Download citation
Download citation
link to html
Vindoline, C25H32N2O6, and 16-de­methoxy­vindoline, C24H30N2O5, both of which are naturally occurring biologically active products derived from plants, are important as possible starting materials for the synthesis of valuable anticancer antibiotics, viz. vincristine and vinblastine, and other pharmaceuticals. The vindoline framework consists of two five- and three six-membered condensed rings. One of the six-membered rings adopts a boat conformation, one adopts a sofa conformation and the third is planar. Both five-membered rings have envelope structures. The intramolecular hydrogen bonds present in the structures are characteristic of vinca alkaloids.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004342/av1168sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004342/av1168Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004342/av1168IIsup3.hkl
Contains datablock 2

CCDC references: 223360; 223361

Comment top

The monomeric and bisindole Catharanthus alkaloids are important plant-derived natural products that have had a considerable impact on medicinal chemistry and modern pharmacology (Taylor & Farnsworth, 1975; Brossi, 1990).

Recently, we have successfully applied a solid phase extraction (SPE) method to the isolation and purification of the alkaloids from home-grown plant material (Ruszkowska, Macierewicz & Wróbel, 1994). This method enabled us to start a more detailed on-going study of chemical transformations of some monoindole alkaloids.

Vindoline, (I), a predominant monoindolic alkaloid, and its congener 16-demethoxyvindoline, (II), were first obtained from Catharanthus roseus (L) G. Don by Gorman et al. (1959, 1962). Oncolytic bisindoles vinblastine (VBL), (III), and vincristine (VCR), (IV), which are widely used for treatment of a variety of malignant diseases, have been isolated (Gorman et al., 1959; Svoboda & Lloydia, 1961). The chemical transformation of (I) is of great importance because of its relative abundance in plant material and the possible utilization in the hemisynthesis of biologically active cytotoxic bisindoles, which are far less readily available.

The goal of our work was to obtain N1-formyl derivatives of vindoline and its congeners by oxidation of N1-methyl compounds. However, the oxidation of (I) with potassium dichromate surprisingly led to the dimeric product instead of the expected N-formyl monoindole derivative (Ruszkowska et al., 2003). Our first successful oxidative coupling reactions yielding bisindolic compounds inspired us to study the possibility of preparing other vindoline derivatives.

Having in mind highly diversified courses of vindoline oxidation (Kutney et al., 1976; Joshua & Liao, 1977; Nabih, Youel & Rosazza, 1978; Kutney et al., 1983; Kutney, Sima Sariaslani et al., 1984; Sima Sariaslani, Duffel & Rosazza, 1985; Raucher, Bray & Lawrence, 1987; Bolcskei, Gacs-Baitz & Szantay, 1989; Honty et al., 1993; Tabakovic & Tabakovic, 1996) and in order to rationalize further attempted transformations, we decided to perform a more detailed investigation of the substrate structure. Surprisingly, no X-ray data were available for either (I) or (II). Thus, planning some ab initio quantum-chemical modeling, in which the electron density on both N atoms (N1 and N9) and atoms C3, C6, C7 and C15 might be of interest, we initially decided to obtain (I) and (II) in the form of monocrystals and resolve their structures using X-ray crystallographic methods. Accordingly, we isolated and purified vindoline and its demethoxy analog by repeated column chromatography. Monocrystals of (I) and (II) suitable for X-ray diffraction experiments were obtained by crystallization from diethyl ether.

It has been known for some time that the whole group of vindoline derivatives has common configuration of the chiral centres. In addition, many mono- (Riche & Pascard-Billy, 1976; Chiaroni, Langlois & Riche, 1977; Lamotte et al. 1980) and bisvindoline-derivative structures (Lynch et al. 1991a,b; Moncrief & Lipscomb, 1966; Leger et al. 1991; Hardouin et al. 2000; Guilhem et al. 1976) have been published. Therfore, it was not our intention to establish the absolute configuration for structures of the title compounds; rather, we aimed to establish their overall conformations and geometry.

The molecular conformations of (I) and (II) are presented in Figs. 1 and 2, respectively. The framework of molecules consists of five condensed rings. In both vindoline and demethoxyvindoline, the first ring from the left in Figs. 1 and 2, C13–C18, is planar. The central six-membered ring, C2–C5/C19/C12, in (I) is in a boat conformation, with atoms C3 and C19 0.681 (4) and 0.419 (4) Å, respectively, out of the plane defined by the four remaining atoms (the r.m.s. deviation of 0.069 Å). The corresponding values for (II) are 0.651 (3), 0.443 (3) and 0.070 Å. The last six-membered ring, C5–C8/N9/C19, adopts a sofa conformation, with atoms N9 and C8 on the same side of the plane defined by the four remaining atoms [the r.m.s. deviations for the fitted atoms are 0.043 and 0.047 Å for (I) and (II), respectively]. Atoms N9 and C8 deviate from the plane by 0.800 (5) and 0.285 (5) Å in (I), and by 0.837 (4) and 0.361 (5) Å in (II), respectively. The two five-membered rings present in both molecules adopt envelope conformations. However, the N9/C10–C12/C19 ring is more distorted in both structures. The respective r.m.s. deviations for the four fitted atoms N9, C10, C11 and C12 are 0.111 and 0.063 Å for (I) and (II). The fifth atom deviates from the plane by 0.538 (4) and 0.534 (3), respectively. The N1/C2/C12/C13/C18 rings have almost ideal envelope conformations in both structures, with atom C2 deviating from the plane defined by the four remaining atoms by 0.305 (4) and 0.275 (3) Å in (I) and (II), respectively. The hydroxy group at atom C3 is in an axial position, enabling the formation of a strong intramolecular hydrogen bond. In the drawings, these intramolecular O—H···N hydrogen bonds are depicted with dashed lines. The intramolecular hydrogen bond and the conformations of (I) and (II) described above seem to be characteristic of the whole class of vinca alkaloids. Apart from the aforementioned hydrogen-bonding interactions, there are only weak intermolecular C—H···O contacts present in the structure. There are no bond distances with unusually long or short values. The dimensions of the intramolecular hydrogen bonds are collected in Table 2.

Compounds (I) and (II) have very similar overall conformations; moreover, they crystalyze in the same space group. However, the orientations of the molecules with respect to the symmetry elements in the crystal lattice and unit-cell dimensions differ substantially. The results of further studies will be presented in due course. The structures described here are, as yet, the only solved structures of natural, not chemically modified molecules of this class, and therefore seem to be of special interest. The crystal structures of (1) and (2) have been deposited with the Cambridge Crystallographic Data Centre (deposition numbers CCDC 223360 and 223361, respectively).

Experimental top

Materials: dry Catharathus roseus leaves.

Compounds (I) and (II) were obtained from monomeric alkaloid fractions collected at pH 3 after extraction with diluted sulfuric (VI) acid and a standard solid-phase extraction (SPE) work-up procedure using a low polar resin (Ruszkowska et al. 1994). A sample of crude pH 3 fraction (5 g) was subjected to gradient chromatography on silica gel (150 g, 230–400 mesh), using hexane–acetone mixtures with acetone content ranging from 28 to 50%(v/v). Fractions 15–17 and 18–28, containing (II) and (I), respectively, were collected, evaporated and re-chromatographed on the same kind of silica gel (50 g), yielding 0.103 g (0.02%) of pure (2) and 1.31 g (26.2%) of (1) (yields are with respect to the crude fraction). For (1): m.p. 448–450 K (diethyl ether); MS (LSIMS): m/e: 457 [M+ + H], 479 [M+ + Na]. For (II): m.p. 431–432.5 K (diethyl ether); MS (LSIMS): m/e: 427 [M+ + H], 449 [M+ + Na]. Other spectral data of (I) and (II) agreed in all respects with those reported in the literature (Gorman et al., 1962).

Refinement top

The hydroxy H atoms of (I) and (II) were located in Fourier difference maps and refined isotropically; see Tables 1 and 2 for refined distances. All other H atoms were allowed for as riding, with C—H distances in the range 0.93–0.98 Å and Uiso values set at 1.2 times the Ueq values of the parent atoms.

Computing details top

For both compounds, data collection: Kuma Software (Kuma, 2000); cell refinement: Kuma Software; data reduction: Kuma Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
Scheme 1.

Fig. 1. The molecular conformation of (1). The non-H atoms are shown as 30% probability displacement ellipsoids.

Fig. 2. The molecular conformation of (2). The non-H atoms are shown as 30% probability displacement ellipsoids.
(I) Methyl (3aR,4R,5S,5aR,10bR,13aR)-4-(acetyloxy)-3a-ethyl-5-hydroxy-8- methoxy-6-methyl-3a,4,5,5a,6,11,12,13a-octahydro-1H-indolizino[8,1- cd]carbazole-5-carboxylate top
Crystal data top
C25H32N2O6Dx = 1.273 Mg m3
Mr = 456.53Melting point = 448–450 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.5440 (19) Åθ = 8.2–8.7°
b = 15.711 (3) ŵ = 0.09 mm1
c = 15.888 (3) ÅT = 293 K
V = 2382.3 (8) Å3Plate, colourless
Z = 40.5 × 0.4 × 0.15 mm
F(000) = 976
Data collection top
Kuma KM-4 κ-axis
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.8°
Graphite monochromatorh = 113
separate ω–2ο scans for individual reflectionsk = 022
4297 measured reflectionsl = 022
4253 independent reflections3 standard reflections every 200 reflections
2199 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.2206P]
where P = (Fo2 + 2Fc2)/3
4253 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H32N2O6V = 2382.3 (8) Å3
Mr = 456.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5440 (19) ŵ = 0.09 mm1
b = 15.711 (3) ÅT = 293 K
c = 15.888 (3) Å0.5 × 0.4 × 0.15 mm
Data collection top
Kuma KM-4 κ-axis
diffractometer
Rint = 0.012
4297 measured reflections3 standard reflections every 200 reflections
4253 independent reflections intensity decay: 1.6%
2199 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
4253 reflectionsΔρmin = 0.18 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0794 (2)0.21427 (14)0.42171 (12)0.0491 (5)
H10.006 (4)0.228 (2)0.408 (2)0.069 (11)*
O20.4149 (2)0.24567 (15)0.36521 (16)0.0656 (6)
O30.3124 (2)0.12381 (14)0.40490 (14)0.0578 (6)
O40.2027 (2)0.37161 (12)0.39215 (12)0.0503 (5)
O50.3341 (3)0.45921 (16)0.31304 (17)0.0784 (8)
O60.0806 (3)0.14916 (18)0.09562 (13)0.0769 (8)
N10.1975 (2)0.17774 (14)0.19830 (14)0.0435 (5)
C20.1117 (3)0.17132 (16)0.27590 (17)0.0396 (6)
H20.11430.11210.29530.047*
C30.1627 (3)0.22872 (18)0.34848 (17)0.0408 (6)
C40.1631 (3)0.32178 (16)0.31864 (16)0.0406 (6)
H40.23780.32780.27680.049*
C50.0235 (3)0.35368 (16)0.27730 (16)0.0413 (6)
C60.0381 (4)0.42815 (18)0.32646 (18)0.0509 (7)
H60.01080.47940.32600.061*
C70.1555 (4)0.4249 (2)0.3695 (2)0.0577 (8)
H70.18540.47440.39620.069*
C80.2434 (4)0.3479 (2)0.3783 (2)0.0581 (8)
H8A0.27460.34220.43620.070*
H8B0.32550.35260.34260.070*
N90.1609 (2)0.27236 (15)0.35394 (15)0.0474 (5)
C100.2463 (3)0.1958 (2)0.3422 (2)0.0613 (9)
H10A0.33030.20860.31030.074*
H10B0.27300.17160.39600.074*
C110.1515 (3)0.13525 (19)0.2938 (2)0.0534 (7)
H11A0.20510.10290.25300.064*
H11B0.10570.09580.33200.064*
C120.0413 (3)0.19238 (16)0.24877 (16)0.0394 (6)
C130.0333 (3)0.18012 (17)0.15389 (17)0.0428 (6)
C140.1364 (3)0.1797 (2)0.0942 (2)0.0570 (8)
H140.22940.18670.11040.068*
C150.1039 (4)0.1691 (2)0.0100 (2)0.0608 (8)
H150.17470.16820.03030.073*
C160.0356 (4)0.1596 (2)0.01413 (19)0.0548 (8)
C170.1422 (3)0.16043 (19)0.04523 (18)0.0494 (7)
H170.23530.15420.02910.059*
C180.1064 (3)0.17085 (16)0.12957 (18)0.0426 (6)
C190.0890 (3)0.28418 (17)0.27243 (16)0.0402 (6)
H190.15920.30220.23110.048*
C200.0593 (4)0.38689 (18)0.18793 (17)0.0508 (7)
H20A0.12840.43180.19340.061*
H20B0.10270.34090.15670.061*
C210.0631 (4)0.4211 (2)0.1360 (2)0.0691 (10)
H21A0.02960.43930.08200.104*
H21B0.10480.46850.16480.104*
H21C0.13170.37700.12870.104*
C220.3294 (3)0.1300 (2)0.1960 (2)0.0621 (9)
H22A0.38120.14050.24670.093*
H22B0.38370.14790.14830.093*
H22C0.30960.07030.19140.093*
C230.3115 (3)0.20299 (18)0.37429 (17)0.0445 (6)
C240.4492 (4)0.0904 (3)0.4273 (2)0.0698 (10)
H24A0.43940.03310.44740.105*
H24B0.48970.12520.47070.105*
H24C0.50890.09090.37870.105*
C250.0215 (5)0.1385 (3)0.1601 (2)0.0928 (14)
H25A0.02470.13190.21340.139*
H25B0.08130.18760.16190.139*
H25C0.07670.08880.14850.139*
C260.2965 (4)0.4334 (2)0.3809 (2)0.0579 (8)
C270.3481 (5)0.4668 (3)0.4637 (3)0.0947 (15)
H27A0.30080.43790.50870.142*
H27B0.32930.52670.46720.142*
H27C0.44720.45720.46820.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (12)0.0608 (12)0.0406 (10)0.0021 (11)0.0062 (9)0.0087 (9)
O20.0428 (11)0.0632 (13)0.0910 (17)0.0059 (11)0.0080 (12)0.0008 (13)
O30.0494 (12)0.0616 (12)0.0626 (13)0.0057 (11)0.0018 (11)0.0163 (11)
O40.0578 (12)0.0495 (10)0.0435 (10)0.0055 (10)0.0034 (10)0.0072 (8)
O50.094 (2)0.0680 (14)0.0728 (16)0.0360 (15)0.0012 (16)0.0014 (12)
O60.0809 (17)0.108 (2)0.0418 (11)0.0035 (17)0.0047 (12)0.0091 (12)
N10.0364 (10)0.0514 (12)0.0427 (12)0.0033 (11)0.0012 (10)0.0093 (10)
C20.0397 (13)0.0347 (12)0.0443 (13)0.0014 (12)0.0029 (12)0.0021 (10)
C30.0388 (13)0.0443 (13)0.0392 (13)0.0004 (12)0.0064 (12)0.0038 (11)
C40.0457 (14)0.0405 (12)0.0356 (12)0.0087 (12)0.0030 (12)0.0034 (10)
C50.0476 (14)0.0379 (12)0.0383 (12)0.0036 (12)0.0003 (12)0.0020 (10)
C60.0635 (19)0.0407 (14)0.0485 (15)0.0041 (15)0.0066 (16)0.0026 (12)
C70.073 (2)0.0499 (15)0.0506 (16)0.0207 (16)0.0021 (18)0.0050 (14)
C80.0545 (18)0.0719 (19)0.0479 (16)0.0196 (16)0.0089 (15)0.0005 (15)
N90.0439 (12)0.0505 (12)0.0479 (13)0.0060 (11)0.0094 (12)0.0049 (11)
C100.0425 (15)0.0663 (18)0.075 (2)0.0044 (15)0.0142 (16)0.0166 (17)
C110.0456 (15)0.0467 (15)0.0680 (19)0.0088 (13)0.0106 (16)0.0020 (14)
C120.0365 (12)0.0382 (12)0.0434 (13)0.0039 (12)0.0037 (12)0.0010 (11)
C130.0418 (13)0.0390 (13)0.0477 (15)0.0001 (12)0.0021 (13)0.0065 (11)
C140.0468 (17)0.0637 (19)0.0605 (19)0.0021 (15)0.0052 (15)0.0077 (16)
C150.060 (2)0.0679 (19)0.0547 (18)0.0050 (18)0.0163 (16)0.0073 (16)
C160.0634 (19)0.0556 (17)0.0454 (16)0.0003 (17)0.0033 (15)0.0044 (13)
C170.0436 (15)0.0566 (16)0.0481 (15)0.0032 (14)0.0037 (13)0.0083 (13)
C180.0434 (14)0.0368 (13)0.0476 (15)0.0030 (12)0.0009 (13)0.0042 (12)
C190.0372 (12)0.0440 (13)0.0393 (13)0.0024 (12)0.0021 (11)0.0024 (11)
C200.0645 (19)0.0433 (13)0.0447 (15)0.0163 (14)0.0041 (16)0.0067 (11)
C210.082 (3)0.0643 (19)0.0610 (18)0.012 (2)0.013 (2)0.0245 (17)
C220.0432 (16)0.081 (2)0.0623 (19)0.0091 (16)0.0038 (16)0.0214 (18)
C230.0454 (15)0.0504 (14)0.0376 (13)0.0033 (13)0.0006 (12)0.0018 (12)
C240.055 (2)0.081 (2)0.073 (2)0.0177 (19)0.0011 (19)0.0186 (19)
C250.098 (3)0.130 (4)0.050 (2)0.004 (3)0.020 (2)0.005 (2)
C260.063 (2)0.0491 (15)0.0612 (19)0.0107 (16)0.0093 (18)0.0038 (14)
C270.122 (4)0.085 (3)0.077 (3)0.030 (3)0.031 (3)0.017 (2)
Geometric parameters (Å, º) top
O1—C31.427 (3)C11—C121.557 (4)
O1—H10.88 (4)C11—H11A0.9700
O2—C231.201 (4)C11—H11B0.9700
O3—C231.336 (4)C12—C131.522 (4)
O3—C241.451 (4)C12—C191.558 (4)
O4—C261.333 (4)C13—C141.367 (4)
O4—C41.456 (3)C13—C181.395 (4)
O5—C261.207 (4)C14—C151.384 (5)
O6—C161.374 (4)C14—H140.9300
O6—C251.424 (5)C15—C161.394 (5)
N1—C181.400 (4)C15—H150.9300
N1—C221.466 (4)C16—C171.387 (4)
N1—C21.483 (3)C17—C181.393 (4)
C2—C31.543 (4)C17—H170.9300
C2—C121.558 (4)C19—H190.9800
C2—H20.9800C20—C211.527 (5)
C3—C231.533 (4)C20—H20A0.9700
C3—C41.537 (4)C20—H20B0.9700
C4—C51.568 (4)C21—H21A0.9600
C4—H40.9800C21—H21B0.9600
C5—C61.525 (4)C21—H21C0.9600
C5—C191.533 (4)C22—H22A0.9600
C5—C201.551 (4)C22—H22B0.9600
C6—C71.313 (5)C22—H22C0.9600
C6—H60.9300C24—H24A0.9600
C7—C81.480 (5)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—N91.476 (4)C25—H25A0.9600
C8—H8A0.9700C25—H25B0.9600
C8—H8B0.9700C25—H25C0.9600
N9—C101.465 (4)C26—C271.499 (5)
N9—C191.477 (3)C27—H27A0.9600
C10—C111.521 (5)C27—H27B0.9600
C10—H10A0.9700C27—H27C0.9600
C10—H10B0.9700
C3—O1—H1106 (2)C14—C13—C12130.7 (3)
C23—O3—C24115.6 (3)C18—C13—C12109.6 (2)
C26—O4—C4117.3 (2)C13—C14—C15120.6 (3)
C16—O6—C25118.6 (3)C13—C14—H14119.7
C18—N1—C22118.3 (2)C15—C14—H14119.7
C18—N1—C2107.5 (2)C14—C15—C16119.5 (3)
C22—N1—C2117.4 (2)C14—C15—H15120.2
N1—C2—C3114.1 (2)C16—C15—H15120.2
N1—C2—C12105.8 (2)O6—C16—C17114.4 (3)
C3—C2—C12112.2 (2)O6—C16—C15124.8 (3)
N1—C2—H2108.2C17—C16—C15120.9 (3)
C3—C2—H2108.2C16—C17—C18118.4 (3)
C12—C2—H2108.2C16—C17—H17120.8
O1—C3—C23104.8 (2)C18—C17—H17120.8
O1—C3—C4113.8 (2)C17—C18—C13120.9 (3)
C23—C3—C4109.3 (2)C17—C18—N1127.4 (3)
O1—C3—C2109.9 (2)C13—C18—N1111.7 (2)
C23—C3—C2109.8 (2)N9—C19—C5111.7 (2)
C4—C3—C2109.0 (2)N9—C19—C12103.3 (2)
O4—C4—C3105.3 (2)C5—C19—C12117.8 (2)
O4—C4—C5112.7 (2)N9—C19—H19107.8
C3—C4—C5115.6 (2)C5—C19—H19107.8
O4—C4—H4107.6C12—C19—H19107.8
C3—C4—H4107.6C21—C20—C5116.4 (3)
C5—C4—H4107.6C21—C20—H20A108.2
C6—C5—C19107.6 (2)C5—C20—H20A108.2
C6—C5—C20107.2 (2)C21—C20—H20B108.2
C19—C5—C20110.4 (2)C5—C20—H20B108.2
C6—C5—C4111.0 (2)H20A—C20—H20B107.4
C19—C5—C4112.9 (2)C20—C21—H21A109.5
C20—C5—C4107.7 (2)C20—C21—H21B109.5
C7—C6—C5124.5 (3)H21A—C21—H21B109.5
C7—C6—H6117.8C20—C21—H21C109.5
C5—C6—H6117.8H21A—C21—H21C109.5
C6—C7—C8124.4 (3)H21B—C21—H21C109.5
C6—C7—H7117.8N1—C22—H22A109.5
C8—C7—H7117.8N1—C22—H22B109.5
N9—C8—C7109.3 (2)H22A—C22—H22B109.5
N9—C8—H8A109.8N1—C22—H22C109.5
C7—C8—H8A109.8H22A—C22—H22C109.5
N9—C8—H8B109.8H22B—C22—H22C109.5
C7—C8—H8B109.8O2—C23—O3124.0 (3)
H8A—C8—H8B108.3O2—C23—C3125.6 (2)
C10—N9—C8113.4 (2)O3—C23—C3110.4 (2)
C10—N9—C19104.5 (2)O3—C24—H24A109.5
C8—N9—C19112.1 (2)O3—C24—H24B109.5
N9—C10—C11104.3 (2)H24A—C24—H24B109.5
N9—C10—H10A110.9O3—C24—H24C109.5
C11—C10—H10A110.9H24A—C24—H24C109.5
N9—C10—H10B110.9H24B—C24—H24C109.5
C11—C10—H10B110.9O6—C25—H25A109.5
H10A—C10—H10B108.9O6—C25—H25B109.5
C10—C11—C12105.9 (2)H25A—C25—H25B109.5
C10—C11—H11A110.6O6—C25—H25C109.5
C12—C11—H11A110.6H25A—C25—H25C109.5
C10—C11—H11B110.6H25B—C25—H25C109.5
C12—C11—H11B110.6O5—C26—O4124.3 (3)
H11A—C11—H11B108.7O5—C26—C27124.7 (3)
C13—C12—C11114.6 (2)O4—C26—C27111.0 (3)
C13—C12—C2101.5 (2)C26—C27—H27A109.5
C11—C12—C2112.5 (2)C26—C27—H27B109.5
C13—C12—C19111.8 (2)H27A—C27—H27B109.5
C11—C12—C19103.0 (2)C26—C27—H27C109.5
C2—C12—C19113.8 (2)H27A—C27—H27C109.5
C14—C13—C18119.7 (3)H27B—C27—H27C109.5
C18—N1—C2—C3143.7 (2)C18—C13—C14—C150.9 (5)
C22—N1—C2—C380.0 (3)C12—C13—C14—C15178.5 (3)
C18—N1—C2—C1219.8 (3)C13—C14—C15—C160.7 (5)
C22—N1—C2—C12156.1 (2)C25—O6—C16—C17173.5 (4)
N1—C2—C3—O1176.4 (2)C25—O6—C16—C156.7 (5)
C12—C2—C3—O163.3 (3)C14—C15—C16—O6179.6 (3)
N1—C2—C3—C2361.6 (3)C14—C15—C16—C170.3 (5)
C12—C2—C3—C23178.1 (2)O6—C16—C17—C18179.9 (3)
N1—C2—C3—C458.2 (3)C15—C16—C17—C180.0 (5)
C12—C2—C3—C462.2 (3)C16—C17—C18—C130.1 (4)
C26—O4—C4—C3135.8 (3)C16—C17—C18—N1176.5 (3)
C26—O4—C4—C597.4 (3)C14—C13—C18—C170.6 (4)
O1—C3—C4—O453.0 (3)C12—C13—C18—C17178.7 (2)
C23—C3—C4—O463.8 (3)C14—C13—C18—N1176.5 (3)
C2—C3—C4—O4176.2 (2)C12—C13—C18—N11.6 (3)
O1—C3—C4—C572.0 (3)C22—N1—C18—C1733.5 (4)
C23—C3—C4—C5171.1 (2)C2—N1—C18—C17169.4 (3)
C2—C3—C4—C551.1 (3)C22—N1—C18—C13149.6 (3)
O4—C4—C5—C61.5 (3)C2—N1—C18—C1313.8 (3)
C3—C4—C5—C6119.6 (3)C10—N9—C19—C5170.9 (2)
O4—C4—C5—C19122.4 (2)C8—N9—C19—C565.9 (3)
C3—C4—C5—C191.2 (3)C10—N9—C19—C1243.3 (3)
O4—C4—C5—C20115.5 (2)C8—N9—C19—C12166.5 (2)
C3—C4—C5—C20123.3 (2)C6—C5—C19—N943.4 (3)
C19—C5—C6—C711.7 (4)C20—C5—C19—N9160.0 (2)
C20—C5—C6—C7130.4 (3)C4—C5—C19—N979.4 (3)
C4—C5—C6—C7112.3 (3)C6—C5—C19—C12162.8 (2)
C5—C6—C7—C81.6 (5)C20—C5—C19—C1280.5 (3)
C6—C7—C8—N916.4 (4)C4—C5—C19—C1240.0 (3)
C7—C8—N9—C10167.0 (3)C13—C12—C19—N9151.0 (2)
C7—C8—N9—C1949.0 (3)C11—C12—C19—N927.5 (3)
C8—N9—C10—C11163.9 (2)C2—C12—C19—N994.7 (2)
C19—N9—C10—C1141.5 (3)C13—C12—C19—C585.3 (3)
N9—C10—C11—C1223.0 (3)C11—C12—C19—C5151.2 (2)
C10—C11—C12—C13124.5 (3)C2—C12—C19—C529.1 (3)
C10—C11—C12—C2120.1 (3)C6—C5—C20—C2160.6 (3)
C10—C11—C12—C192.9 (3)C19—C5—C20—C2156.3 (3)
N1—C2—C12—C1317.9 (3)C4—C5—C20—C21179.8 (2)
C3—C2—C12—C13142.9 (2)C24—O3—C23—O20.2 (4)
N1—C2—C12—C11140.9 (2)C24—O3—C23—C3176.8 (3)
C3—C2—C12—C1194.1 (3)O1—C3—C23—O2129.0 (3)
N1—C2—C12—C19102.4 (2)C4—C3—C23—O26.6 (4)
C3—C2—C12—C1922.6 (3)C2—C3—C23—O2113.0 (3)
C11—C12—C13—C1450.2 (4)O1—C3—C23—O354.1 (3)
C2—C12—C13—C14171.8 (3)C4—C3—C23—O3176.5 (2)
C19—C12—C13—C1466.5 (4)C2—C3—C23—O363.9 (3)
C11—C12—C13—C18132.0 (3)C4—O4—C26—O511.9 (5)
C2—C12—C13—C1810.4 (3)C4—O4—C26—C27168.5 (3)
C19—C12—C13—C18111.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.88 (4)1.84 (4)2.693 (3)164 (4)
(II) Methyl (3aR,4R,5S,5aR,10bR,13aR)-4-(acetyloxy)-3a-ethyl-5-hydroxy-6-methyl- 3a,4,5,5a,6,11,12,13a-octahydro-1H-indolizino[8,1-cd]carbazole-5-carboxylate top
Crystal data top
C24H30N2O5Dx = 1.279 Mg m3
Mr = 426.50Melting point = 431–432.5 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.0800 (16) Åθ = 8.0–8.7°
b = 11.320 (2) ŵ = 0.09 mm1
c = 24.212 (5) ÅT = 293 K
V = 2214.6 (8) Å3Columnar, colourless
Z = 40.62 × 0.5 × 0.37 mm
F(000) = 912
Data collection top
Kuma KM-4 κ-axis
diffractometer
Rint = 0.091
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.7°
Graphite monochromatorh = 211
separate ω–2ο scans for individual reflectionsk = 015
4424 measured reflectionsl = 030
4333 independent reflections3 standard reflections every 200 reflections
2550 reflections with I > 2σ(I) intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.1619P]
where P = (Fo2 + 2Fc2)/3
4333 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H30N2O5V = 2214.6 (8) Å3
Mr = 426.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0800 (16) ŵ = 0.09 mm1
b = 11.320 (2) ÅT = 293 K
c = 24.212 (5) Å0.62 × 0.5 × 0.37 mm
Data collection top
Kuma KM-4 κ-axis
diffractometer
Rint = 0.091
4424 measured reflections3 standard reflections every 200 reflections
4333 independent reflections intensity decay: 0.6%
2550 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
4333 reflectionsΔρmin = 0.19 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0473 (2)0.07443 (15)0.77939 (7)0.0419 (4)
H11.104 (5)0.081 (3)0.8134 (16)0.082 (11)*
O20.6511 (3)0.08223 (19)0.73672 (8)0.0639 (6)
O30.8679 (3)0.00747 (19)0.69828 (7)0.0582 (5)
O40.81734 (19)0.22250 (12)0.82324 (6)0.0379 (3)
O50.5691 (3)0.26392 (18)0.85897 (11)0.0737 (7)
N10.7447 (2)0.15954 (16)0.82117 (9)0.0439 (4)
C20.9054 (3)0.10209 (18)0.81044 (9)0.0357 (4)
H20.96060.14460.78040.043*
C30.8889 (3)0.02962 (18)0.79355 (9)0.0352 (4)
C40.8039 (3)0.09973 (16)0.83977 (8)0.0331 (4)
H40.68640.07830.84010.040*
C50.8753 (3)0.07925 (18)0.89970 (9)0.0357 (4)
C60.9333 (4)0.1936 (2)0.92573 (10)0.0519 (6)
H60.85400.24950.93530.062*
C71.0898 (5)0.2183 (3)0.93556 (12)0.0651 (9)
H71.11350.28830.95410.078*
C81.2291 (4)0.1432 (3)0.91935 (13)0.0664 (8)
H8A1.27690.10680.95190.080*
H8B1.31390.19110.90190.080*
N91.1744 (3)0.0511 (2)0.88091 (9)0.0493 (5)
C101.2955 (3)0.0442 (3)0.87181 (14)0.0692 (8)
H10A1.35380.06280.90570.083*
H10B1.37570.02160.84390.083*
C111.1941 (3)0.1477 (3)0.85273 (13)0.0568 (7)
H11A1.22680.21850.87250.068*
H11B1.21110.16100.81360.068*
C121.0090 (3)0.11914 (19)0.86430 (9)0.0381 (5)
C130.9143 (3)0.21543 (19)0.89291 (10)0.0435 (5)
C140.9542 (5)0.2777 (2)0.94038 (11)0.0608 (7)
H141.05380.26430.95860.073*
C150.8426 (6)0.3603 (3)0.96016 (14)0.0820 (12)
H150.86840.40370.99160.098*
C160.6952 (6)0.3788 (3)0.93402 (16)0.0825 (12)
H160.62240.43470.94820.099*
C170.6509 (4)0.3168 (2)0.88693 (14)0.0653 (8)
H170.54960.32940.86970.078*
C180.7643 (3)0.23465 (18)0.86632 (10)0.0441 (5)
C191.0220 (3)0.0067 (2)0.90025 (9)0.0384 (4)
H191.04000.03160.93850.046*
C200.7291 (3)0.0319 (2)0.93590 (9)0.0427 (5)
H20A0.64190.09070.93600.051*
H20B0.68510.03860.91850.051*
C210.7722 (4)0.0022 (2)0.99557 (10)0.0562 (7)
H21A0.67500.02551.01430.084*
H21B0.81330.07161.01380.084*
H21C0.85550.05830.99620.084*
C220.6564 (4)0.2098 (3)0.77338 (13)0.0673 (8)
H22A0.64890.15150.74470.101*
H22B0.54710.23320.78440.101*
H22C0.71560.27740.75990.101*
C230.7868 (3)0.04010 (19)0.74041 (9)0.0421 (5)
C240.7844 (5)0.0115 (3)0.64584 (11)0.0723 (9)
H24A0.85530.04780.61890.108*
H24B0.75780.06730.63420.108*
H24C0.68450.05670.64930.108*
C260.6885 (3)0.2940 (2)0.83412 (10)0.0440 (5)
C270.7196 (4)0.4154 (2)0.81310 (12)0.0585 (7)
H27A0.82520.41790.79490.088*
H27B0.71930.47010.84340.088*
H27C0.63430.43680.78740.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (8)0.0501 (8)0.0437 (8)0.0026 (7)0.0075 (7)0.0037 (7)
O20.0553 (12)0.0759 (12)0.0607 (11)0.0276 (11)0.0184 (10)0.0134 (10)
O30.0565 (11)0.0791 (12)0.0390 (8)0.0135 (11)0.0030 (9)0.0108 (8)
O40.0338 (8)0.0319 (6)0.0479 (8)0.0004 (7)0.0071 (7)0.0009 (6)
O50.0503 (11)0.0560 (10)0.1147 (18)0.0130 (10)0.0366 (12)0.0197 (11)
N10.0333 (9)0.0361 (8)0.0622 (12)0.0034 (9)0.0021 (10)0.0049 (9)
C20.0318 (10)0.0354 (9)0.0399 (11)0.0012 (9)0.0021 (9)0.0020 (8)
C30.0290 (10)0.0358 (9)0.0409 (10)0.0024 (9)0.0017 (9)0.0022 (8)
C40.0294 (9)0.0313 (9)0.0386 (10)0.0028 (8)0.0042 (9)0.0000 (7)
C50.0345 (10)0.0339 (9)0.0388 (10)0.0067 (9)0.0017 (9)0.0016 (8)
C60.0676 (17)0.0420 (12)0.0461 (13)0.0143 (13)0.0058 (13)0.0034 (10)
C70.081 (2)0.0537 (14)0.0602 (16)0.0323 (17)0.0174 (16)0.0002 (12)
C80.0510 (17)0.0802 (19)0.0680 (17)0.0337 (16)0.0137 (15)0.0092 (15)
N90.0295 (10)0.0651 (13)0.0533 (11)0.0137 (10)0.0028 (9)0.0087 (10)
C100.0275 (11)0.110 (2)0.0701 (17)0.0018 (15)0.0012 (13)0.0167 (17)
C110.0312 (11)0.0722 (16)0.0670 (16)0.0132 (14)0.0039 (12)0.0067 (13)
C120.0293 (9)0.0403 (10)0.0447 (11)0.0049 (9)0.0023 (9)0.0052 (9)
C130.0475 (13)0.0328 (9)0.0503 (12)0.0054 (10)0.0109 (11)0.0023 (9)
C140.079 (2)0.0505 (13)0.0524 (14)0.0064 (15)0.0088 (15)0.0089 (12)
C150.127 (4)0.0526 (15)0.0668 (19)0.002 (2)0.028 (2)0.0154 (14)
C160.105 (3)0.0502 (15)0.092 (2)0.0179 (19)0.046 (3)0.0074 (16)
C170.0603 (17)0.0443 (13)0.091 (2)0.0140 (13)0.0261 (17)0.0104 (13)
C180.0422 (12)0.0329 (9)0.0572 (13)0.0005 (10)0.0125 (11)0.0050 (9)
C190.0272 (9)0.0468 (11)0.0411 (10)0.0056 (10)0.0027 (9)0.0047 (9)
C200.0422 (13)0.0401 (10)0.0459 (11)0.0011 (11)0.0084 (10)0.0037 (9)
C210.0659 (18)0.0591 (13)0.0436 (12)0.0088 (15)0.0143 (13)0.0034 (11)
C220.0633 (19)0.0577 (15)0.081 (2)0.0120 (15)0.0225 (17)0.0102 (14)
C230.0453 (13)0.0388 (10)0.0422 (11)0.0053 (10)0.0017 (11)0.0027 (8)
C240.086 (2)0.091 (2)0.0404 (12)0.012 (2)0.0096 (15)0.0074 (13)
C260.0413 (12)0.0405 (10)0.0501 (13)0.0060 (11)0.0073 (11)0.0015 (9)
C270.0613 (18)0.0388 (11)0.0755 (17)0.0087 (13)0.0133 (15)0.0051 (11)
Geometric parameters (Å, º) top
O1—C31.419 (3)C11—C121.556 (3)
O1—H10.94 (4)C11—H11A0.9700
O2—C231.199 (3)C11—H11B0.9700
O3—C231.327 (3)C12—C131.501 (3)
O3—C241.439 (3)C12—C191.546 (3)
O4—C261.345 (3)C13—C141.386 (4)
O4—C41.450 (2)C13—C181.390 (4)
O5—C261.187 (3)C14—C151.384 (5)
N1—C181.394 (3)C14—H140.9300
N1—C221.474 (3)C15—C161.365 (6)
N1—C21.475 (3)C15—H150.9300
C2—C31.552 (3)C16—C171.386 (5)
C2—C121.562 (3)C16—H160.9300
C2—H20.9800C17—C181.397 (4)
C3—C231.533 (3)C17—H170.9300
C3—C41.534 (3)C19—H190.9800
C4—C51.578 (3)C20—C211.524 (3)
C4—H40.9800C20—H20A0.9700
C5—C61.514 (3)C20—H20B0.9700
C5—C191.534 (3)C21—H21A0.9600
C5—C201.565 (3)C21—H21B0.9600
C6—C71.317 (5)C21—H21C0.9600
C6—H60.9300C22—H22A0.9600
C7—C81.465 (5)C22—H22B0.9600
C7—H70.9300C22—H22C0.9600
C8—N91.466 (4)C24—H24A0.9600
C8—H8A0.9700C24—H24B0.9600
C8—H8B0.9700C24—H24C0.9600
N9—C191.471 (3)C26—C271.488 (3)
N9—C101.473 (4)C27—H27A0.9600
C10—C111.503 (4)C27—H27B0.9600
C10—H10A0.9700C27—H27C0.9600
C10—H10B0.9700
C3—O1—H1105 (2)C11—C12—C2113.0 (2)
C23—O3—C24117.4 (2)C14—C13—C18120.5 (3)
C26—O4—C4117.68 (17)C14—C13—C12129.3 (3)
C18—N1—C22115.8 (2)C18—C13—C12110.2 (2)
C18—N1—C2107.91 (19)C15—C14—C13118.6 (3)
C22—N1—C2117.3 (2)C15—C14—H14120.7
N1—C2—C3113.23 (18)C13—C14—H14120.7
N1—C2—C12105.68 (17)C16—C15—C14120.8 (3)
C3—C2—C12112.63 (17)C16—C15—H15119.6
N1—C2—H2108.4C14—C15—H15119.6
C3—C2—H2108.4C15—C16—C17121.9 (3)
C12—C2—H2108.4C15—C16—H16119.0
O1—C3—C23104.78 (18)C17—C16—H16119.0
O1—C3—C4113.26 (18)C16—C17—C18117.5 (3)
C23—C3—C4109.35 (17)C16—C17—H17121.3
O1—C3—C2109.25 (17)C18—C17—H17121.3
C23—C3—C2109.98 (17)C13—C18—N1111.5 (2)
C4—C3—C2110.08 (17)C13—C18—C17120.7 (3)
O4—C4—C3105.13 (15)N1—C18—C17127.7 (3)
O4—C4—C5111.54 (15)N9—C19—C5111.29 (18)
C3—C4—C5115.55 (17)N9—C19—C12104.09 (18)
O4—C4—H4108.1C5—C19—C12117.71 (17)
C3—C4—H4108.1N9—C19—H19107.8
C5—C4—H4108.1C5—C19—H19107.8
C6—C5—C19107.4 (2)C12—C19—H19107.8
C6—C5—C20107.07 (19)C21—C20—C5115.7 (2)
C19—C5—C20111.17 (17)C21—C20—H20A108.3
C6—C5—C4111.72 (17)C5—C20—H20A108.3
C19—C5—C4112.54 (17)C21—C20—H20B108.3
C20—C5—C4106.84 (18)C5—C20—H20B108.3
C7—C6—C5123.6 (3)H20A—C20—H20B107.4
C7—C6—H6118.2C20—C21—H21A109.5
C5—C6—H6118.2C20—C21—H21B109.5
C6—C7—C8124.5 (3)H21A—C21—H21B109.5
C6—C7—H7117.8C20—C21—H21C109.5
C8—C7—H7117.8H21A—C21—H21C109.5
C7—C8—N9110.6 (2)H21B—C21—H21C109.5
C7—C8—H8A109.5N1—C22—H22A109.5
N9—C8—H8A109.5N1—C22—H22B109.5
C7—C8—H8B109.5H22A—C22—H22B109.5
N9—C8—H8B109.5N1—C22—H22C109.5
H8A—C8—H8B108.1H22A—C22—H22C109.5
C8—N9—C19111.5 (2)H22B—C22—H22C109.5
C8—N9—C10114.5 (2)O2—C23—O3123.8 (2)
C19—N9—C10106.19 (19)O2—C23—C3125.8 (2)
N9—C10—C11104.8 (2)O3—C23—C3110.4 (2)
N9—C10—H10A110.8O3—C24—H24A109.5
C11—C10—H10A110.8O3—C24—H24B109.5
N9—C10—H10B110.8H24A—C24—H24B109.5
C11—C10—H10B110.8O3—C24—H24C109.5
H10A—C10—H10B108.9H24A—C24—H24C109.5
C10—C11—C12107.9 (2)H24B—C24—H24C109.5
C10—C11—H11A110.1O5—C26—O4123.8 (2)
C12—C11—H11A110.1O5—C26—C27125.2 (2)
C10—C11—H11B110.1O4—C26—C27111.0 (2)
C12—C11—H11B110.1C26—C27—H27A109.5
H11A—C11—H11B108.4C26—C27—H27B109.5
C13—C12—C19111.88 (18)H27A—C27—H27B109.5
C13—C12—C11115.0 (2)C26—C27—H27C109.5
C19—C12—C11102.0 (2)H27A—C27—H27C109.5
C13—C12—C2101.63 (19)H27B—C27—H27C109.5
C19—C12—C2113.87 (17)
C18—N1—C2—C3141.17 (18)C11—C12—C13—C18132.7 (2)
C22—N1—C2—C385.9 (2)C2—C12—C13—C1810.3 (2)
C18—N1—C2—C1217.4 (2)C18—C13—C14—C150.9 (4)
C22—N1—C2—C12150.4 (2)C12—C13—C14—C15177.5 (3)
N1—C2—C3—O1174.90 (18)C13—C14—C15—C161.0 (5)
C12—C2—C3—O165.3 (2)C14—C15—C16—C170.2 (5)
N1—C2—C3—C2360.4 (2)C15—C16—C17—C180.8 (5)
C12—C2—C3—C23179.75 (18)C14—C13—C18—N1177.1 (2)
N1—C2—C3—C460.1 (2)C12—C13—C18—N10.1 (3)
C12—C2—C3—C459.7 (2)C14—C13—C18—C170.1 (4)
C26—O4—C4—C3142.64 (18)C12—C13—C18—C17177.1 (2)
C26—O4—C4—C591.4 (2)C22—N1—C18—C13145.1 (2)
O1—C3—C4—O449.2 (2)C2—N1—C18—C1311.4 (2)
C23—C3—C4—O467.3 (2)C22—N1—C18—C1738.1 (4)
C2—C3—C4—O4171.81 (17)C2—N1—C18—C17171.8 (2)
O1—C3—C4—C574.2 (2)C16—C17—C18—C130.9 (4)
C23—C3—C4—C5169.31 (17)C16—C17—C18—N1177.4 (3)
C2—C3—C4—C548.4 (2)C8—N9—C19—C566.5 (2)
O4—C4—C5—C62.3 (3)C10—N9—C19—C5168.1 (2)
C3—C4—C5—C6122.3 (2)C8—N9—C19—C12165.7 (2)
O4—C4—C5—C19118.62 (18)C10—N9—C19—C1240.3 (2)
C3—C4—C5—C191.4 (2)C6—C5—C19—N946.2 (2)
O4—C4—C5—C20119.10 (19)C20—C5—C19—N9163.04 (18)
C3—C4—C5—C20120.92 (19)C4—C5—C19—N977.2 (2)
C19—C5—C6—C712.6 (4)C6—C5—C19—C12166.20 (19)
C20—C5—C6—C7132.1 (3)C20—C5—C19—C1277.0 (2)
C4—C5—C6—C7111.3 (3)C4—C5—C19—C1242.8 (2)
C5—C6—C7—C84.5 (5)C13—C12—C19—N9153.54 (19)
C6—C7—C8—N912.1 (4)C11—C12—C19—N930.1 (2)
C7—C8—N9—C1946.5 (3)C2—C12—C19—N991.9 (2)
C7—C8—N9—C10167.1 (2)C13—C12—C19—C582.8 (2)
C8—N9—C10—C11156.8 (2)C11—C12—C19—C5153.8 (2)
C19—N9—C10—C1133.3 (3)C2—C12—C19—C531.8 (3)
N9—C10—C11—C1213.2 (3)C6—C5—C20—C2162.0 (3)
C10—C11—C12—C13131.6 (2)C19—C5—C20—C2155.0 (3)
C10—C11—C12—C1910.3 (3)C4—C5—C20—C21178.16 (18)
C10—C11—C12—C2112.3 (2)C24—O3—C23—O22.1 (4)
N1—C2—C12—C1316.4 (2)C24—O3—C23—C3176.2 (2)
C3—C2—C12—C13140.52 (18)O1—C3—C23—O2131.1 (3)
N1—C2—C12—C19104.1 (2)C4—C3—C23—O29.4 (3)
C3—C2—C12—C1920.0 (3)C2—C3—C23—O2111.6 (3)
N1—C2—C12—C11140.2 (2)O1—C3—C23—O350.6 (2)
C3—C2—C12—C1195.7 (2)C4—C3—C23—O3172.32 (19)
C19—C12—C13—C1465.3 (3)C2—C3—C23—O366.7 (2)
C11—C12—C13—C1450.4 (4)C4—O4—C26—O54.2 (3)
C2—C12—C13—C14172.8 (2)C4—O4—C26—C27178.2 (2)
C19—C12—C13—C18111.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.94 (4)1.76 (4)2.677 (3)162 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H32N2O6C24H30N2O5
Mr456.53426.50
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)9.5440 (19), 15.711 (3), 15.888 (3)8.0800 (16), 11.320 (2), 24.212 (5)
V3)2382.3 (8)2214.6 (8)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.5 × 0.4 × 0.150.62 × 0.5 × 0.37
Data collection
DiffractometerKuma KM-4 κ-axis
diffractometer
Kuma KM-4 κ-axis
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4297, 4253, 2199 4424, 4333, 2550
Rint0.0120.091
(sin θ/λ)max1)0.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.145, 1.03 0.038, 0.135, 1.03
No. of reflections42534333
No. of parameters302284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.180.25, 0.19

Computer programs: Kuma Software (Kuma, 2000), Kuma Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Bruker, 1998), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.88 (4)1.84 (4)2.693 (3)164 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N90.94 (4)1.76 (4)2.677 (3)162 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds