Download citation
Download citation
link to html
The hydro­thermal reaction of an aqueous solution of Cu(CH3COO)2·H2O, 1,2,4,5-benzene­tetra­carboxylic acid and 4,4′-bi­pyridine gave rise to the interesting title three-dimensional polymer {[Cu6(btec)3(4,4′-bpy)3(H2O)2]·2H2O}n (btec is 1,2,4,5-benzene­tetra­carboxyl­ate, C10H2O84−, and 4,4′-bpy is 4,4′-bi­pyridine, C10H8N2), in which each btec ligand links six copper(II) cations into a lamellar [Cu6(btec)3(H2O)2]n sub­polymer framework. There are two distinct diamine units and two distinct carboxylate units, with one of each lying across an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104008273/av1177sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008273/av1177Isup2.hkl
Contains datablock I

CCDC reference: 243584

Comment top

The design of metal-organic materials with large tunnels and cavities has been extensively developed, due to their intriguing structural diversities and potential applications as microporous solids for molecular adsorption, ion exchange and heterogeneous catalysis. Recent elaboration has shown that hydrothermal reaction at relatively low temperature and autogeneous pressure provides a powerful tool for the construction of such materials. In particular, multidentate benzenecarboxylate ligands and the rod-like 4,4'-bpy ligand have been shown to be good building blocks in the design of materials with desired topologies under the hydrothermal reaction. Recently, some compounds constructed by 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,4'-bpy have been reported (Cao et al., 2002; Wu et al., 2001, 2002). Here, we present the title novel compound, (I), {[Cu6(btec)3(4,4'-bpy)3(H2O)2]·2H2O}n. \sch

The present crystal structure analysis reveals that (I) is a neutral three-dimensional polymer, which is very different from the structure of [Cu2(btec)4/4{Cu(Hbtec)2/2(4,4-Hbpy)(H2O)2}2·4H2O]n (Cao et al., 2002). The hexanuclear species [Cu6(btec)3(4,4'-bpy)3(H2O)2] constitutes the basic building block (Fig.1).

The most interesting feature of (I) is that the btec ligands exhibit two different coordination modes. One has a symmetric coordination mode, with two para carboxylate groups linking four Cu1 ions in a bidentate bridging coordination, with the Cu1—Cu1i distance being 2.8246 (14) Å [symmetry code: (i) 2 − x, 1 − y, 1 − z], while the remaining two carboxylate groups link the two Cu3 ions in the axial positions in a monodentate mode. The other btec ligand has an asymmetric coordination mode, with each para carboxylate group linking atoms Cu2 and Cu3 in a bidentate bridging coordination, with a Cu2—Cu3 distance of 3.0464 (10) Å, while the remaining two carboxylate groups link atoms Cu2 and Cu1 in axial positions in a monodentate mode (Figs. 1 and 2).

Atom Cu1 adopts a distorted tetrahedral coordination environment, consisting of one 4,4'-bpy N donor and three carboxylate O atoms. Atom Cu2 has a coordination mode similar to that for Cu1, except that these three carboxylate O atoms are all from three asymmetrically coordinated btec ligands. Atom Cu3 has a square-pyramidal coordination, with the basal plane consisting of one N donor and three O donors from three carboxylate groups of three individual btec anions. The apical site is occupied by an O donor from a coordinated water molecule.

As shown in Fig.2, each btec ligand connects another four asymmetrically and two symmetrically coordinated ligands by six CuII cations into an infinite two-dimensional lamellar [Cu6(btec)3(H2O)2]n subpolymer framework. These lamellae are integrated by 4,4'-bpy ligands to form a three-dimensional architecture, with vacancy dimensions of about 5.8 × 10.9 Å (Fig.3). These vacancies are filled with water molecules.

Experimental top

A mixture of Cu(CH3COO)2·H2O (0.303 g,1.5 mmol), 1,2,4,5-benzenetetracarboxylic acid (0.064 g, 0.25 mmol) and 4,4'-bpy (0.039 g, 0.25 mmol) was dissolved in H2O (18 ml) and kept at 418 K for 3 d in a 23 ml Teflon-lined bomb. After slow cooling of the reaction mixture to room temperature, blue crystals of (I) appeared.

Refinement top

H atoms bonded to C atoms were located theoretically, with C—H distances of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Please check added text. H atoms bonded to O atoms were located in difference maps and refined isotropically; the four O—H distances involving the water molecules were restrained from 0.79 to 0.82 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the ??% probability level and H atoms have been omitted for clarity [symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) x, 1 + y, z; (iii) 2 − x, 2 − y, 1 − z; (iv) 2 − x, 1 − y, −z].
[Figure 2] Fig. 2. A view of a lamellar sheet in (I), down the [100] face of the subpolymer.
[Figure 3] Fig. 3. The packing structure in (I), viewed along the [001] face.
Poly[[diaquatris(µ6-benzene-1,2,4,5-tetracarboxylato)tris(µ2-4,4'- bipyridine)hexacopper(II)] dihydrate] top
Crystal data top
[Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2OZ = 1
Mr = 1672.20F(000) = 838
Triclinic, P1Dx = 1.976 Mg m3
a = 10.2545 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8207 (8) ÅCell parameters from 2833 reflections
c = 13.7264 (10) Åθ = 1.5–25.1°
α = 91.305 (1)°µ = 2.34 mm1
β = 90.461 (2)°T = 293 K
γ = 112.655 (2)°Prism, blue
V = 1404.97 (17) Å30.36 × 0.20 × 0.16 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4938 independent reflections
Radiation source: fine-focus sealed tube3554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 812
Tmin = 0.523, Tmax = 0.688k = 1112
7378 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4938 reflections(Δ/σ)max = 0.006
463 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2Oγ = 112.655 (2)°
Mr = 1672.20V = 1404.97 (17) Å3
Triclinic, P1Z = 1
a = 10.2545 (7) ÅMo Kα radiation
b = 10.8207 (8) ŵ = 2.34 mm1
c = 13.7264 (10) ÅT = 293 K
α = 91.305 (1)°0.36 × 0.20 × 0.16 mm
β = 90.461 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3554 reflections with I > 2σ(I)
Tmin = 0.523, Tmax = 0.688Rint = 0.036
7378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.86 e Å3
4938 reflectionsΔρmin = 0.55 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85137 (7)0.44331 (7)0.50733 (5)0.0173 (2)
Cu20.88223 (8)0.12335 (7)0.19502 (5)0.0190 (2)
Cu31.19740 (8)0.24913 (7)0.15456 (5)0.0218 (2)
O10.9421 (4)0.4765 (4)0.3818 (3)0.0205 (9)
O1W1.4814 (6)0.0578 (6)0.1287 (4)0.0459 (15)
H1WA1.430 (9)0.015 (8)0.097 (6)0.069*
H1WB1.547 (10)0.082 (9)0.097 (6)0.069*
O20.7331 (5)0.4742 (4)0.3371 (3)0.0293 (11)
O2W1.4004 (5)0.2611 (5)0.1941 (3)0.0291 (11)
H2WB1.390 (8)0.251 (7)0.255 (5)0.044*
H2WA1.437 (8)0.211 (7)0.177 (5)0.044*
O30.9062 (4)0.9559 (4)0.1982 (3)0.0203 (9)
O41.1232 (4)1.0313 (4)0.1349 (3)0.0195 (9)
O51.0722 (5)0.8573 (4)0.0563 (3)0.0217 (10)
O61.2825 (5)0.8663 (4)0.0051 (3)0.0321 (11)
O71.1304 (4)0.3977 (4)0.1492 (3)0.0220 (10)
O80.9049 (4)0.3103 (4)0.2000 (3)0.0206 (9)
O110.8853 (4)0.6372 (4)0.5197 (3)0.0184 (9)
O121.1173 (4)0.7244 (4)0.4845 (3)0.0183 (9)
O131.1202 (4)1.2093 (4)0.2852 (3)0.0195 (9)
O141.3088 (5)1.2185 (4)0.3729 (3)0.0288 (11)
N10.7105 (5)0.3978 (5)0.6105 (3)0.0201 (11)
N20.2702 (5)0.2803 (5)1.0193 (3)0.0219 (12)
N30.7430 (5)0.0756 (5)0.3046 (3)0.0183 (11)
C10.6215 (7)0.4603 (6)0.6188 (4)0.0246 (14)
H10.62200.52030.57120.030*
C20.5282 (7)0.4399 (6)0.6951 (4)0.0249 (15)
H20.46800.48580.69840.030*
C30.5259 (6)0.3509 (6)0.7659 (4)0.0206 (13)
C40.6180 (6)0.2843 (6)0.7565 (4)0.0242 (15)
H40.61900.22310.80270.029*
C50.7065 (7)0.3095 (6)0.6792 (4)0.0268 (15)
H50.76650.26370.67360.032*
C60.4324 (6)0.3265 (6)0.8515 (4)0.0208 (13)
C70.3892 (7)0.4246 (6)0.8910 (4)0.0268 (15)
H70.41340.50650.86100.032*
C80.3109 (7)0.3994 (6)0.9743 (4)0.0239 (14)
H80.28490.46631.00080.029*
C90.3079 (7)0.1866 (6)0.9788 (4)0.0232 (14)
H90.27840.10391.00810.028*
C100.3876 (7)0.2042 (6)0.8966 (4)0.0263 (15)
H100.41110.13510.87160.032*
C210.9319 (6)0.5839 (5)0.2369 (4)0.0148 (12)
C220.9316 (6)0.7111 (6)0.2302 (4)0.0177 (13)
H220.87900.73860.27420.021*
C231.0074 (6)0.7988 (5)0.1599 (4)0.0154 (12)
C241.0800 (6)0.7546 (6)0.0906 (4)0.0163 (13)
C251.0817 (6)0.6285 (6)0.0973 (4)0.0187 (13)
H251.13200.60020.05200.022*
C261.0096 (6)0.5413 (6)0.1711 (4)0.0155 (13)
C270.8576 (7)0.5019 (5)0.3224 (4)0.0174 (13)
C281.0127 (6)0.9408 (6)0.1624 (4)0.0151 (12)
C291.1537 (7)0.8365 (6)0.0038 (4)0.0219 (15)
C301.0159 (6)0.4060 (6)0.1737 (4)0.0169 (13)
C310.6705 (7)0.1526 (6)0.3265 (4)0.0244 (14)
H310.68490.22740.28930.029*
C320.5753 (7)0.1260 (6)0.4018 (4)0.0231 (14)
H320.52900.18330.41460.028*
C330.5483 (6)0.0136 (6)0.4587 (4)0.0209 (13)
C340.6209 (7)0.0671 (6)0.4333 (4)0.0258 (15)
H340.60600.14400.46810.031*
C350.7145 (7)0.0356 (6)0.3576 (4)0.0224 (14)
H350.75990.09300.34220.027*
C361.0002 (6)0.7313 (5)0.5032 (4)0.0148 (13)
C370.9987 (6)0.8695 (5)0.5033 (4)0.0149 (12)
C381.0841 (6)0.9638 (6)0.4377 (4)0.0186 (13)
H381.14210.93960.39620.022*
C391.0839 (6)1.0899 (6)0.4332 (4)0.0169 (13)
C401.1799 (7)1.1836 (6)0.3590 (4)0.0170 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0218 (4)0.0142 (4)0.0182 (4)0.0091 (3)0.0109 (3)0.0045 (3)
Cu20.0272 (5)0.0142 (4)0.0181 (4)0.0103 (3)0.0133 (3)0.0052 (3)
Cu30.0310 (5)0.0239 (4)0.0170 (4)0.0172 (4)0.0133 (3)0.0078 (3)
O10.029 (2)0.020 (2)0.015 (2)0.0114 (19)0.0104 (18)0.0041 (17)
O1W0.037 (3)0.055 (4)0.048 (3)0.020 (3)0.011 (3)0.010 (3)
O20.022 (3)0.036 (3)0.031 (3)0.012 (2)0.011 (2)0.015 (2)
O2W0.029 (3)0.044 (3)0.020 (2)0.019 (2)0.014 (2)0.003 (2)
O30.030 (2)0.013 (2)0.022 (2)0.0128 (19)0.0100 (18)0.0023 (17)
O40.025 (2)0.013 (2)0.023 (2)0.0097 (19)0.0141 (18)0.0029 (17)
O50.033 (3)0.021 (2)0.018 (2)0.017 (2)0.0142 (19)0.0098 (18)
O60.029 (3)0.032 (3)0.034 (3)0.011 (2)0.017 (2)0.008 (2)
O70.029 (3)0.016 (2)0.025 (2)0.014 (2)0.0114 (19)0.0049 (18)
O80.027 (2)0.011 (2)0.025 (2)0.0073 (19)0.0154 (19)0.0044 (17)
O110.026 (2)0.012 (2)0.019 (2)0.0094 (19)0.0113 (18)0.0027 (17)
O120.021 (2)0.012 (2)0.025 (2)0.0083 (18)0.0103 (18)0.0048 (17)
O130.023 (2)0.023 (2)0.014 (2)0.0102 (19)0.0127 (17)0.0086 (17)
O140.023 (3)0.035 (3)0.026 (2)0.007 (2)0.009 (2)0.012 (2)
N10.023 (3)0.017 (3)0.021 (3)0.008 (2)0.010 (2)0.004 (2)
N20.026 (3)0.022 (3)0.017 (3)0.009 (2)0.007 (2)0.005 (2)
N30.022 (3)0.019 (3)0.015 (2)0.010 (2)0.005 (2)0.002 (2)
C10.029 (4)0.027 (4)0.024 (3)0.017 (3)0.010 (3)0.008 (3)
C20.027 (4)0.027 (4)0.027 (3)0.017 (3)0.015 (3)0.009 (3)
C30.020 (3)0.019 (3)0.020 (3)0.005 (3)0.006 (3)0.001 (3)
C40.023 (3)0.034 (4)0.019 (3)0.014 (3)0.012 (3)0.012 (3)
C50.025 (4)0.033 (4)0.030 (4)0.019 (3)0.010 (3)0.002 (3)
C60.018 (3)0.029 (4)0.015 (3)0.008 (3)0.005 (2)0.002 (3)
C70.032 (4)0.027 (4)0.020 (3)0.009 (3)0.015 (3)0.012 (3)
C80.026 (4)0.028 (4)0.024 (3)0.017 (3)0.014 (3)0.004 (3)
C90.031 (4)0.020 (3)0.023 (3)0.015 (3)0.009 (3)0.003 (3)
C100.030 (4)0.024 (4)0.025 (3)0.010 (3)0.012 (3)0.000 (3)
C210.021 (3)0.012 (3)0.012 (3)0.007 (3)0.008 (2)0.007 (2)
C220.022 (3)0.017 (3)0.013 (3)0.007 (3)0.008 (2)0.000 (2)
C230.018 (3)0.014 (3)0.016 (3)0.008 (3)0.005 (2)0.003 (2)
C240.014 (3)0.015 (3)0.016 (3)0.000 (2)0.010 (2)0.007 (2)
C250.027 (3)0.019 (3)0.013 (3)0.011 (3)0.012 (3)0.005 (2)
C260.021 (3)0.020 (3)0.009 (3)0.012 (3)0.007 (2)0.000 (2)
C270.032 (4)0.011 (3)0.015 (3)0.014 (3)0.005 (3)0.002 (2)
C280.027 (3)0.018 (3)0.003 (2)0.011 (3)0.004 (2)0.003 (2)
C290.037 (4)0.008 (3)0.017 (3)0.005 (3)0.015 (3)0.003 (2)
C300.028 (4)0.017 (3)0.007 (3)0.010 (3)0.005 (2)0.003 (2)
C310.024 (3)0.018 (3)0.031 (4)0.007 (3)0.008 (3)0.001 (3)
C320.031 (4)0.020 (3)0.024 (3)0.015 (3)0.013 (3)0.009 (3)
C330.026 (3)0.025 (3)0.015 (3)0.013 (3)0.001 (3)0.001 (3)
C340.030 (4)0.025 (4)0.028 (3)0.015 (3)0.013 (3)0.010 (3)
C350.027 (4)0.019 (3)0.026 (3)0.014 (3)0.014 (3)0.007 (3)
C360.028 (4)0.016 (3)0.003 (2)0.011 (3)0.007 (2)0.003 (2)
C370.021 (3)0.012 (3)0.013 (3)0.007 (3)0.004 (2)0.002 (2)
C380.023 (3)0.017 (3)0.017 (3)0.008 (3)0.007 (2)0.002 (2)
C390.025 (3)0.018 (3)0.009 (3)0.010 (3)0.001 (2)0.000 (2)
C400.029 (4)0.016 (3)0.013 (3)0.016 (3)0.007 (3)0.000 (2)
Geometric parameters (Å, º) top
Cu1—O11.939 (4)C1—H10.9300
Cu1—N11.963 (5)C2—C31.378 (8)
Cu1—O12i1.966 (4)C2—H20.9300
Cu1—O111.993 (4)C3—C41.396 (8)
Cu1—Cu1i2.8245 (14)C3—C61.486 (8)
Cu2—O3ii1.922 (4)C4—C51.365 (8)
Cu2—O81.945 (4)C4—H40.9300
Cu2—O5iii1.961 (4)C5—H50.9300
Cu2—N32.017 (5)C6—C101.385 (8)
Cu2—Cu33.0464 (10)C6—C71.399 (9)
Cu3—O13ii1.955 (4)C7—C81.374 (8)
Cu3—O71.979 (4)C7—H70.9300
Cu3—N2iv1.994 (5)C8—H80.9300
Cu3—O2W2.102 (5)C9—C101.371 (8)
Cu3—O4ii2.190 (4)C9—H90.9300
O1—C271.294 (7)C10—H100.9300
O1W—H1WA0.86 (8)C21—C221.383 (8)
O1W—H1WB0.76 (9)C21—C261.392 (7)
O2—C271.213 (7)C21—C271.512 (7)
O2W—H2WB0.85 (7)C22—C231.386 (7)
O2W—H2WA0.80 (7)C22—H220.9300
O3—C281.266 (7)C23—C241.399 (8)
O3—Cu2v1.922 (4)C23—C281.516 (7)
O4—C281.247 (7)C24—C251.376 (8)
O4—Cu3v2.190 (4)C24—C291.524 (7)
O5—C291.254 (8)C25—C261.408 (7)
O5—Cu2iii1.961 (4)C25—H250.9300
O6—C291.240 (8)C26—C301.491 (7)
O7—C301.260 (7)C31—C321.384 (8)
O8—C301.271 (7)C31—H310.9300
O11—C361.251 (7)C32—C331.398 (8)
O12—C361.260 (7)C32—H320.9300
O12—Cu1i1.966 (4)C33—C341.389 (8)
O13—C401.270 (7)C33—C33vii1.471 (11)
O13—Cu3v1.955 (4)C34—C351.377 (8)
O14—C401.239 (7)C34—H340.9300
N1—C11.333 (7)C35—H350.9300
N1—C51.347 (7)C36—C371.501 (7)
N2—C91.329 (7)C37—C39viii1.397 (8)
N2—C81.357 (7)C37—C381.409 (7)
N2—Cu3vi1.994 (5)C38—C391.367 (8)
N3—C311.344 (7)C38—H380.9300
N3—C351.354 (7)C39—C37viii1.397 (8)
C1—C21.388 (8)C39—C401.527 (8)
O1—Cu1—N1163.4 (2)C7—C6—C3122.3 (5)
O1—Cu1—O12i90.11 (16)C8—C7—C6119.7 (6)
N1—Cu1—O12i94.51 (18)C8—C7—H7120.2
O1—Cu1—O1188.98 (15)C6—C7—H7120.2
N1—Cu1—O1191.90 (18)N2—C8—C7122.2 (6)
O12i—Cu1—O11160.41 (17)N2—C8—H8118.9
O1—Cu1—Cu1i58.56 (13)C7—C8—H8118.9
N1—Cu1—Cu1i137.85 (16)N2—C9—C10124.2 (6)
O12i—Cu1—Cu1i82.81 (12)N2—C9—H9117.9
O11—Cu1—Cu1i80.04 (12)C10—C9—H9117.9
O3ii—Cu2—O8166.52 (18)C9—C10—C6119.0 (6)
O3ii—Cu2—O5iii91.78 (16)C9—C10—H10120.5
O8—Cu2—O5iii88.36 (16)C6—C10—H10120.5
O3ii—Cu2—N393.51 (18)C22—C21—C26119.5 (5)
O8—Cu2—N392.69 (17)C22—C21—C27117.4 (5)
O5iii—Cu2—N3151.87 (19)C26—C21—C27122.8 (5)
O3ii—Cu2—Cu386.02 (13)C21—C22—C23122.0 (5)
O8—Cu2—Cu381.76 (12)C21—C22—H22119.0
O5iii—Cu2—Cu365.68 (13)C23—C22—H22119.0
N3—Cu2—Cu3142.26 (14)C22—C23—C24118.8 (5)
O13ii—Cu3—O789.41 (16)C22—C23—C28119.1 (5)
O13ii—Cu3—N2iv177.14 (19)C24—C23—C28122.0 (5)
O7—Cu3—N2iv92.17 (18)C25—C24—C23119.4 (5)
O13ii—Cu3—O2W95.20 (17)C25—C24—C29117.1 (5)
O7—Cu3—O2W127.51 (19)C23—C24—C29123.5 (5)
N2iv—Cu3—O2W85.7 (2)C24—C25—C26121.8 (5)
O13ii—Cu3—O4ii84.77 (15)C24—C25—H25119.1
O7—Cu3—O4ii141.58 (17)C26—C25—H25119.1
N2iv—Cu3—O4ii92.52 (17)C21—C26—C25118.4 (5)
O2W—Cu3—O4ii90.86 (18)C21—C26—C30122.8 (5)
O13ii—Cu3—Cu256.35 (12)C25—C26—C30118.8 (5)
O7—Cu3—Cu274.49 (12)O2—C27—O1124.1 (5)
N2iv—Cu3—Cu2121.85 (15)O2—C27—C21122.2 (5)
O2W—Cu3—Cu2146.37 (13)O1—C27—C21113.4 (5)
O4ii—Cu3—Cu270.73 (11)O4—C28—O3126.6 (5)
C27—O1—Cu1106.9 (4)O4—C28—C23117.6 (5)
H1WA—O1W—H1WB101 (9)O3—C28—C23115.7 (5)
Cu3—O2W—H2WB100 (5)O6—C29—O5126.6 (5)
Cu3—O2W—H2WA127 (6)O6—C29—C24118.7 (6)
H2WB—O2W—H2WA105 (7)O5—C29—C24114.4 (6)
C28—O3—Cu2v122.3 (4)O7—C30—O8126.4 (5)
C28—O4—Cu3v130.3 (4)O7—C30—C26116.9 (5)
C29—O5—Cu2iii120.8 (4)O8—C30—C26116.7 (5)
C30—O7—Cu3132.0 (4)N3—C31—C32123.1 (6)
C30—O8—Cu2123.7 (4)N3—C31—H31118.4
C36—O11—Cu1124.8 (4)C32—C31—H31118.4
C36—O12—Cu1i122.5 (4)C31—C32—C33120.5 (6)
C40—O13—Cu3v126.8 (4)C31—C32—H32119.7
C1—N1—C5117.6 (5)C33—C32—H32119.7
C1—N1—Cu1120.8 (4)C34—C33—C32115.6 (5)
C5—N1—Cu1121.4 (4)C34—C33—C33vii123.1 (7)
C9—N2—C8117.3 (5)C32—C33—C33vii121.3 (7)
C9—N2—Cu3vi116.7 (4)C35—C34—C33121.3 (6)
C8—N2—Cu3vi124.6 (4)C35—C34—H34119.3
C31—N3—C35116.7 (5)C33—C34—H34119.3
C31—N3—Cu2120.6 (4)N3—C35—C34122.6 (6)
C35—N3—Cu2122.6 (4)N3—C35—H35118.7
N1—C1—C2123.0 (6)C34—C35—H35118.7
N1—C1—H1118.5O11—C36—O12127.9 (5)
C2—C1—H1118.5O11—C36—C37116.6 (5)
C3—C2—C1119.1 (6)O12—C36—C37115.5 (5)
C3—C2—H2120.4C39viii—C37—C38117.7 (5)
C1—C2—H2120.4C39viii—C37—C36122.7 (5)
C2—C3—C4117.8 (5)C38—C37—C36119.6 (5)
C2—C3—C6122.5 (6)C39—C38—C37121.9 (5)
C4—C3—C6119.7 (5)C39—C38—H38119.1
C5—C4—C3119.7 (6)C37—C38—H38119.1
C5—C4—H4120.2C38—C39—C37viii120.4 (5)
C3—C4—H4120.2C38—C39—C40117.4 (5)
N1—C5—C4122.8 (6)C37viii—C39—C40122.1 (5)
N1—C5—H5118.6O14—C40—O13126.3 (5)
C4—C5—H5118.6O14—C40—C39116.4 (5)
C10—C6—C7117.6 (5)O13—C40—C39117.0 (5)
C10—C6—C3120.0 (6)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+2, y+1, z; (iv) x+1, y, z1; (v) x, y+1, z; (vi) x1, y, z+1; (vii) x+1, y, z+1; (viii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6ii0.86 (8)2.08 (9)2.888 (8)157 (8)
O1W—H1WB···O6ix0.76 (9)2.07 (9)2.831 (7)175 (10)
O2W—H2WB···O14ii0.85 (7)1.81 (7)2.623 (6)161 (7)
O2W—H2WA···O1W0.80 (7)1.98 (7)2.768 (7)166 (8)
Symmetry codes: (ii) x, y1, z; (ix) x+3, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu6(C10H2O8)3(C10H8N2)3(H2O)2]·2H2O
Mr1672.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.2545 (7), 10.8207 (8), 13.7264 (10)
α, β, γ (°)91.305 (1), 90.461 (2), 112.655 (2)
V3)1404.97 (17)
Z1
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.36 × 0.20 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.523, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
7378, 4938, 3554
Rint0.036
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.05
No. of reflections4938
No. of parameters463
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.55

Computer programs: SMART (Siemens, 1996), SMART and SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.939 (4)Cu2—N32.017 (5)
Cu1—N11.963 (5)Cu2—Cu33.0464 (10)
Cu1—O111.993 (4)Cu3—O71.979 (4)
Cu2—O81.945 (4)Cu3—O2W2.102 (5)
O1—Cu1—N1163.4 (2)O8—Cu2—Cu381.76 (12)
O1—Cu1—O1188.98 (15)N3—Cu2—Cu3142.26 (14)
N1—Cu1—O1191.90 (18)O7—Cu3—O2W127.51 (19)
O8—Cu2—N392.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.86 (8)2.08 (9)2.888 (8)157 (8)
O1W—H1WB···O6ii0.76 (9)2.07 (9)2.831 (7)175 (10)
O2W—H2WB···O14i0.85 (7)1.81 (7)2.623 (6)161 (7)
O2W—H2WA···O1W0.80 (7)1.98 (7)2.768 (7)166 (8)
Symmetry codes: (i) x, y1, z; (ii) x+3, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds