 (2)°. The Na+ ion completes its tetrahedral geometry with three other coordinated water molecules, with Na—O distances in the range 2.213 (3)–2.355 (5) Å. Thus, this complex is actually a trinuclear complex. The Ni1···Na1 distance is 3.837 Å.

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated in Figs. 1 and 2. A number of intra- and intermolecular hydrogen bonds stabilize the crystal structure. There are four intramolecular hydrogen bonds in the complex, namely O3W—H···O5, O1W—H···O9, O1W—H···O7 and O2W—H···O5W, forming four six-membered rings (Fig. 1). In particular, water molecule O1W is coordinated to atom Ni1, forming two hydrogen bonds via water molecule O7W bonded to Na1 and atom O9 bonded to Ni2, making the complex more stable. Because four carboxylate groups and seven coordinated water molecules, as well as five non-coordinated water molecules, are included in this compound, a very complicated hydrogen-bond network (Fig.2) is formed, connecting every complex with each other.

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. The ligand Cl-HXTA was synthesized by a modification of the published procedures of Murch et al. (1987) and Branum et al. (2001). To an aqueous solution (100 ml) containing iminodiacetic acid (16.7 g, 0.125 mol) and p-chlorophenol (8.07 g, 0.063 mol) was added NaOH (10.5 g, 0.25 mol) in water (40 ml), and the mixture was cooled in an ice-water bath. Upon dissolution, 37% formaldehyde (15 ml) was added dropwise at 273 K. The solution was stirred for 30 min, heated at 343 K for 4 h, and then concentrated to dryness. Recrystallization of the solid from methanol yielded lighter yellow crystals of Na4(Cl-HXTA). Yield 90%. Ni(CH3COO)2·4H2O (0.496 g, 2.0 mmol) and Na4(Cl-HXTA) (0.516 g, 1.0 mmol) were dissolved in two aliquots of water (5 ml) and mixed with stirring at 323 K for 3 h. The resulting pale-green solution was filtered and the filtrate was left to stand at room temperature. Emerald crystals of the title compound appeared after 10 d by slow evaporation of the aqueous solvent.

Refinement top

The residual electron density has a maximum located 0.75 Å from atom H8WB. H atoms attached to C atoms were placed in geometrically idealized positions, with Csp3—H = 0.99 Å and Csp2—H = 0.95 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(O). The O—H distances are in the range 0.841–0.866 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 2000); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of (I), with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. Please provide symmetry codes for suffixes A to C.
[Figure 2] Fig. 2. The hydrogen-bond network (dashed lines) of (I). Atoms labelled with the suffixes A, B or C are at the symmetry positions (x, y − 1, z), (1 − x, −y, 1 − z) or (1 − x, 1 − y, 1 − z), respectively. Please provide missing codes for suffixes D to H.
heptaaqua-1κ3O,2κ2O,3κ2O-(µ3-2,6- bis{[bis(carboxylatomethyl)amino]methyl}-4-chlorophenolato- 1κO;2κ4O,O',N,O1;3κ4O1N',O'',O''')dinickel(II)sodium(I) pentahydrate top
Crystal data top
[NaNi2(C16H14ClN2O9)(H2O)7]·5H2OZ = 2
Mr = 770.34F(000) = 800
Triclinic, P1Dx = 1.711 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.292 (3) ÅCell parameters from 2006 reflections
b = 11.564 (3) Åθ = 2.4–25.2°
c = 13.944 (4) ŵ = 1.45 mm1
α = 95.843 (3)°T = 183 K
β = 109.438 (3)°Columnar, blue
γ = 103.123 (3)°0.40 × 0.10 × 0.10 mm
V = 1495.4 (7) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5126 independent reflections
Radiation source: fine-focus sealed tube3733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1212
Tmin = 0.594, Tmax = 0.868k = 1312
6134 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
5086 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.89 e Å3
16 restraintsΔρmin = 0.72 e Å3
Crystal data top
[NaNi2(C16H14ClN2O9)(H2O)7]·5H2Oγ = 103.123 (3)°
Mr = 770.34V = 1495.4 (7) Å3
Triclinic, P1Z = 2
a = 10.292 (3) ÅMo Kα radiation
b = 11.564 (3) ŵ = 1.45 mm1
c = 13.944 (4) ÅT = 183 K
α = 95.843 (3)°0.40 × 0.10 × 0.10 mm
β = 109.438 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3733 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.868Rint = 0.026
6134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04716 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.89 e Å3
5086 reflectionsΔρmin = 0.72 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.74993 (19)0.41245 (17)0.16994 (15)0.0518 (6)
Ni10.42830 (6)0.28036 (5)0.24495 (4)0.02425 (16)
Ni20.35774 (6)0.03522 (4)0.29724 (4)0.02160 (15)
N10.2515 (3)0.2959 (3)0.1269 (3)0.0249 (8)
N20.4481 (3)0.1385 (3)0.2216 (3)0.0206 (8)
C10.2021 (5)0.0557 (4)0.1025 (3)0.0293 (11)
C20.1485 (4)0.0329 (4)0.0677 (3)0.0287 (11)
H20.07480.05820.11490.034*
C30.2041 (4)0.0844 (4)0.0376 (3)0.0249 (10)
C40.3133 (4)0.0470 (3)0.1071 (3)0.0223 (10)
C50.3665 (4)0.0412 (3)0.0693 (3)0.0225 (10)
C60.3094 (4)0.0923 (4)0.0357 (3)0.0284 (11)
H60.34500.15290.06120.034*
C70.1444 (4)0.1751 (4)0.0796 (3)0.0269 (10)
H710.10930.14410.13270.032*
H720.06140.18480.02290.032*
C80.3048 (4)0.3484 (4)0.0499 (3)0.0280 (11)
H810.31660.43660.06160.034*
H820.23270.31260.02060.034*
C90.4478 (5)0.3257 (4)0.0563 (4)0.0259 (10)
C100.1892 (5)0.3735 (4)0.1792 (3)0.0313 (11)
H110.08520.35550.13890.038*
H120.23440.45950.18150.038*
C110.2114 (5)0.3536 (4)0.2874 (4)0.0346 (12)
C120.4889 (4)0.0746 (4)0.1429 (3)0.0235 (10)
H130.56830.00030.17940.028*
H140.52420.12770.10320.028*
C130.3377 (4)0.2546 (3)0.1712 (3)0.0281 (11)
H150.35190.31340.21780.034*
H160.34910.28700.10680.034*
C140.1856 (5)0.2415 (4)0.1446 (3)0.0263 (10)
C150.5792 (4)0.1478 (4)0.3013 (3)0.0276 (11)
H170.64770.16060.26830.033*
H180.55500.21910.33240.033*
C160.6500 (5)0.0359 (4)0.3862 (3)0.0231 (10)
Cl10.12907 (13)0.12235 (12)0.23448 (9)0.0509 (4)
O10.3644 (3)0.0940 (2)0.2082 (2)0.0209 (6)
O20.4919 (3)0.3473 (3)0.0147 (2)0.0362 (8)
O30.5209 (3)0.2935 (2)0.1376 (2)0.0275 (7)
O40.1479 (4)0.4020 (3)0.3362 (3)0.0495 (10)
O50.3005 (3)0.2955 (2)0.3294 (2)0.0311 (7)
O60.0867 (3)0.3243 (3)0.0795 (2)0.0369 (8)
O70.1692 (3)0.1506 (2)0.1940 (2)0.0270 (7)
O80.7733 (3)0.0233 (3)0.4467 (2)0.0324 (7)
O90.5758 (3)0.0376 (2)0.3921 (2)0.0274 (7)
O1W0.6007 (3)0.2757 (2)0.36983 (17)0.0379 (8)
H210.62220.21220.38060.046*
H220.67150.31980.36190.046*
O2W0.5074 (3)0.4724 (2)0.2878 (2)0.0385 (8)
H230.51250.51090.34260.046*
H240.56270.51590.26690.046*
O3W0.2657 (4)0.0649 (3)0.3688 (2)0.0430 (9)
H250.26180.05920.42630.052*
H260.26320.13350.36050.052*
O4W0.3566 (3)0.1511 (2)0.4019 (2)0.0308 (7)
H270.36850.12470.46210.037*
H280.29220.21480.38260.037*
O5W0.6709 (3)0.5864 (2)0.1851 (2)0.0384 (8)
H290.61150.60840.13800.046*
H300.71540.65130.22840.046*
O6W0.8834 (3)0.4660 (3)0.0774 (3)0.0461 (9)
H310.89490.42230.03050.055*
H320.93580.53440.08090.055*
O7W0.8407 (3)0.4228 (3)0.3507 (3)0.0697 (12)
H330.91760.40770.37780.084*
H340.83990.48080.38910.084*
O8W0.9361 (3)0.7490 (3)0.2496 (3)0.0532 (10)
H350.99080.78350.22420.064*
H360.93650.79840.29670.064*
O9W0.9674 (3)0.8475 (3)0.4451 (3)0.0479 (9)
H371.04550.89910.46830.057*
H380.90720.88240.44810.057*
O10W0.5103 (3)0.6282 (3)0.4533 (2)0.0630 (11)
H390.47570.67080.49070.076*
H400.59190.63250.49390.076*
O11W0.1540 (4)0.6400 (3)0.3442 (3)0.0706 (12)
H410.07330.64910.32640.085*
H420.14480.56700.33100.085*
O12W0.1062 (5)0.3802 (4)0.5108 (3)0.140 (2)
H430.13710.40400.46720.168*
H440.15560.33860.54020.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0423 (13)0.0415 (12)0.0743 (15)0.0010 (10)0.0349 (12)0.0007 (11)
Ni10.0293 (3)0.0181 (3)0.0277 (3)0.0065 (2)0.0132 (3)0.0055 (2)
Ni20.0251 (3)0.0178 (3)0.0246 (3)0.0056 (2)0.0126 (3)0.0045 (2)
N10.028 (2)0.023 (2)0.034 (2)0.0127 (17)0.0185 (18)0.0116 (17)
N20.025 (2)0.0171 (18)0.022 (2)0.0047 (15)0.0121 (17)0.0029 (15)
C10.025 (3)0.032 (3)0.026 (3)0.002 (2)0.011 (2)0.001 (2)
C20.021 (3)0.030 (3)0.032 (3)0.001 (2)0.008 (2)0.012 (2)
C30.021 (2)0.021 (2)0.031 (3)0.0011 (19)0.013 (2)0.004 (2)
C40.023 (3)0.018 (2)0.029 (3)0.0004 (19)0.016 (2)0.006 (2)
C50.023 (2)0.018 (2)0.028 (3)0.0028 (19)0.013 (2)0.008 (2)
C60.026 (3)0.026 (3)0.035 (3)0.001 (2)0.018 (2)0.001 (2)
C70.021 (2)0.028 (3)0.033 (3)0.005 (2)0.012 (2)0.008 (2)
C80.034 (3)0.024 (2)0.030 (3)0.009 (2)0.016 (2)0.012 (2)
C90.028 (3)0.017 (2)0.032 (3)0.003 (2)0.013 (2)0.002 (2)
C100.037 (3)0.029 (3)0.042 (3)0.020 (2)0.023 (2)0.011 (2)
C110.048 (3)0.022 (3)0.043 (3)0.010 (2)0.028 (3)0.007 (2)
C120.023 (2)0.023 (2)0.028 (3)0.0058 (19)0.014 (2)0.005 (2)
C130.036 (3)0.013 (2)0.037 (3)0.004 (2)0.019 (2)0.000 (2)
C140.029 (3)0.027 (3)0.026 (3)0.004 (2)0.016 (2)0.010 (2)
C150.027 (3)0.022 (2)0.037 (3)0.011 (2)0.013 (2)0.006 (2)
C160.026 (3)0.025 (3)0.021 (3)0.007 (2)0.011 (2)0.009 (2)
Cl10.0445 (8)0.0669 (9)0.0283 (7)0.0047 (7)0.0091 (6)0.0080 (7)
O10.0291 (17)0.0145 (15)0.0182 (17)0.0042 (13)0.0093 (14)0.0016 (12)
O20.043 (2)0.043 (2)0.037 (2)0.0163 (16)0.0265 (17)0.0166 (16)
O30.0285 (18)0.0256 (17)0.0337 (19)0.0087 (14)0.0169 (15)0.0075 (14)
O40.076 (3)0.047 (2)0.058 (2)0.038 (2)0.049 (2)0.0192 (18)
O50.046 (2)0.0228 (17)0.0363 (19)0.0154 (15)0.0246 (17)0.0109 (15)
O60.0306 (19)0.0287 (18)0.040 (2)0.0065 (15)0.0116 (16)0.0058 (15)
O70.0266 (17)0.0231 (17)0.0332 (18)0.0040 (13)0.0161 (15)0.0033 (14)
O80.0234 (18)0.0415 (19)0.0306 (19)0.0101 (15)0.0074 (15)0.0060 (15)
O90.0299 (18)0.0242 (17)0.0284 (18)0.0070 (14)0.0114 (15)0.0053 (14)
O1W0.043 (2)0.0252 (17)0.041 (2)0.0038 (15)0.0103 (17)0.0131 (15)
O2W0.056 (2)0.0228 (17)0.041 (2)0.0032 (15)0.0298 (18)0.0015 (15)
O3W0.079 (3)0.0320 (19)0.047 (2)0.0282 (18)0.047 (2)0.0194 (16)
O4W0.0420 (19)0.0238 (16)0.0269 (18)0.0034 (14)0.0163 (15)0.0058 (14)
O5W0.045 (2)0.0318 (18)0.036 (2)0.0047 (15)0.0167 (17)0.0055 (15)
O6W0.044 (2)0.036 (2)0.065 (2)0.0074 (16)0.0328 (19)0.0017 (17)
O7W0.044 (2)0.056 (2)0.084 (3)0.0026 (19)0.000 (2)0.022 (2)
O8W0.047 (2)0.050 (2)0.062 (2)0.0021 (18)0.028 (2)0.0033 (19)
O9W0.039 (2)0.041 (2)0.062 (2)0.0094 (17)0.0193 (19)0.0021 (18)
O10W0.079 (3)0.073 (3)0.045 (2)0.041 (2)0.023 (2)0.003 (2)
O11W0.056 (3)0.026 (2)0.118 (3)0.0071 (18)0.018 (2)0.018 (2)
O12W0.277 (7)0.060 (3)0.105 (4)0.003 (4)0.133 (5)0.010 (3)
Geometric parameters (Å, º) top
Na1—O6W2.212 (3)C9—O31.279 (5)
Na1—O32.312 (3)C10—C111.499 (6)
Na1—O5W2.350 (3)C10—H110.9900
Na1—O7W2.358 (4)C10—H120.9900
Na1—Ni13.836 (2)C11—O41.260 (5)
Ni1—O32.025 (3)C11—O51.280 (5)
Ni1—O1W2.047 (3)C12—H130.9900
Ni1—O52.060 (3)C12—H140.9900
Ni1—O12.061 (2)C13—C141.531 (6)
Ni1—N12.066 (3)C13—H150.9900
Ni1—O2W2.130 (3)C13—H160.9900
Ni1—Ni23.7508 (11)C14—O61.242 (5)
Ni2—O3W2.031 (3)C14—O71.271 (5)
Ni2—O12.041 (3)C15—C161.514 (6)
Ni2—O72.047 (3)C15—H170.9900
Ni2—N22.075 (3)C15—H180.9900
Ni2—O4W2.081 (3)C16—O81.233 (5)
Ni2—O92.106 (3)C16—O91.279 (4)
N1—C101.479 (5)O1W—H210.8279
N1—C81.482 (5)O1W—H220.8371
N1—C71.493 (5)O2W—H230.8239
N2—C151.469 (5)O2W—H240.8194
N2—C131.473 (5)O3W—H250.8245
N2—C121.503 (5)O3W—H260.8185
C1—C61.370 (6)O4W—H270.8215
C1—C21.387 (6)O4W—H280.8203
C1—Cl11.753 (4)O5W—H290.8421
C2—C31.394 (6)O5W—H300.8398
C2—H20.9500O6W—H310.8411
C3—C41.405 (6)O6W—H320.8363
C3—C71.493 (5)O7W—H330.8224
C4—O11.334 (5)O7W—H340.8188
C4—C51.398 (5)O8W—H350.8140
C5—C61.390 (6)O8W—H360.8230
C5—C121.494 (5)O9W—H370.8227
C6—H60.9500O9W—H380.8220
C7—H710.9900O10W—H390.8902
C7—H720.9900O10W—H400.8292
C8—C91.528 (5)O11W—H410.8184
C8—H810.9900O11W—H420.8215
C8—H820.9900O12W—H430.8188
C9—O21.243 (4)O12W—H440.8189
O6W—Na1—O3136.44 (14)N1—C8—H82109.2
O6W—Na1—O5W99.45 (13)C9—C8—H82109.2
O3—Na1—O5W89.55 (11)H81—C8—H82107.9
O6W—Na1—O7W124.55 (14)O2—C9—O3123.1 (4)
O3—Na1—O7W97.07 (13)O2—C9—C8118.3 (4)
O5W—Na1—O7W93.02 (12)O3—C9—C8118.5 (4)
O3—Ni1—O1W99.39 (10)N1—C10—C11111.6 (3)
O3—Ni1—O5163.68 (12)N1—C10—H11109.3
O1W—Ni1—O594.57 (10)C11—C10—H11109.3
O3—Ni1—O192.51 (10)N1—C10—H12109.3
O1W—Ni1—O190.26 (10)C11—C10—H12109.3
O5—Ni1—O195.86 (10)H11—C10—H12108.0
O3—Ni1—N183.84 (12)O4—C11—O5122.3 (4)
O1W—Ni1—N1175.21 (10)O4—C11—C10118.2 (4)
O5—Ni1—N181.74 (12)O5—C11—C10119.4 (4)
O1—Ni1—N193.14 (12)C5—C12—N2112.5 (3)
O3—Ni1—O2W86.61 (10)C5—C12—H13109.1
O1W—Ni1—O2W86.50 (12)N2—C12—H13109.1
O5—Ni1—O2W85.84 (11)C5—C12—H14109.1
O1—Ni1—O2W176.46 (12)N2—C12—H14109.1
N1—Ni1—O2W90.17 (13)H13—C12—H14107.8
O3W—Ni2—O185.72 (11)N2—C13—C14112.2 (3)
O3W—Ni2—O795.86 (12)N2—C13—H15109.2
O1—Ni2—O795.19 (11)C14—C13—H15109.2
O3W—Ni2—N2178.87 (14)N2—C13—H16109.2
O1—Ni2—N293.93 (11)C14—C13—H16109.2
O7—Ni2—N283.10 (12)H15—C13—H16107.9
O3W—Ni2—O4W89.21 (11)O6—C14—O7125.0 (4)
O1—Ni2—O4W173.55 (11)O6—C14—C13116.8 (4)
O7—Ni2—O4W89.29 (11)O7—C14—C13118.0 (4)
N2—Ni2—O4W91.21 (12)N2—C15—C16112.4 (3)
O3W—Ni2—O9100.91 (12)N2—C15—H17109.1
O1—Ni2—O992.69 (10)C16—C15—H17109.1
O7—Ni2—O9161.94 (11)N2—C15—H18109.1
N2—Ni2—O980.17 (12)C16—C15—H18109.1
O4W—Ni2—O984.34 (11)H17—C15—H18107.9
C10—N1—C8114.9 (3)O8—C16—O9124.3 (4)
C10—N1—C7108.9 (3)O8—C16—C15118.2 (4)
C8—N1—C7111.3 (3)O9—C16—C15117.5 (4)
C10—N1—Ni1104.2 (3)C4—O1—Ni2112.6 (2)
C8—N1—Ni1106.7 (2)C4—O1—Ni1115.1 (2)
C7—N1—Ni1110.5 (2)Ni2—O1—Ni1132.22 (13)
C15—N2—C13114.7 (3)C9—O3—Ni1113.7 (3)
C15—N2—C12108.7 (3)C9—O3—Na1101.5 (2)
C13—N2—C12111.0 (3)Ni1—O3—Na1124.26 (15)
C15—N2—Ni2106.2 (2)C11—O5—Ni1110.1 (3)
C13—N2—Ni2106.2 (2)C14—O7—Ni2113.6 (3)
C12—N2—Ni2109.8 (2)C16—O9—Ni2112.3 (3)
C6—C1—C2121.2 (4)Ni1—O1W—H21122.4
C6—C1—Cl1119.8 (3)Ni1—O1W—H22104.5
C2—C1—Cl1119.0 (4)H21—O1W—H22104.9
C1—C2—C3119.2 (4)Ni1—O2W—H23123.3
C1—C2—H2120.4Ni1—O2W—H24126.1
C3—C2—H2120.4H23—O2W—H24107.0
C2—C3—C4120.2 (4)Ni2—O3W—H25124.0
C2—C3—C7121.2 (4)Ni2—O3W—H26123.2
C4—C3—C7118.6 (4)H25—O3W—H26107.0
O1—C4—C5120.4 (4)Ni2—O4W—H27120.3
O1—C4—C3120.4 (4)Ni2—O4W—H28117.6
C5—C4—C3119.2 (4)H27—O4W—H28107.1
C6—C5—C4120.0 (4)Na1—O5W—H29127.0
C6—C5—C12121.3 (4)Na1—O5W—H30126.9
C4—C5—C12118.7 (4)H29—O5W—H30102.3
C1—C6—C5120.2 (4)Na1—O6W—H31128.4
C1—C6—H6119.9Na1—O6W—H32128.6
C5—C6—H6119.9H31—O6W—H32102.9
C3—C7—N1113.1 (3)Na1—O7W—H33119.1
C3—C7—H71109.0Na1—O7W—H34119.2
N1—C7—H71109.0H33—O7W—H34107.2
C3—C7—H72109.0H35—O8W—H36107.8
N1—C7—H72109.0H37—O9W—H38106.7
H71—C7—H72107.8H39—O10W—H40104.0
N1—C8—C9112.2 (3)H41—O11W—H42107.3
N1—C8—H81109.2H43—O12W—H44107.3
C9—C8—H81109.2
O3—Ni1—N1—C10141.0 (2)C12—N2—C15—C1685.6 (4)
O5—Ni1—N1—C1031.3 (2)Ni2—N2—C15—C1632.5 (4)
O1—Ni1—N1—C10126.8 (2)N2—C15—C16—O8167.0 (3)
O2W—Ni1—N1—C1054.4 (2)N2—C15—C16—O915.2 (5)
O3—Ni1—N1—C819.0 (2)C5—C4—O1—Ni252.9 (4)
O5—Ni1—N1—C8153.3 (3)C3—C4—O1—Ni2126.2 (3)
O1—Ni1—N1—C8111.2 (2)C5—C4—O1—Ni1129.0 (3)
O2W—Ni1—N1—C867.6 (2)C3—C4—O1—Ni151.9 (4)
O3—Ni1—N1—C7102.2 (2)O3W—Ni2—O1—C4131.2 (3)
O5—Ni1—N1—C785.5 (2)O7—Ni2—O1—C435.7 (3)
O1—Ni1—N1—C710.0 (2)N2—Ni2—O1—C447.7 (3)
O2W—Ni1—N1—C7171.3 (2)O9—Ni2—O1—C4128.1 (3)
O1—Ni2—N2—C15121.4 (2)O3W—Ni2—O1—Ni146.49 (19)
O7—Ni2—N2—C15143.8 (2)O7—Ni2—O1—Ni1142.00 (17)
O4W—Ni2—N2—C1554.7 (2)N2—Ni2—O1—Ni1134.58 (18)
O9—Ni2—N2—C1529.3 (2)O9—Ni2—O1—Ni154.26 (18)
O1—Ni2—N2—C13116.0 (2)O3—Ni1—O1—C441.3 (3)
O7—Ni2—N2—C1321.2 (2)O1W—Ni1—O1—C4140.7 (3)
O4W—Ni2—N2—C1367.9 (3)O5—Ni1—O1—C4124.6 (3)
O9—Ni2—N2—C13152.0 (3)N1—Ni1—O1—C442.6 (3)
O1—Ni2—N2—C124.1 (2)O3—Ni1—O1—Ni2141.03 (18)
O7—Ni2—N2—C1298.8 (2)O1W—Ni1—O1—Ni241.62 (17)
O4W—Ni2—N2—C12172.0 (2)O5—Ni1—O1—Ni253.00 (19)
O9—Ni2—N2—C1288.0 (2)N1—Ni1—O1—Ni2135.01 (18)
C6—C1—C2—C30.7 (6)O2—C9—O3—Ni1174.5 (3)
Cl1—C1—C2—C3178.6 (3)C8—C9—O3—Ni10.5 (4)
C1—C2—C3—C40.2 (6)O2—C9—O3—Na138.7 (4)
C1—C2—C3—C7176.6 (3)C8—C9—O3—Na1136.3 (3)
C2—C3—C4—O1178.4 (3)O1W—Ni1—O3—C9164.9 (3)
C7—C3—C4—O11.5 (5)O5—Ni1—O3—C916.5 (6)
C2—C3—C4—C50.8 (6)O1—Ni1—O3—C9104.4 (3)
C7—C3—C4—C5177.7 (3)N1—Ni1—O3—C911.5 (3)
O1—C4—C5—C6178.0 (3)O2W—Ni1—O3—C979.0 (3)
C3—C4—C5—C61.2 (5)O1W—Ni1—O3—Na140.65 (18)
O1—C4—C5—C124.7 (5)O5—Ni1—O3—Na1107.8 (4)
C3—C4—C5—C12176.2 (3)O1—Ni1—O3—Na1131.32 (17)
C2—C1—C6—C50.3 (6)N1—Ni1—O3—Na1135.78 (18)
Cl1—C1—C6—C5179.0 (3)O2W—Ni1—O3—Na145.24 (17)
C4—C5—C6—C10.7 (6)O6W—Na1—O3—C943.9 (3)
C12—C5—C6—C1176.6 (4)O5W—Na1—O3—C959.4 (2)
C2—C3—C7—N1117.8 (4)O7W—Na1—O3—C9152.4 (2)
C4—C3—C7—N165.3 (5)O6W—Na1—O3—Ni1173.34 (16)
C10—N1—C7—C3172.0 (3)O5W—Na1—O3—Ni170.04 (17)
C8—N1—C7—C360.3 (4)O7W—Na1—O3—Ni122.95 (19)
Ni1—N1—C7—C358.1 (4)O4—C11—O5—Ni1161.2 (3)
C10—N1—C8—C9138.3 (4)C10—C11—O5—Ni114.0 (5)
C7—N1—C8—C997.3 (4)O3—Ni1—O5—C111.9 (6)
Ni1—N1—C8—C923.4 (4)O1W—Ni1—O5—C11150.7 (3)
N1—C8—C9—O2168.3 (3)O1—Ni1—O5—C11118.6 (3)
N1—C8—C9—O316.4 (5)N1—Ni1—O5—C1126.2 (3)
C8—N1—C10—C11149.0 (4)O2W—Ni1—O5—C1164.5 (3)
C7—N1—C10—C1185.3 (4)O6—C14—O7—Ni2178.7 (3)
Ni1—N1—C10—C1132.6 (4)C13—C14—O7—Ni22.3 (4)
N1—C10—C11—O4171.0 (4)O3W—Ni2—O7—C14169.2 (3)
N1—C10—C11—O513.6 (6)O1—Ni2—O7—C14104.5 (3)
C6—C5—C12—N2115.0 (4)N2—Ni2—O7—C1411.2 (3)
C4—C5—C12—N267.7 (4)O4W—Ni2—O7—C1480.1 (3)
C15—N2—C12—C5169.8 (3)O9—Ni2—O7—C1411.0 (5)
C13—N2—C12—C563.1 (4)O8—C16—O9—Ni2166.8 (3)
Ni2—N2—C12—C554.0 (4)C15—C16—O9—Ni210.9 (4)
C15—N2—C13—C14144.7 (4)O3W—Ni2—O9—C16157.0 (3)
C12—N2—C13—C1491.6 (4)O1—Ni2—O9—C16116.9 (3)
Ni2—N2—C13—C1427.7 (4)O7—Ni2—O9—C161.0 (5)
N2—C13—C14—O6161.9 (3)N2—Ni2—O9—C1623.4 (3)
N2—C13—C14—O721.4 (5)O4W—Ni2—O9—C1668.9 (3)
C13—N2—C15—C16149.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H21···O90.832.002.766 (4)153
O1W—H22···O7W0.841.942.773 (4)177
O2W—H23···O10W0.821.962.767 (4)167
O2W—H24···O5W0.821.962.757 (4)165
O3W—H25···O8i0.821.992.804 (4)171
O3W—H26···O50.821.952.746 (4)165
O4W—H27···O9i0.822.002.818 (4)170
O4W—H28···O11Wii0.821.832.652 (4)177
O5W—H29···O2iii0.841.892.711 (4)166
O5W—H30···O8W0.842.202.735 (4)122
O6W—H31···O6iv0.841.902.741 (4)177
O6W—H32···O6v0.841.992.810 (4)167
O7W—H33···O12Wvi0.822.313.077 (6)157
O7W—H34···O12Wvii0.821.862.656 (5)164
O8W—H35···O7v0.812.022.805 (4)162
O8W—H36···O9W0.821.992.728 (5)150
O9W—H37···O8viii0.821.982.787 (4)167
O9W—H38···O8ix0.821.942.757 (4)174
O10W—H39···O1Wvii0.892.403.243 (3)157
O10W—H40···O5vii0.832.312.915 (4)130
O11W—H41···O8Wx0.822.112.830 (5)146
O11W—H42···O40.821.922.728 (4)166
O12W—H43···O40.821.862.636 (5)157
O12W—H44···O9Wvii0.822.302.760 (5)116
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+2, y+1, z+1; (ix) x, y+1, z; (x) x1, y, z.

Experimental details

Crystal data
Chemical formula[NaNi2(C16H14ClN2O9)(H2O)7]·5H2O
Mr770.34
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)10.292 (3), 11.564 (3), 13.944 (4)
α, β, γ (°)95.843 (3), 109.438 (3), 103.123 (3)
V3)1495.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.594, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
6134, 5126, 3733
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.081, 1.00
No. of reflections5086
No. of parameters388
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.72

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 2000), SHELXL97 (Sheldrick, 2000), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Na1—O6W2.212 (3)Ni1—N12.066 (3)
Na1—O32.312 (3)Ni1—O2W2.130 (3)
Na1—O5W2.350 (3)Ni1—Ni23.7508 (11)
Na1—O7W2.358 (4)Ni2—O3W2.031 (3)
Na1—Ni13.836 (2)Ni2—O12.041 (3)
Ni1—O32.025 (3)Ni2—O72.047 (3)
Ni1—O1W2.047 (3)Ni2—N22.075 (3)
Ni1—O52.060 (3)Ni2—O4W2.081 (3)
Ni1—O12.061 (2)Ni2—O92.106 (3)
O6W—Na1—O3136.44 (14)O1—Ni1—O2W176.46 (12)
O6W—Na1—O5W99.45 (13)N1—Ni1—O2W90.17 (13)
O3—Na1—O5W89.55 (11)O3W—Ni2—O185.72 (11)
O6W—Na1—O7W124.55 (14)O3W—Ni2—O795.86 (12)
O3—Na1—O7W97.07 (13)O1—Ni2—O795.19 (11)
O5W—Na1—O7W93.02 (12)O3W—Ni2—N2178.87 (14)
O3—Ni1—O1W99.39 (10)O1—Ni2—N293.93 (11)
O3—Ni1—O5163.68 (12)O7—Ni2—N283.10 (12)
O1W—Ni1—O594.57 (10)O3W—Ni2—O4W89.21 (11)
O3—Ni1—O192.51 (10)O1—Ni2—O4W173.55 (11)
O1W—Ni1—O190.26 (10)O7—Ni2—O4W89.29 (11)
O5—Ni1—O195.86 (10)N2—Ni2—O4W91.21 (12)
O3—Ni1—N183.84 (12)O3W—Ni2—O9100.91 (12)
O1W—Ni1—N1175.21 (10)O1—Ni2—O992.69 (10)
O5—Ni1—N181.74 (12)O7—Ni2—O9161.94 (11)
O1—Ni1—N193.14 (12)N2—Ni2—O980.17 (12)
O3—Ni1—O2W86.61 (10)O4W—Ni2—O984.34 (11)
O1W—Ni1—O2W86.50 (12)Ni2—O1—Ni1132.22 (13)
O5—Ni1—O2W85.84 (11)Ni1—O3—Na1124.26 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H21···O90.832.002.766 (4)153
O1W—H22···O7W0.841.942.773 (4)177
O2W—H23···O10W0.821.962.767 (4)167
O2W—H24···O5W0.821.962.757 (4)165
O3W—H25···O8i0.821.992.804 (4)171
O3W—H26···O50.821.952.746 (4)165
O4W—H27···O9i0.822.002.818 (4)170
O4W—H28···O11Wii0.821.832.652 (4)177
O5W—H29···O2iii0.841.892.711 (4)166
O5W—H30···O8W0.842.202.735 (4)122
O6W—H31···O6iv0.841.902.741 (4)177
O6W—H32···O6v0.841.992.810 (4)167
O7W—H33···O12Wvi0.822.313.077 (6)157
O7W—H34···O12Wvii0.821.862.656 (5)164
O8W—H35···O7v0.812.022.805 (4)162
O8W—H36···O9W0.821.992.728 (5)150
O9W—H37···O8viii0.821.982.787 (4)167
O9W—H38···O8ix0.821.942.757 (4)174
O10W—H39···O1Wvii0.892.403.243 (3)157
O10W—H40···O5vii0.832.312.915 (4)130
O11W—H41···O8Wx0.822.112.830 (5)146
O11W—H42···O40.821.922.728 (4)166
O12W—H43···O40.821.862.636 (5)157
O12W—H44···O9Wvii0.822.302.760 (5)116
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+2, y+1, z+1; (ix) x, y+1, z; (x) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds