Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The new quaternary group V thio­phosphate K4VP2S9 (tetrapotassium vanadium di­phosphorus nona­sulfide) was prepared by reacting a mixture of K2S3, VP, P4S3 and S. The crystal structure consists of discrete [VS(PS4)2]4- anions and K+ cations. The V4+ cation is in a fivefold coordination of S atoms which form a square-pyramidal environment. Each VS5 group shares a common edge with two bidentate [PS4] tetrahedra, yielding the complete anion. The anions are stacked in the direction of the crystallographic b axis and are separated by the K+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103026623/av1159sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026623/av1159Isup2.hkl
Contains datablock I

Comment top

Group V transition metal thiophosphates have been extensively investigated and are known for their low-dimensional crystal structures and interesting physical properties. In the structures of compounds in the A—M—P—S system (where A is an alkali metal and M a group V metal), the dimensionality of the anionic parts varies from one-dimensional chains to three-dimensional interconnected networks. In our investigations of the A—M—P—S family, we have demonstrated that a systematic variation of the reaction parameters, e.g. temperature, reaction time, stoichiometry and type of starting materials, leads to the formation of new quaternary thiophosphates with interesting structural features. Very recently, we have prepared new quaternary thiophosphates with group V metals, such as Rb2Nb2P2S11 (Gutzmann & Bensch, 2002), Rb4Ta4P4S24 (Gutzmann & Bensch, 2003) and Cs2Ta2P2S12 (Gutzmann et al., 2003), enhancing the rich structural chemistry. The structural features of the known quaternary vanadium thiophosphates two-dimensional-AVP2S7 (A is K or Rb) (Kopnin et al., 2000; Durand et al., 1993), one-dimensional-K2VP2S7 (Tremel et al., 1995) and one-dimensional-NaV0.84P2S6 (Coste et al., 2003) are VS6 octahedra connected by shared edges with other VS6 octahedra or with [PxSy]n- units. Using a molten alkali metal polythiophosphate flux, we have synthesized the first quaternary vanadium thiophosphate containing discrete [VS(PS4)2]4− anions, the title compound, K4VP2S9. Here, we report on the synthesis and structural characterization of this new compound.

The crystal structure of K4VP2S9 is built up of discrete [VS(PS4)2]4− anions which are well separated by the K+ cations. The V4+cation is in an unusual fivefold coordination of S atoms, forming a square-pyramidal environment. The V—S distances range from 2.1132 (9) to 2.3823 (19) Å. The mean V—S bond length of 2.324 Å is in good agreement with the sum of the ionic radii [1.84 Å for S2− and 0.53 Å for V4+ (coordination number 5); Shannon, 1976]. The shortest V—S bond is observed to the non-coordinated terminal S1 atom at the top of the pyramid. The V atom is located 0.71 (1) Å above the square plane of the pyramid formed by atoms S2—S5.

Each VS5 polyhedron shares common edges with two bidentate [PS4]3− tetrahedra, forming the [VS(PS4)2]4− anion. In both [PS4] tetrahedra, two types of P—S bonds can be distinguished, depending on how the S atoms are bonded. They range from 1.9922 (17) to 2.100 (3) Å, with the shorter bond to the terminal S atoms. These differences in the P—S distances are a result of the partial double-bond character to the terminal S atoms. Very similar bond distances are found in, for example, P4S10 (Vos & Wiebenga, 1955), K4Pd(PS4)2 (Chondroudis et al., 1997) and K6[Cr2(PS4)4] (Derstroff et al., 1998). The S—P—S angles deviate from ideal tetrahedral geometry and range from 95.81 (10) to 114.76 (11)° for S—P1—S and from 96.46 (10) to 113.88 (11)° for S—P2—S. The smallest S—P—S angles are observed for the S atoms which are bound to the V atom.

The [VS(PS4)2]4− anions are stacked parallel to the crystallographic b axis and a similar arrangement is also found along the a axis, but the terminal S atoms of the [VS5] units show an up-down-up orientation in the latter direction. The four crystallographically independent K+ cations are in an eightfold coordination. Atoms K1 and K2 show an irregular sulfur environment, whereas atoms K3 and K4 are in an approximately hexagonal-bipyramidal coordination. The residual negative charge on the terminal S atoms leads to shorter K—S distances, due to the greater electrostatic attraction. The mean K—S distances are 3.416 (2) for K1, 3.412 (3) for K2, 3.300 (3) for K3 and 3.305 (3) Å for K4. These values are in good agreement with the sum of the ionic radii [1.84 Å for S2− and 1.51 Å for K+ (coordination number 8); Shannon, 1976].

It must be mentioned that the configuration of K4VP2S9 allows interesting speculation concerning the possibility of condensing several [VS(PS4)2] fragments via the bidentate [PS4] tetrahedra or the terminal S1 atom to yield structures of higher complexity. This might be achieved if molecular precursor compounds such as the title compound were used in the synthesis. In that case, it would establish a new method for the synthesis of interesting solid-state thiophosphates.

Experimental top

The compound K4VP2S9 was obtained by the reaction of K2S3 (0.8 mmol), VP (0.4 mmol), P4S3 (0.2 mmol) and S (2.4 mmol). K2S3 was prepared from a stoichiometric ratio of the elements in liquid ammonia under an argon atmosphere. VP was prepared by heating stoichiometric amounts of the elements at 1073 K in an evacuated silica tube. The starting materials were loaded into a glass ampoule which was evacuated (10−3 mbar; 1 mbar = 100 Pa) and flame-sealed. The ampoule was heated to 773 K at 25 K h−1. After 4 d, the sample was cooled down to 523 K at 2 K h−1 and then to room temperature within 10 h. To remove unreacted KxPySz, the resultant melt was washed with dry N,N-dimethylformamide and diethyl ether. The product was dried in vacuo and consisted of red crystals which are air- and moisture-sensitive. The MIR spectra of K4VP2S9 display strong absorptions at 499, 522, 577 and 619 cm−1. Two additional weak absorptions are observed at 418 and 669 cm−1. These values are comparable with those of K3Bi(PS4)2 (McCarthy & Kanatzidis, 1996) and can be assigned to P—S stretching vibrations. In the transformed UV-Vis reflectance spectrum, the band gap was determined to be 2.03 eV, which is in agreement with the observed red colour of the single crystals.

Refinement top

The crystal investigated was racemically twinned and therefore, a twin refinement using SHELXL97 (Sheldrick, 1997) was performed, yielding a ratio of 0.42 (7):0.58 (7) for both individuals. A refinement in the centrosymmetric space group Pnma was not successful. The largest peak in the difference map is located 1.42 Å from the V atom.

Computing details top

Data collection: IPDS (Stoe & Cie, 1998); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The crystal structure of the [VS(PS4)2]4− anion in K4VP2S9, with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of K4VP2S9, viewed in the direction of the crystallographic b axis.
Tetrapotassium vanadium diphosphorus nonasulfide top
Crystal data top
K4VP2S9Dx = 2.212 Mg m3
Mr = 557.82Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 8000 reflections
a = 19.3587 (15) Åθ = 1.9–28.2°
b = 6.7658 (5) ŵ = 2.87 mm1
c = 12.7869 (7) ÅT = 180 K
V = 1674.8 (2) Å3Polyhedron, red
Z = 40.25 × 0.20 × 0.10 mm
F(000) = 1092
Data collection top
Stoe IPDS
diffractometer
3999 independent reflections
Radiation source: fine-focus sealed tube3610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ scansθmax = 28.0°, θmin = 2.6°
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
h = 2525
Tmin = 0.510, Tmax = 0.753k = 88
16873 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.1015P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max < 0.001
wR(F2) = 0.127Δρmax = 1.67 e Å3
S = 1.05Δρmin = 1.20 e Å3
3999 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
147 parametersExtinction coefficient: 0.0048 (8)
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (4)
Crystal data top
K4VP2S9V = 1674.8 (2) Å3
Mr = 557.82Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.3587 (15) ŵ = 2.87 mm1
b = 6.7658 (5) ÅT = 180 K
c = 12.7869 (7) Å0.25 × 0.20 × 0.10 mm
Data collection top
Stoe IPDS
diffractometer
3999 independent reflections
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
3610 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.753Rint = 0.040
16873 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.127Δρmax = 1.67 e Å3
S = 1.05Δρmin = 1.20 e Å3
3999 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
147 parametersAbsolute structure parameter: 0.0 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.78461 (9)0.75120 (11)0.17680 (13)0.0213 (4)
K20.53614 (8)0.25562 (11)0.52620 (14)0.0191 (4)
K30.56809 (8)0.74970 (10)0.32833 (14)0.0146 (4)
K40.31871 (8)0.24486 (11)0.37562 (15)0.0152 (4)
V10.37499 (3)0.64313 (7)0.60152 (17)0.00844 (14)
P10.23215 (9)0.74837 (11)0.49990 (13)0.0081 (4)
P20.51736 (9)0.75168 (11)0.70201 (16)0.0084 (4)
S10.37527 (4)0.33080 (10)0.6015 (2)0.01332 (16)
S20.48623 (9)0.74867 (11)0.54470 (17)0.0116 (4)
S30.41840 (9)0.74967 (11)0.76604 (15)0.0106 (4)
S40.33215 (9)0.74768 (12)0.43692 (14)0.0124 (4)
S50.26336 (9)0.74618 (12)0.65663 (16)0.0131 (4)
S60.18420 (6)0.9981 (2)0.46056 (12)0.0147 (3)
S70.18266 (6)0.5016 (2)0.45858 (12)0.0160 (4)
S80.56760 (6)0.5057 (2)0.74575 (12)0.0143 (3)
S90.56529 (6)1.0025 (2)0.74306 (11)0.0139 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0179 (9)0.0230 (9)0.0230 (11)0.0025 (3)0.0026 (8)0.0013 (3)
K20.0194 (9)0.0208 (8)0.0170 (8)0.0020 (3)0.0026 (7)0.0002 (3)
K30.0139 (8)0.0194 (9)0.0104 (8)0.0005 (2)0.0009 (6)0.0010 (2)
K40.0155 (8)0.0163 (9)0.0137 (9)0.0016 (2)0.0012 (6)0.0009 (3)
V10.0076 (2)0.0099 (2)0.0079 (2)0.00020 (19)0.00045 (19)0.0003 (4)
P10.0104 (8)0.0101 (9)0.0039 (8)0.0000 (2)0.0007 (8)0.0003 (2)
P20.0053 (8)0.0046 (8)0.0153 (10)0.0004 (2)0.0008 (8)0.0000 (3)
S10.0163 (3)0.0088 (3)0.0149 (3)0.0000 (3)0.0036 (3)0.0012 (9)
S20.0081 (8)0.0167 (9)0.0101 (9)0.0023 (2)0.0025 (8)0.0004 (3)
S30.0087 (7)0.0136 (9)0.0095 (8)0.0011 (2)0.0004 (7)0.0028 (2)
S40.0107 (7)0.0190 (10)0.0076 (9)0.0017 (3)0.0014 (7)0.0025 (3)
S50.0118 (9)0.0216 (10)0.0058 (8)0.0034 (3)0.0016 (8)0.0011 (3)
S60.0135 (6)0.0081 (7)0.0226 (8)0.0017 (4)0.0008 (5)0.0003 (7)
S70.0142 (7)0.0091 (7)0.0247 (9)0.0015 (4)0.0017 (6)0.0007 (7)
S80.0132 (7)0.0078 (7)0.0218 (8)0.0025 (4)0.0066 (5)0.0029 (7)
S90.0140 (7)0.0072 (7)0.0205 (8)0.0030 (4)0.0053 (5)0.0032 (7)
Geometric parameters (Å, º) top
K1—S1i3.288 (2)K4—K1xii4.2619 (17)
K1—S6ii3.300 (2)K4—K1xiii4.3039 (18)
K1—S7i3.334 (2)K4—K1ix4.340 (3)
K1—S4iii3.451 (3)V1—S12.1132 (9)
K1—S8iv3.454 (2)V1—S42.370 (3)
K1—S9v3.463 (2)V1—S32.377 (3)
K1—S5i3.5005 (13)V1—S52.3774 (18)
K1—S5ii3.5346 (13)V1—S22.3823 (19)
K1—K2iv3.9687 (12)P1—S61.9922 (17)
K1—K4vi4.2619 (17)P1—S71.9963 (18)
K1—K4iii4.3039 (18)P1—S52.093 (3)
K1—K4i4.340 (3)P1—S42.097 (3)
K2—S13.299 (2)P1—K3xiii3.860 (2)
K2—S9vii3.308 (2)P2—S92.0042 (17)
K2—S83.334 (2)P2—S82.0073 (17)
K2—S6iii3.4202 (19)P2—S32.083 (3)
K2—S7vi3.4382 (19)P2—S22.100 (3)
K2—S3i3.441 (3)S1—K3ix3.148 (3)
K2—S23.4810 (13)S1—K1ix3.288 (2)
K2—S2vii3.5713 (13)S2—K2x3.5713 (13)
K2—K1viii3.9687 (12)S3—K2ix3.441 (3)
K2—K34.2378 (18)S3—K3ix3.4811 (12)
K2—K3vii4.3013 (17)S3—K3xiv3.4894 (12)
K2—K3ix4.359 (3)S4—K1xiii3.451 (3)
K3—S1i3.148 (3)S4—K4x3.4638 (13)
K3—S23.188 (3)S5—K4xv3.220 (3)
K3—S7iii3.244 (2)S5—K1ix3.5005 (13)
K3—S9ii3.2659 (19)S5—K1xiv3.5346 (13)
K3—S6iii3.274 (2)S6—K3xiii3.274 (2)
K3—S8i3.3166 (19)S6—K4x3.278 (2)
K3—S3i3.4811 (12)S6—K1xiv3.300 (2)
K3—S3ii3.4894 (12)S6—K2xiii3.4202 (19)
K3—P1iii3.860 (2)S7—K3xiii3.244 (2)
K3—K2x4.3013 (17)S7—K1ix3.334 (2)
K3—K2i4.359 (3)S7—K2xii3.4382 (19)
K4—S13.143 (3)S8—K4ix3.233 (2)
K4—S5xi3.220 (3)S8—K3ix3.3166 (19)
K4—S8i3.233 (2)S8—K1viii3.454 (2)
K4—S9i3.274 (2)S9—K3xiv3.2659 (19)
K4—S6vii3.278 (2)S9—K4ix3.274 (2)
K4—S73.329 (2)S9—K2x3.308 (2)
K4—S4vii3.4638 (13)S9—K1xvi3.463 (2)
K4—S43.5007 (13)
S1i—K1—S6ii90.78 (6)S9ii—K3—K2i48.88 (4)
S1i—K1—S7i81.22 (6)S6iii—K3—K2i140.47 (5)
S6ii—K1—S7i61.81 (6)S8i—K3—K2i49.22 (4)
S1i—K1—S4iii122.24 (7)S3i—K3—K2i79.86 (4)
S6ii—K1—S4iii139.26 (5)S3ii—K3—K2i80.82 (4)
S7i—K1—S4iii139.21 (5)P1iii—K3—K2i152.21 (6)
S1i—K1—S8iv159.81 (4)K2—K3—K2i117.07 (3)
S6ii—K1—S8iv78.82 (4)K2x—K3—K2i117.48 (3)
S7i—K1—S8iv108.18 (6)S1—K4—S5xi166.08 (5)
S4iii—K1—S8iv62.09 (5)S1—K4—S8i97.95 (6)
S1i—K1—S9v141.20 (4)S5xi—K4—S8i83.55 (6)
S6ii—K1—S9v107.53 (6)S1—K4—S9i109.36 (6)
S7i—K1—S9v78.23 (4)S5xi—K4—S9i83.66 (6)
S4iii—K1—S9v62.71 (5)S8i—K4—S9i62.22 (6)
S8iv—K1—S9v58.98 (5)S1—K4—S6vii93.81 (7)
S1i—K1—S5i64.31 (4)S5xi—K4—S6vii84.12 (5)
S6ii—K1—S5i118.75 (7)S8i—K4—S6vii167.64 (9)
S7i—K1—S5i59.70 (5)S9i—K4—S6vii117.13 (5)
S4iii—K1—S5i98.27 (5)S1—K4—S783.47 (6)
S8iv—K1—S5i135.88 (6)S5xi—K4—S783.41 (6)
S9v—K1—S5i76.91 (4)S8i—K4—S7115.47 (5)
S1i—K1—S5ii83.90 (5)S9i—K4—S7167.05 (9)
S6ii—K1—S5ii59.49 (5)S6vii—K4—S762.08 (5)
S7i—K1—S5ii118.85 (7)S1—K4—S4vii86.88 (5)
S4iii—K1—S5ii97.95 (5)S5xi—K4—S4vii103.68 (5)
S8iv—K1—S5ii75.92 (4)S8i—K4—S4vii124.90 (6)
S9v—K1—S5ii134.89 (6)S9i—K4—S4vii64.48 (4)
S5i—K1—S5ii148.19 (8)S6vii—K4—S4vii59.34 (4)
S1i—K1—K2iv133.01 (6)S7—K4—S4vii119.61 (6)
S6ii—K1—K2iv55.22 (4)S1—K4—S465.71 (4)
S7i—K1—K2iv55.35 (4)S5xi—K4—S4103.22 (5)
S4iii—K1—K2iv103.56 (4)S8i—K4—S463.71 (4)
S8iv—K1—K2iv52.83 (4)S9i—K4—S4124.18 (6)
S9v—K1—K2iv52.32 (4)S6vii—K4—S4118.67 (6)
S5i—K1—K2iv101.74 (5)S7—K4—S458.69 (4)
S5ii—K1—K2iv100.78 (5)S4vii—K4—S4152.56 (8)
S1i—K1—K4vi100.81 (4)S1—K4—K1xii138.40 (4)
S6ii—K1—K4vi151.21 (5)S5xi—K4—K1xii53.62 (3)
S7i—K1—K4vi93.77 (4)S8i—K4—K1xii102.13 (6)
S4iii—K1—K4vi52.08 (3)S9i—K4—K1xii52.75 (4)
S8iv—K1—K4vi96.43 (4)S6vii—K4—K1xii70.94 (4)
S9v—K1—K4vi48.81 (4)S7—K4—K1xii118.58 (5)
S5i—K1—K4vi47.78 (4)S4vii—K4—K1xii51.82 (4)
S5ii—K1—K4vi147.34 (7)S4—K4—K1xii155.55 (6)
K2iv—K1—K4vi99.20 (4)S1—K4—K1xiii116.72 (3)
S1i—K1—K4iii116.81 (5)S5xi—K4—K1xiii53.73 (3)
S6ii—K1—K4iii93.42 (4)S8i—K4—K1xiii52.22 (4)
S7i—K1—K4iii150.66 (5)S9i—K4—K1xiii101.79 (6)
S4iii—K1—K4iii52.27 (3)S6vii—K4—K1xiii118.51 (5)
S8iv—K1—K4iii47.72 (4)S7—K4—K1xiii69.73 (4)
S9v—K1—K4iii96.41 (4)S4vii—K4—K1xiii156.14 (6)
S5i—K1—K4iii147.76 (7)S4—K4—K1xiii51.23 (4)
S5ii—K1—K4iii47.26 (4)K1xii—K4—K1xiii104.34 (5)
K2iv—K1—K4iii98.43 (4)S1—K4—K1ix49.00 (4)
K4vi—K1—K4iii104.34 (5)S5xi—K4—K1ix122.98 (6)
S1i—K1—K4i46.17 (6)S8i—K4—K1ix140.04 (5)
S6ii—K1—K4i48.51 (3)S9i—K4—K1ix141.15 (5)
S7i—K1—K4i49.30 (3)S6vii—K4—K1ix48.93 (4)
S4iii—K1—K4i168.01 (6)S7—K4—K1ix49.40 (4)
S8iv—K1—K4i127.25 (5)S4vii—K4—K1ix80.78 (4)
S9v—K1—K4i127.36 (5)S4—K4—K1ix80.19 (4)
S5i—K1—K4i79.53 (5)K1xii—K4—K1ix117.57 (3)
S5ii—K1—K4i78.94 (5)K1xiii—K4—K1ix116.66 (3)
K2iv—K1—K4i88.42 (4)S1—K4—K245.43 (4)
K4vi—K1—K4i127.27 (3)S5xi—K4—K2144.14 (7)
K4iii—K1—K4i126.16 (3)S8i—K4—K265.57 (5)
S1—K2—S9vii89.78 (6)S9i—K4—K266.40 (5)
S1—K2—S881.28 (6)S6vii—K4—K2126.33 (6)
S9vii—K2—S861.68 (5)S7—K4—K2125.36 (6)
S1—K2—S6iii141.96 (4)S4vii—K4—K281.54 (4)
S9vii—K2—S6iii108.36 (6)S4—K4—K279.86 (4)
S8—K2—S6iii78.83 (4)K1xii—K4—K2113.66 (3)
S1—K2—S7vi158.46 (4)K1xiii—K4—K2111.88 (3)
S9vii—K2—S7vi78.93 (4)K1ix—K4—K292.86 (5)
S8—K2—S7vi108.54 (6)S1—V1—S4107.42 (9)
S6iii—K2—S7vi59.57 (5)S1—V1—S3107.60 (8)
S1—K2—S3i121.68 (7)S4—V1—S3144.99 (3)
S9vii—K2—S3i139.59 (5)S1—V1—S5107.19 (4)
S8—K2—S3i140.59 (5)S4—V1—S581.82 (7)
S6iii—K2—S3i63.48 (5)S3—V1—S588.29 (9)
S7vi—K2—S3i62.65 (5)S1—V1—S2107.30 (4)
S1—K2—S264.56 (4)S4—V1—S287.47 (9)
S9vii—K2—S2119.11 (7)S3—V1—S281.92 (7)
S8—K2—S260.47 (5)S5—V1—S2145.50 (3)
S6iii—K2—S277.43 (4)S6—P1—S7114.76 (11)
S7vi—K2—S2136.98 (6)S6—P1—S5112.47 (8)
S3i—K2—S298.43 (5)S7—P1—S5112.70 (8)
S1—K2—S2vii82.72 (4)S6—P1—S4109.58 (7)
S9vii—K2—S2vii59.56 (5)S7—P1—S4109.86 (7)
S8—K2—S2vii118.75 (6)S5—P1—S495.81 (10)
S6iii—K2—S2vii135.31 (5)S6—P1—K3xiii58.01 (6)
S7vi—K2—S2vii75.74 (4)S7—P1—K3xiii57.15 (6)
S3i—K2—S2vii97.08 (5)S5—P1—K3xiii141.41 (9)
S2—K2—S2vii147.22 (8)S4—P1—K3xiii122.78 (9)
S1—K2—K1viii133.22 (6)S9—P2—S8113.88 (11)
S9vii—K2—K1viii55.95 (4)S9—P2—S3109.17 (8)
S8—K2—K1viii55.63 (3)S8—P2—S3109.31 (8)
S6iii—K2—K1viii52.41 (4)S9—P2—S2113.08 (8)
S7vi—K2—K1viii52.91 (4)S8—P2—S2113.45 (8)
S3i—K2—K1viii104.20 (4)S3—P2—S296.46 (10)
S2—K2—K1viii102.53 (5)V1—S1—K4100.61 (8)
S2vii—K2—K1viii101.37 (5)V1—S1—K3ix100.01 (8)
S1—K2—K3100.98 (4)K4—S1—K3ix159.38 (3)
S9vii—K2—K3152.13 (5)V1—S1—K1ix99.57 (4)
S8—K2—K394.35 (4)K4—S1—K1ix84.84 (5)
S6iii—K2—K349.22 (4)K3ix—S1—K1ix91.66 (8)
S7vi—K2—K397.39 (4)V1—S1—K299.01 (4)
S3i—K2—K352.68 (3)K4—S1—K291.83 (8)
S2—K2—K347.56 (4)K3ix—S1—K285.03 (5)
S2vii—K2—K3146.78 (7)K1ix—S1—K2161.42 (3)
K1viii—K2—K399.67 (3)P2—S2—V188.29 (10)
S1—K2—K3vii115.48 (5)P2—S2—K3133.51 (9)
S9vii—K2—K3vii93.25 (4)V1—S2—K3135.61 (10)
S8—K2—K3vii150.80 (5)P2—S2—K289.70 (6)
S6iii—K2—K3vii97.06 (4)V1—S2—K289.11 (4)
S7vi—K2—K3vii47.98 (4)K3—S2—K278.77 (5)
S3i—K2—K3vii52.14 (3)P2—S2—K2x88.65 (6)
S2—K2—K3vii147.40 (7)V1—S2—K2x123.55 (5)
S2vii—K2—K3vii46.65 (4)K3—S2—K2x78.81 (5)
K1viii—K2—K3vii98.84 (3)K2—S2—K2x147.22 (8)
K3—K2—K3vii104.81 (5)P2—S3—V188.81 (9)
S1—K2—K3ix46.02 (6)P2—S3—K2ix98.33 (9)
S9vii—K2—K3ix48.06 (3)V1—S3—K2ix160.51 (5)
S8—K2—K3ix48.88 (3)P2—S3—K3ix91.56 (5)
S6iii—K2—K3ix127.55 (5)V1—S3—K3ix86.26 (4)
S7vi—K2—K3ix126.91 (5)K2ix—S3—K3ix75.49 (5)
S3i—K2—K3ix167.20 (6)P2—S3—K3xiv90.83 (5)
S2—K2—K3ix79.58 (5)V1—S3—K3xiv121.52 (6)
S2vii—K2—K3ix78.94 (5)K2ix—S3—K3xiv76.72 (4)
K1viii—K2—K3ix88.55 (4)K3ix—S3—K3xiv152.16 (8)
K3—K2—K3ix127.11 (3)P1—S4—V189.00 (9)
K3vii—K2—K3ix125.55 (3)P1—S4—K1xiii97.12 (8)
S1i—K3—S2166.45 (5)V1—S4—K1xiii161.77 (5)
S1i—K3—S7iii108.94 (6)P1—S4—K4x90.88 (5)
S2—K3—S7iii84.00 (6)V1—S4—K4x121.13 (6)
S1i—K3—S9ii93.25 (6)K1xiii—S4—K4x76.10 (4)
S2—K3—S9ii84.14 (5)P1—S4—K491.12 (5)
S7iii—K3—S9ii116.46 (5)V1—S4—K486.26 (4)
S1i—K3—S6iii98.51 (6)K1xiii—S4—K476.50 (5)
S2—K3—S6iii83.80 (6)K4x—S4—K4152.56 (8)
S7iii—K3—S6iii62.04 (6)P1—S5—V188.89 (10)
S9ii—K3—S6iii167.94 (8)P1—S5—K4xv133.65 (9)
S1i—K3—S8i83.83 (6)V1—S5—K4xv134.87 (10)
S2—K3—S8i83.19 (5)P1—S5—K1ix90.05 (6)
S7iii—K3—S8i167.19 (8)V1—S5—K1ix88.92 (4)
S9ii—K3—S8i62.29 (5)K4xv—S5—K1ix78.60 (5)
S6iii—K3—S8i116.19 (5)P1—S5—K1xiv89.27 (6)
S1i—K3—S3i66.12 (4)V1—S5—K1xiv122.86 (6)
S2—K3—S3i103.52 (5)K4xv—S5—K1xiv79.02 (5)
S7iii—K3—S3i124.72 (6)K1ix—S5—K1xiv148.19 (8)
S9ii—K3—S3i118.77 (6)P1—S6—K3xiii90.92 (6)
S6iii—K3—S3i64.51 (4)P1—S6—K4x98.36 (7)
S8i—K3—S3i58.74 (4)K3xiii—S6—K4x129.41 (9)
S1i—K3—S3ii86.08 (5)P1—S6—K1xiv98.00 (7)
S2—K3—S3ii103.73 (5)K3xiii—S6—K1xiv145.24 (6)
S7iii—K3—S3ii64.05 (4)K4x—S6—K1xiv82.56 (5)
S9ii—K3—S3ii58.99 (4)P1—S6—K2xiii137.88 (8)
S6iii—K3—S3ii124.29 (6)K3xiii—S6—K2xiii78.51 (4)
S8i—K3—S3ii119.50 (6)K4x—S6—K2xiii119.92 (5)
S3i—K3—S3ii152.16 (8)K1xiv—S6—K2xiii72.37 (4)
S1i—K3—P1iii103.74 (6)P1—S7—K3xiii91.73 (7)
S2—K3—P1iii85.17 (6)P1—S7—K498.10 (7)
S7iii—K3—P1iii31.13 (3)K3xiii—S7—K4130.39 (9)
S9ii—K3—P1iii146.98 (4)P1—S7—K1ix96.68 (7)
S6iii—K3—P1iii31.07 (3)K3xiii—S7—K1ix145.67 (7)
S8i—K3—P1iii146.55 (5)K4—S7—K1ix81.29 (5)
S3i—K3—P1iii94.10 (4)P1—S7—K2xii138.83 (8)
S3ii—K3—P1iii93.71 (4)K3xiii—S7—K2xii80.08 (4)
S1i—K3—K2117.67 (3)K4—S7—K2xii117.96 (5)
S2—K3—K253.68 (3)K1ix—S7—K2xii71.74 (4)
S7iii—K3—K2101.68 (6)P2—S8—K4ix92.30 (7)
S9ii—K3—K2119.27 (5)P2—S8—K3ix97.87 (6)
S6iii—K3—K252.27 (4)K4ix—S8—K3ix130.36 (9)
S8i—K3—K270.34 (4)P2—S8—K295.60 (8)
S3i—K3—K251.83 (4)K4ix—S8—K2145.28 (7)
S3ii—K3—K2155.91 (6)K3ix—S8—K281.90 (5)
P1iii—K3—K277.49 (4)P2—S8—K1viii138.04 (8)
S1i—K3—K2x136.86 (4)K4ix—S8—K1viii80.06 (5)
S2—K3—K2x54.54 (3)K3ix—S8—K1viii118.53 (5)
S7iii—K3—K2x51.94 (4)K2—S8—K1viii71.54 (4)
S9ii—K3—K2x70.99 (4)P2—S9—K3xiv98.98 (6)
S6iii—K3—K2x101.67 (6)P2—S9—K4ix91.16 (7)
S8i—K3—K2x119.21 (5)K3xiv—S9—K4ix129.19 (9)
S3i—K3—K2x156.60 (6)P2—S9—K2x98.04 (8)
S3ii—K3—K2x51.14 (4)K3xiv—S9—K2x83.06 (5)
P1iii—K3—K2x77.37 (4)K4ix—S9—K2x144.67 (7)
K2—K3—K2x104.81 (5)P2—S9—K1xvi137.38 (8)
S1i—K3—K2i48.95 (4)K3xiv—S9—K1xvi119.71 (5)
S2—K3—K2i122.62 (6)K4ix—S9—K1xvi78.44 (4)
S7iii—K3—K2i140.88 (5)K2x—S9—K1xvi71.73 (4)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+2, z1/2; (iii) x+1/2, y+3/2, z; (iv) x+3/2, y+1/2, z1/2; (v) x+3/2, y1/2, z1/2; (vi) x+1/2, y+1/2, z; (vii) x, y1, z; (viii) x+3/2, y1/2, z+1/2; (ix) x+1, y+1, z+1/2; (x) x, y+1, z; (xi) x+1/2, y1/2, z1/2; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+3/2, z; (xiv) x+1, y+2, z+1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK4VP2S9
Mr557.82
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)180
a, b, c (Å)19.3587 (15), 6.7658 (5), 12.7869 (7)
V3)1674.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
Tmin, Tmax0.510, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
16873, 3999, 3610
Rint0.040
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.05
No. of reflections3999
No. of parameters147
No. of restraints1
Δρmax, Δρmin (e Å3)1.67, 1.20
Absolute structureFlack (1983), with how many Friedel pairs
Absolute structure parameter0.0 (4)

Computer programs: IPDS (Stoe & Cie, 1998), IPDS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), CIFTAB in SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
K1—S1i3.288 (2)K3—S3ii3.4894 (12)
K1—S6ii3.300 (2)K4—S13.143 (3)
K1—S7i3.334 (2)K4—S5viii3.220 (3)
K1—S4iii3.451 (3)K4—S8i3.233 (2)
K1—S8iv3.454 (2)K4—S9i3.274 (2)
K1—S9v3.463 (2)K4—S6vi3.278 (2)
K1—S5i3.5005 (13)K4—S73.329 (2)
K1—S5ii3.5346 (13)K4—S4vi3.4638 (13)
K2—S13.299 (2)K4—S43.5007 (13)
K2—S9vi3.308 (2)V1—S12.1132 (9)
K2—S83.334 (2)V1—S42.370 (3)
K2—S6iii3.4202 (19)V1—S32.377 (3)
K2—S7vii3.4382 (19)V1—S52.3774 (18)
K2—S3i3.441 (3)V1—S22.3823 (19)
K2—S23.4810 (13)P1—S61.9922 (17)
K2—S2vi3.5713 (13)P1—S71.9963 (18)
K3—S1i3.148 (3)P1—S52.093 (3)
K3—S23.188 (3)P1—S42.097 (3)
K3—S7iii3.244 (2)P2—S92.0042 (17)
K3—S9ii3.2659 (19)P2—S82.0073 (17)
K3—S6iii3.274 (2)P2—S32.083 (3)
K3—S8i3.3166 (19)P2—S22.100 (3)
K3—S3i3.4811 (12)
S1—V1—S4107.42 (9)S6—P1—S5112.47 (8)
S1—V1—S3107.60 (8)S7—P1—S5112.70 (8)
S4—V1—S3144.99 (3)S6—P1—S4109.58 (7)
S1—V1—S5107.19 (4)S7—P1—S4109.86 (7)
S4—V1—S581.82 (7)S5—P1—S495.81 (10)
S3—V1—S588.29 (9)S9—P2—S8113.88 (11)
S1—V1—S2107.30 (4)S9—P2—S3109.17 (8)
S4—V1—S287.47 (9)S8—P2—S3109.31 (8)
S3—V1—S281.92 (7)S9—P2—S2113.08 (8)
S5—V1—S2145.50 (3)S8—P2—S2113.45 (8)
S6—P1—S7114.76 (11)S3—P2—S296.46 (10)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+2, z1/2; (iii) x+1/2, y+3/2, z; (iv) x+3/2, y+1/2, z1/2; (v) x+3/2, y1/2, z1/2; (vi) x, y1, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds