Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of three 1:2 inclusion compounds that consist of host mol­ecule 2,5-di­phenyl­hydro­quinone (C18H14O2) and the guest mol­ecules 2-pyridone (C5H5NO), 1,3-di­phenyl-2-propen-1-one (chalcone, C15H12O) and 1-(4-meth­oxy­phenyl)-3-phenyl-2-propen-1-one (4′-methoxy­chal­cone, C16H14O2) were determined in order to study the ability of guest mol­ecules in inclusion compounds to undergo photoreaction. All of the crystals were found to be photoresistant. The three inclusion compounds crystallize in triclinic space group P\overline 1. In each case, the host/guest ratio is 1:2, with the host mol­ecules occupying crystallographic centers of symmetry and the guest mol­ecules occupying general positions. The guest mol­ecules in each of the inclusion compounds are linked to the host mol­ecules by hydrogen bonds. In the inclusion compound where the guest mol­ecule is pyridone, the host mol­ecule is disordered so that the hydroxy groups are distributed between two different sites, with occupancies of 0.738 (3) and 0.262 (3). The pyridone mol­ecules form dimers via N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103022716/av1153sup1.cif
Contains datablocks pyr0, Ib, Ic, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103022716/av1153Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103022716/av1153Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103022716/av1153Icsup4.hkl
Contains datablock Ic

CCDC references: 231070; 231071; 231072

Comment top

The crystal structures of the three inclusion compounds (I–a), (I–b) and (I–c) (see scheme below) were studied as part of a comprehensive investigation concerning the ability of guest molecules in inclusion compounds to undergo homogeneous photochemical reactions. Inclusion compound (I–a) crystallizes in space group P-1. The host molecule occupies a crystallographic inversion center and the guest molecule, which is linked to the host via a hydrogen bond, occupies a general position. The host molecules are disordered so that the hydroxy groups occupy two different sites (with occupancies of ca 0.75 and 1/4, respectively) that are related by 180° rotation around the C7···C7(2 − x,1 − y,-z) axis. The hydrogen bond observed in the major structure [Fig. 1; O1···O2 = 2.603 (3) Å] is shorter (see also Table 1) than that observed in the minor structure [Fig. 2; O1a···O2 = 2.973 (3) Å]. The O atom of the pyridone molecule forms a bifurcated hydrogen bond. In addition to the hydrogen bonds between the host and the guest, there are also hydrogen bonds between the guest molecules, involving atom N1 of one molecule and atom O2 of another molecule, thus forming a dimer.

Compound (I–b) crystallizes in space group P-1. The host molecule occupies a crystallographic inversion center and the guest molecule, which is linked to the host via a hydrogen bond, occupies a general position (Fig. 3 and Table 1). The degree of planarity of the benzilideneacetophenone molecule [chalcone, (b)] in (I–b) differs from the conformation in the two polymorphs of pure (b) [Rabinovich, 1970; refcode BZYACO in the Cambridge Structural Database (Allen, 2002); Ohkura et al., 1973; refcode BZYACO01] and from that of (b) in another inclusion compound (Kaftory et al., 1985; refcode DEGPUA). A comparison of the C11—C10—C17—C18 and C10—C17—C18—C19 torsion angles in the above structures is given in Table 2. It can be seen that the C11—C10—C17—C18 torsion angle in (I–b) is the smallest.

Compound (I–c) crystallizes in space group P-1. Two guest molecules (labeled A and B) occupy general positions, while two host molecules (labeled A and B) occupy different crystallographic inversion centers. The guest molecules are linked to the host molecules via hydrogen bonds (see Table 1). The A and B host–guest couples are packed orthogonally to one another, as can be seen in Fig. 4. The geometry of 4'-methoxychalcone, (c), in (I–c) is similar to the geometry of pure (c) (Li et al., 1992; refcode KOTSER). The molecule of (c) in (I–c) is almost planar. A comparison of the torsion angles is given in Table 2.

In each compound, ? the conformation of the host molecule can be defined by two dihedral angles around the single bonds. However, since the molecule occupies a crystallographic inversion center in all known compounds that include 2,5-diphenylhydroquinone (the present work; Kaftory et al., 1985; refcode DEGREI), the conformation is described by only one dihedral angle. The dihedral angles between the two phenyl rings are 13.9 (1)° for the host molecule in (I–a), 20.1 (1)° for the host molecule in (I–b), and 7.0 (2) and 58.8 (1)° for the two host molecules in the asymmetric unit of (I–c). The dihedral angle between these planes in the inclusion compound with dibenzylideneacetone (DEGREI; Kaftory et al., 1985) is 24.3 (2)°. The distances between potentially photoreactive centers are too long to enable photodimerization in the solid state. The shortest distance between two potentially reactive atoms of the guest molecules that are related by an inversion center [C11—C14(-x,-y,1 − z)] in (I–a) is 5.691 (3) Å, and that in (I–b) is 6.201 (4) Å [C17—C18(-x,1 − y,1 − z)]. The distances between potentially reacting atoms in guest molecules A [C18—C19(-x,-y,-z)] and B [C18—C19(-x,1 − y,1 − z)] in (I–c) are 4.701 (6) and 4.333 (6) Å, respectively. These distances are larger than the limit set for potential photochemical reactions (Cohen & Schmidt, 1964). The relationship? between the two guest molecules in (I–c) is shown in Fig. 5.

Experimental top

The host component was synthesized according to the method of Toda (1989). The purification of 2,5-diphenylhydroquinone was checked by comparing its 1H NMR spectrum and melting-point value to those in the literature (Ohaba, 1997). The guest components in all three inclusion compounds were purchased from Sigma. Crystals of the inclusion compounds were obtained from ethyl acetate solutions of the host and guest in a 1:2 ratio by slow evaporation of the solvent at room temperature.

Refinement top

In all structures, hydroxy H atoms were located from difference Fourier maps and treated as riding. During the refinement of (I–a), the occupancies of the two hydroxy O atoms were free to refine. The H atom of the major O atom was located from a difference Fourier map; however, the minor O atom could not be detected.

Computing details top

For all compounds, data collection: Collect (Nonius, 2000); cell refinement: DENZO SMN (Otwinowski & Minor 1997); data reduction: DENZO SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
Figure 1. A view of the packing of molecules in (I–a), showing the hydrogen bonding between the host and guest molecules in the major structure and between the pyridone molecules. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2. A view of the packing of molecules in (I–a), showing the hydrogen bonding between the host and guest molecules in the minor structure and between the pyridone molecules. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 3. A view of the packing of molecules in (I–b), showing the hydrogen bonding between the host and guest molecules. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 4. A view of the packing of molecules in (I–c), showing the hydrogen bonding between the host and guest molecules. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 5. A view of the packing of molecules in (I–c), showing the orthoghonal arrangement. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Table 1. Hydrogen-bonding geometry in the three compounds (Å, °).

Table 2. Selected torsion angles in calcone and 4'-methoxychalcone (°).
(pyr0) 2,5-diphenylhydroquinone–2-pyridone (1/2) top
Crystal data top
C18H14O2·2C5H5NOZ = 1
Mr = 452.49F(000) = 238
Triclinic, P1Dx = 1.312 Mg m3
a = 6.510 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.971 (1) ÅCell parameters from 2021 reflections
c = 11.085 (2) Åθ = 2.5–25.0°
α = 70.746 (2)°µ = 0.09 mm1
β = 73.108 (2)°T = 293 K
γ = 73.807 (2)°Prism, colorless
V = 572.66 (15) Å30.3 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
1611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 95 pixels mm-1h = 07
ϕ scank = 910
2021 measured reflectionsl = 1213
2021 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.07P)2 + 0.0744P]
where P = (Fo2 + 2Fc2)/3
2021 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H14O2·2C5H5NOγ = 73.807 (2)°
Mr = 452.49V = 572.66 (15) Å3
Triclinic, P1Z = 1
a = 6.510 (1) ÅMo Kα radiation
b = 8.971 (1) ŵ = 0.09 mm1
c = 11.085 (2) ÅT = 293 K
α = 70.746 (2)°0.3 × 0.2 × 0.1 mm
β = 73.108 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1611 reflections with I > 2σ(I)
2021 measured reflectionsRint = 0.000
2021 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
2021 reflectionsΔρmin = 0.15 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1700 (2)0.70288 (18)0.06695 (14)0.0540 (5)0.738 (3)
H1O11.27290.73090.00780.062 (7)*0.738 (3)
O1A1.3794 (7)0.5964 (5)0.1382 (4)0.0607 (15)0.262 (3)
C11.1955 (2)0.54401 (17)0.07399 (14)0.0438 (4)
C21.0863 (2)0.59945 (17)0.03575 (14)0.0427 (4)
C30.8884 (2)0.55622 (16)0.11220 (13)0.0405 (4)
C40.7711 (2)0.61203 (16)0.23101 (13)0.0415 (4)
C50.8831 (3)0.61239 (18)0.32024 (15)0.0496 (4)
H51.03480.57890.30480.059*
C60.7717 (3)0.6619 (2)0.43178 (16)0.0594 (5)
H60.84890.66070.49080.071*
C70.5472 (3)0.7130 (2)0.45612 (18)0.0643 (5)
H70.47280.74670.53100.077*
C80.4345 (3)0.7137 (2)0.36885 (18)0.0645 (5)
H80.28300.74830.38460.077*
C90.5440 (3)0.66333 (19)0.25790 (16)0.0529 (4)
H90.46500.66360.20010.064*
O20.53951 (19)0.12618 (16)0.08110 (12)0.0676 (4)
N10.2325 (2)0.03140 (15)0.11983 (13)0.0507 (4)
H1N0.29110.00850.05400.061*
C100.3493 (3)0.11471 (19)0.14868 (16)0.0505 (4)
C110.2426 (3)0.1799 (2)0.25613 (18)0.0623 (5)
H110.31260.23990.27980.075*
C120.0409 (3)0.1564 (2)0.3249 (2)0.0697 (5)
H120.02560.19980.39570.084*
C130.0701 (3)0.0679 (2)0.2918 (2)0.0664 (5)
H130.20880.05120.33980.080*
C140.0301 (3)0.00755 (19)0.18833 (18)0.0575 (4)
H140.04050.05110.16370.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0574 (10)0.0712 (10)0.0509 (9)0.0405 (8)0.0070 (7)0.0328 (7)
O1A0.057 (3)0.071 (3)0.061 (3)0.023 (2)0.004 (2)0.033 (2)
C10.0436 (8)0.0465 (8)0.0445 (8)0.0166 (6)0.0067 (6)0.0130 (6)
C20.0454 (8)0.0442 (7)0.0450 (8)0.0188 (6)0.0080 (6)0.0143 (6)
C30.0429 (8)0.0399 (7)0.0404 (8)0.0117 (6)0.0080 (6)0.0113 (6)
C40.0457 (8)0.0391 (7)0.0400 (8)0.0135 (6)0.0053 (6)0.0104 (6)
C50.0490 (9)0.0566 (9)0.0471 (9)0.0149 (7)0.0082 (7)0.0177 (7)
C60.0686 (12)0.0719 (11)0.0464 (9)0.0203 (9)0.0098 (8)0.0246 (8)
C70.0681 (12)0.0705 (11)0.0535 (10)0.0083 (9)0.0016 (9)0.0305 (9)
C80.0508 (10)0.0748 (12)0.0622 (11)0.0000 (9)0.0042 (9)0.0291 (9)
C90.0473 (9)0.0601 (9)0.0517 (9)0.0065 (7)0.0113 (7)0.0186 (7)
O20.0564 (8)0.0936 (9)0.0644 (8)0.0416 (7)0.0094 (6)0.0342 (7)
N10.0491 (8)0.0556 (8)0.0509 (8)0.0198 (6)0.0038 (6)0.0174 (6)
C100.0494 (9)0.0554 (9)0.0490 (9)0.0212 (7)0.0049 (7)0.0134 (7)
C110.0615 (11)0.0695 (11)0.0646 (11)0.0239 (9)0.0010 (9)0.0318 (9)
C120.0659 (12)0.0715 (11)0.0714 (12)0.0173 (9)0.0079 (10)0.0360 (10)
C130.0483 (10)0.0625 (11)0.0826 (13)0.0159 (8)0.0074 (9)0.0270 (9)
C140.0461 (9)0.0528 (9)0.0753 (11)0.0174 (7)0.0073 (8)0.0186 (8)
Geometric parameters (Å, º) top
O1—C21.3714 (18)C7—H70.9300
O1—H1O10.8200C8—C91.379 (2)
O1A—O1A0.000 (13)C8—H80.9300
O1A—C11.326 (4)C9—H90.9300
C1—O1A1.326 (4)O2—C101.2597 (18)
C1—C21.390 (2)N1—C141.352 (2)
C1—C3i1.3952 (19)N1—C101.3616 (19)
C2—C31.398 (2)N1—H1N0.8600
C3—C1i1.3952 (19)C10—C111.412 (2)
C3—C41.4851 (19)C11—C121.348 (2)
C4—C51.390 (2)C11—H110.9300
C4—C91.393 (2)C12—C131.398 (3)
C5—C61.383 (2)C12—H120.9300
C5—H50.9300C13—C141.346 (3)
C6—C71.377 (3)C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.371 (3)
C2—O1—H1O1109.5C6—C7—H7120.3
O1A—O1A—C10 (10)C7—C8—C9120.55 (17)
O1A—C1—O1A0.0 (7)C7—C8—H8119.7
O1A—C1—C2114.7 (2)C9—C8—H8119.7
O1A—C1—C2114.7 (2)C8—C9—C4121.08 (16)
O1A—C1—C3i124.0 (2)C8—C9—H9119.5
O1A—C1—C3i124.0 (2)C4—C9—H9119.5
C2—C1—C3i121.29 (13)C14—N1—C10123.97 (14)
O1—C2—C1119.42 (13)C14—N1—H1N118.0
O1—C2—C3119.39 (13)C10—N1—H1N118.0
C1—C2—C3121.15 (13)O2—C10—N1119.10 (14)
C1i—C3—C2117.56 (13)O2—C10—C11125.53 (14)
C1i—C3—C4120.47 (13)N1—C10—C11115.36 (14)
C2—C3—C4121.96 (12)C12—C11—C10120.94 (16)
C5—C4—C9117.71 (14)C12—C11—H11119.5
C5—C4—C3121.29 (13)C10—C11—H11119.5
C9—C4—C3120.99 (13)C11—C12—C13121.19 (17)
C6—C5—C4120.80 (15)C11—C12—H12119.4
C6—C5—H5119.6C13—C12—H12119.4
C4—C5—H5119.6C14—C13—C12117.92 (16)
C7—C6—C5120.54 (16)C14—C13—H13121.0
C7—C6—H6119.7C12—C13—H13121.0
C5—C6—H6119.7C13—C14—N1120.61 (16)
C8—C7—C6119.32 (16)C13—C14—H14119.7
C8—C7—H7120.3N1—C14—H14119.7
O1A—O1A—C1—C20.0 (2)C9—C4—C5—C60.1 (2)
O1A—O1A—C1—C3i0.0 (3)C3—C4—C5—C6178.83 (14)
O1A—C1—C2—O11.4 (3)C4—C5—C6—C70.5 (3)
O1A—C1—C2—O11.4 (3)C5—C6—C7—C80.3 (3)
C3i—C1—C2—O1177.44 (14)C6—C7—C8—C90.2 (3)
O1A—C1—C2—C3179.1 (3)C7—C8—C9—C40.6 (3)
O1A—C1—C2—C3179.1 (3)C5—C4—C9—C80.4 (2)
C3i—C1—C2—C30.2 (2)C3—C4—C9—C8179.34 (14)
O1—C2—C3—C1i177.45 (14)C14—N1—C10—O2177.92 (15)
C1—C2—C3—C1i0.2 (2)C14—N1—C10—C111.2 (2)
O1—C2—C3—C43.3 (2)O2—C10—C11—C12177.81 (18)
C1—C2—C3—C4178.99 (13)N1—C10—C11—C121.2 (3)
C1i—C3—C4—C5136.34 (15)C10—C11—C12—C130.5 (3)
C2—C3—C4—C542.9 (2)C11—C12—C13—C140.4 (3)
C1i—C3—C4—C942.6 (2)C12—C13—C14—N10.5 (3)
C2—C3—C4—C9138.24 (15)C10—N1—C14—C130.3 (3)
Symmetry code: (i) x+2, y+1, z.
(Ib) 2,5-diphenylhydroquinone–1,3-diphenyl-2-propen-1-one (1/2) top
Crystal data top
C18H14O2·2C15H12OZ = 1
Mr = 678.78F(000) = 358
Triclinic, P1Dx = 1.243 Mg m3
a = 9.413 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.042 (2) ÅCell parameters from 2649 reflections
c = 11.848 (2) Åθ = 1.0–25.1°
α = 65.74 (2)°µ = 0.08 mm1
β = 81.57 (2)°T = 293 K
γ = 62.81 (2)°Prism, yellow
V = 907.0 (3) Å30.2 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.1°, θmin = 1.9°
Detector resolution: 95 pixels mm-1h = 1111
ϕ scank = 1111
5064 measured reflectionsl = 1414
3153 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
3153 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H14O2·2C15H12Oγ = 62.81 (2)°
Mr = 678.78V = 907.0 (3) Å3
Triclinic, P1Z = 1
a = 9.413 (2) ÅMo Kα radiation
b = 10.042 (2) ŵ = 0.08 mm1
c = 11.848 (2) ÅT = 293 K
α = 65.74 (2)°0.2 × 0.1 × 0.08 mm
β = 81.57 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
5064 measured reflectionsRint = 0.043
3153 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.86Δρmax = 0.13 e Å3
3153 reflectionsΔρmin = 0.18 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1676 (2)0.1632 (3)0.50660 (18)0.0672 (7)
H1O10.14430.18670.56760.081*
C10.0184 (3)0.0479 (3)0.5955 (3)0.0505 (8)
H10.03030.08140.66020.061*
C20.0853 (3)0.0806 (3)0.5041 (3)0.0494 (8)
C30.1056 (3)0.0326 (3)0.4051 (3)0.0451 (7)
C40.2137 (3)0.0631 (3)0.3023 (3)0.0449 (7)
C50.3663 (3)0.0410 (3)0.3242 (3)0.0534 (8)
H50.39990.01420.40390.064*
C60.4681 (4)0.0588 (4)0.2275 (3)0.0583 (9)
H60.56960.04370.24290.070*
C70.4205 (4)0.0984 (4)0.1102 (3)0.0645 (9)
H70.48930.10950.04590.077*
C80.2715 (4)0.1214 (4)0.0880 (3)0.0642 (9)
H80.23900.14880.00780.077*
C90.1678 (3)0.1049 (3)0.1821 (3)0.0544 (8)
H90.06620.12190.16470.065*
O20.0980 (3)0.2331 (3)0.7198 (2)0.0797 (8)
C100.0585 (3)0.3326 (4)0.7678 (3)0.0554 (8)
C110.0664 (3)0.3394 (4)0.8608 (3)0.0517 (8)
C120.1360 (4)0.4604 (4)0.9064 (3)0.0677 (10)
H120.10560.54430.87780.081*
C130.2501 (4)0.4583 (4)0.9939 (3)0.0784 (11)
H130.29670.54101.02330.094*
C140.2948 (4)0.3346 (5)1.0373 (3)0.0798 (11)
H140.37180.33331.09610.096*
C150.2259 (4)0.2134 (5)0.9941 (3)0.0805 (11)
H150.25540.12871.02420.097*
C160.1134 (4)0.2157 (4)0.9065 (3)0.0675 (10)
H160.06790.13260.87730.081*
C170.1417 (4)0.4339 (4)0.7393 (3)0.0593 (9)
H170.101 (3)0.518 (3)0.763 (2)0.063 (10)*
C180.2875 (4)0.3916 (4)0.6980 (3)0.0577 (9)
H180.33020.29740.68240.069*
C190.3902 (4)0.4716 (4)0.6736 (3)0.0530 (8)
C200.5510 (4)0.3898 (4)0.6567 (3)0.0652 (9)
H200.59160.28370.66190.078*
C210.6512 (4)0.4621 (4)0.6324 (3)0.0712 (10)
H210.75880.40440.62120.085*
C220.5955 (4)0.6178 (4)0.6242 (3)0.0732 (10)
H220.66410.66640.60800.088*
C230.4364 (4)0.7008 (4)0.6404 (3)0.0694 (10)
H230.39680.80680.63520.083*
C240.3349 (4)0.6297 (4)0.6642 (3)0.0613 (9)
H240.22720.68850.67410.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0796 (15)0.0911 (17)0.0796 (15)0.0621 (14)0.0330 (13)0.0591 (13)
C10.0549 (19)0.056 (2)0.0551 (18)0.0292 (17)0.0131 (16)0.0327 (15)
C20.0539 (18)0.053 (2)0.063 (2)0.0345 (17)0.0136 (17)0.0325 (16)
C30.0472 (17)0.0459 (18)0.0536 (18)0.0257 (16)0.0092 (15)0.0259 (15)
C40.0462 (19)0.0422 (18)0.055 (2)0.0223 (16)0.0085 (16)0.0260 (15)
C50.054 (2)0.061 (2)0.0596 (19)0.0315 (18)0.0094 (17)0.0312 (17)
C60.0497 (19)0.071 (2)0.074 (2)0.0366 (18)0.0189 (19)0.0404 (19)
C70.067 (2)0.083 (3)0.062 (2)0.044 (2)0.024 (2)0.0392 (19)
C80.074 (2)0.077 (3)0.0506 (19)0.041 (2)0.0134 (19)0.0276 (17)
C90.0511 (19)0.061 (2)0.056 (2)0.0263 (17)0.0037 (17)0.0258 (16)
O20.0919 (18)0.109 (2)0.0926 (17)0.0676 (16)0.0354 (14)0.0717 (16)
C100.060 (2)0.060 (2)0.057 (2)0.0297 (18)0.0007 (17)0.0279 (18)
C110.0503 (19)0.058 (2)0.0533 (18)0.0257 (17)0.0020 (16)0.0258 (17)
C120.074 (2)0.062 (2)0.075 (2)0.034 (2)0.014 (2)0.0324 (19)
C130.077 (3)0.080 (3)0.082 (2)0.030 (2)0.025 (2)0.048 (2)
C140.066 (2)0.095 (3)0.078 (3)0.038 (2)0.022 (2)0.035 (2)
C150.080 (3)0.093 (3)0.090 (3)0.056 (2)0.026 (2)0.041 (2)
C160.073 (2)0.074 (3)0.078 (2)0.044 (2)0.016 (2)0.040 (2)
C170.071 (2)0.062 (2)0.062 (2)0.038 (2)0.0114 (18)0.0319 (19)
C180.063 (2)0.054 (2)0.062 (2)0.0300 (19)0.0085 (18)0.0250 (17)
C190.058 (2)0.053 (2)0.0529 (19)0.0280 (18)0.0062 (16)0.0222 (17)
C200.061 (2)0.061 (2)0.077 (2)0.028 (2)0.0058 (19)0.0280 (19)
C210.058 (2)0.075 (3)0.079 (2)0.030 (2)0.0004 (19)0.026 (2)
C220.078 (3)0.087 (3)0.068 (2)0.055 (2)0.003 (2)0.021 (2)
C230.082 (3)0.062 (2)0.076 (2)0.040 (2)0.002 (2)0.0267 (19)
C240.064 (2)0.062 (2)0.069 (2)0.034 (2)0.0101 (18)0.0299 (18)
Geometric parameters (Å, º) top
O1—C21.380 (3)C12—C131.380 (4)
O1—H1O10.8200C12—H120.9300
C1—C21.387 (3)C13—C141.369 (4)
C1—C3i1.393 (3)C13—H130.9300
C1—H10.9300C14—C151.363 (4)
C2—C31.400 (4)C14—H140.9300
C3—C1i1.393 (3)C15—C161.371 (4)
C3—C41.493 (3)C15—H150.9300
C4—C91.383 (4)C16—H160.9300
C4—C51.397 (4)C17—C181.322 (4)
C5—C61.389 (3)C17—H170.90 (3)
C5—H50.9300C18—C191.450 (4)
C6—C71.362 (4)C18—H180.9300
C6—H60.9300C19—C201.384 (4)
C7—C81.360 (4)C19—C241.385 (4)
C7—H70.9300C20—C211.369 (4)
C8—C91.379 (3)C20—H200.9300
C8—H80.9300C21—C221.368 (4)
C9—H90.9300C21—H210.9300
O2—C101.234 (3)C22—C231.372 (4)
C10—C171.459 (4)C22—H220.9300
C10—C111.486 (4)C23—C241.372 (4)
C11—C121.381 (4)C23—H230.9300
C11—C161.382 (4)C24—H240.9300
C2—O1—H1O1109.5C14—C13—C12120.1 (3)
C2—C1—C3i123.1 (3)C14—C13—H13120.0
C2—C1—H1118.5C12—C13—H13120.0
C3i—C1—H1118.5C15—C14—C13119.8 (3)
O1—C2—C1121.5 (3)C15—C14—H14120.1
O1—C2—C3118.5 (2)C13—C14—H14120.1
C1—C2—C3120.0 (2)C14—C15—C16120.4 (3)
C1i—C3—C2116.9 (2)C14—C15—H15119.8
C1i—C3—C4119.2 (2)C16—C15—H15119.8
C2—C3—C4123.8 (2)C15—C16—C11121.1 (3)
C9—C4—C5118.0 (2)C15—C16—H16119.5
C9—C4—C3120.0 (3)C11—C16—H16119.5
C5—C4—C3121.9 (3)C18—C17—C10122.1 (3)
C6—C5—C4120.2 (3)C18—C17—H17118.0 (18)
C6—C5—H5119.9C10—C17—H17118.9 (18)
C4—C5—H5119.9C17—C18—C19129.0 (3)
C7—C6—C5120.5 (3)C17—C18—H18115.5
C7—C6—H6119.7C19—C18—H18115.5
C5—C6—H6119.7C20—C19—C24117.3 (3)
C8—C7—C6119.5 (3)C20—C19—C18119.6 (3)
C8—C7—H7120.2C24—C19—C18123.0 (3)
C6—C7—H7120.2C21—C20—C19121.2 (3)
C7—C8—C9121.2 (3)C21—C20—H20119.4
C7—C8—H8119.4C19—C20—H20119.4
C9—C8—H8119.4C22—C21—C20121.0 (3)
C8—C9—C4120.5 (3)C22—C21—H21119.5
C8—C9—H9119.8C20—C21—H21119.5
C4—C9—H9119.8C21—C22—C23118.6 (3)
O2—C10—C17120.0 (3)C21—C22—H22120.7
O2—C10—C11119.1 (3)C23—C22—H22120.7
C17—C10—C11120.7 (3)C22—C23—C24120.9 (3)
C12—C11—C16117.9 (3)C22—C23—H23119.6
C12—C11—C10123.8 (3)C24—C23—H23119.6
C16—C11—C10118.3 (3)C23—C24—C19121.0 (3)
C13—C12—C11120.9 (3)C23—C24—H24119.5
C13—C12—H12119.6C19—C24—H24119.5
C11—C12—H12119.6
C3i—C1—C2—O1178.9 (3)C16—C11—C12—C130.7 (5)
C3i—C1—C2—C30.3 (5)C10—C11—C12—C13179.2 (3)
O1—C2—C3—C1i178.9 (3)C11—C12—C13—C140.5 (5)
C1—C2—C3—C1i0.3 (5)C12—C13—C14—C150.2 (6)
O1—C2—C3—C41.1 (4)C13—C14—C15—C160.7 (6)
C1—C2—C3—C4179.7 (3)C14—C15—C16—C110.5 (5)
C1i—C3—C4—C938.3 (4)C12—C11—C16—C150.2 (5)
C2—C3—C4—C9141.6 (3)C10—C11—C16—C15178.8 (3)
C1i—C3—C4—C5137.6 (3)O2—C10—C17—C1822.4 (5)
C2—C3—C4—C542.4 (4)O2—C10—C17—C1822.4 (5)
C9—C4—C5—C60.8 (4)C11—C10—C17—C18153.3 (3)
C3—C4—C5—C6175.2 (3)C10—C17—C18—C19175.4 (3)
C4—C5—C6—C70.1 (4)C17—C18—C19—C20165.9 (3)
C5—C6—C7—C80.4 (5)C17—C18—C19—C2415.2 (5)
C6—C7—C8—C90.3 (5)C24—C19—C20—C210.4 (5)
C7—C8—C9—C40.4 (5)C18—C19—C20—C21179.4 (3)
C5—C4—C9—C81.0 (4)C19—C20—C21—C220.1 (5)
C3—C4—C9—C8175.2 (3)C20—C21—C22—C230.3 (5)
O2—C10—C11—C12170.1 (3)C21—C22—C23—C240.0 (5)
C17—C10—C11—C1214.0 (5)C22—C23—C24—C190.6 (5)
O2—C10—C11—C1611.4 (5)C20—C19—C24—C230.7 (5)
C17—C10—C11—C16164.5 (3)C18—C19—C24—C23179.7 (3)
Symmetry code: (i) x, y, z+1.
(Ic) 2,5-diphenylhydroquinone–1-(4-methoxyphenyl)-3-phenyl-2-propen-1-one (1/2) top
Crystal data top
C18H14O2·2C16H14O2Z = 2
Mr = 738.84F(000) = 780
Triclinic, P1Dx = 1.241 Mg m3
a = 10.322 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.051 (2) ÅCell parameters from 6451 reflections
c = 18.041 (3) Åθ = 1.0–25.4°
α = 83.11 (2)°µ = 0.08 mm1
β = 75.54 (2)°T = 293 K
γ = 89.70 (2)°Prism, yellow
V = 1977.6 (7) Å30.2 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2911 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 1.2°
Detector resolution: 95 pixels mm-1h = 012
ϕ scank = 1313
6990 measured reflectionsl = 2021
6990 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.1252P)2]
where P = (Fo2 + 2Fc2)/3
6990 reflections(Δ/σ)max = 0.001
506 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H14O2·2C16H14O2γ = 89.70 (2)°
Mr = 738.84V = 1977.6 (7) Å3
Triclinic, P1Z = 2
a = 10.322 (2) ÅMo Kα radiation
b = 11.051 (2) ŵ = 0.08 mm1
c = 18.041 (3) ÅT = 293 K
α = 83.11 (2)°0.2 × 0.1 × 0.08 mm
β = 75.54 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2911 reflections with I > 2σ(I)
6990 measured reflectionsRint = 0.000
6990 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 0.85Δρmax = 0.14 e Å3
6990 reflectionsΔρmin = 0.14 e Å3
506 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.7717 (3)0.4742 (3)0.05826 (18)0.0772 (8)
H1OA0.78540.41080.07810.12 (2)*
C1A0.5444 (4)0.4389 (3)0.0625 (2)0.0634 (11)
H1A0.57590.39810.10540.076*
C2A0.6359 (4)0.4849 (3)0.0282 (2)0.0609 (10)
C3A0.5924 (4)0.5490 (3)0.0354 (2)0.0589 (10)
C4A0.6831 (4)0.6002 (4)0.0758 (2)0.0640 (11)
C5A0.7932 (4)0.5370 (4)0.0915 (2)0.0739 (12)
H5A0.81200.46120.07450.089*
C6A0.8744 (5)0.5846 (5)0.1316 (3)0.0885 (14)
H6A0.94700.54110.14130.106*
C7A0.8479 (6)0.6960 (6)0.1572 (3)0.1004 (18)
H7A0.90340.72880.18350.120*
C8A0.7383 (6)0.7600 (5)0.1438 (3)0.0940 (16)
H8A0.71890.83460.16240.113*
C9A0.6584 (5)0.7130 (4)0.1029 (3)0.0782 (13)
H9A0.58650.75750.09310.094*
O1B0.2720 (3)0.0280 (2)0.44902 (17)0.0765 (8)
H1OB0.27070.09510.43420.092*
C1B0.5038 (4)0.0657 (3)0.4402 (2)0.0611 (10)
H1B0.50530.10990.39920.073*
C2B0.3849 (4)0.0156 (3)0.4756 (2)0.0581 (10)
C3B0.3787 (4)0.0527 (3)0.5367 (2)0.0590 (10)
C4B0.2537 (4)0.1082 (3)0.5784 (2)0.0615 (11)
C5B0.1282 (4)0.0520 (4)0.5921 (2)0.0705 (12)
H5B0.12000.02140.57300.085*
C6B0.0150 (5)0.1043 (4)0.6339 (3)0.0792 (13)
H6B0.06800.06480.64400.095*
C7B0.0254 (5)0.2153 (5)0.6606 (3)0.0865 (15)
H7B0.05030.25160.68770.104*
C8B0.1493 (5)0.2708 (4)0.6463 (3)0.0797 (13)
H8B0.15700.34520.66430.096*
C9B0.2610 (4)0.2190 (4)0.6063 (2)0.0657 (11)
H9B0.34370.25860.59750.079*
O2A0.2008 (3)0.7358 (3)0.13229 (17)0.0786 (9)
O3A0.5437 (3)1.1547 (3)0.20548 (19)0.0946 (10)
C10A0.2301 (4)0.8390 (4)0.0953 (3)0.0682 (11)
C11A0.3118 (4)0.9254 (3)0.1228 (2)0.0621 (11)
C12A0.3604 (5)1.0349 (4)0.0800 (3)0.0862 (14)
H12A0.34041.05590.03270.103*
C13A0.4386 (5)1.1151 (4)0.1056 (3)0.0784 (13)
H13A0.47011.18860.07590.094*
C14A0.4679 (4)1.0842 (4)0.1745 (3)0.0716 (12)
C15A0.4203 (5)0.9761 (4)0.2192 (3)0.0874 (14)
H15A0.43960.95610.26680.105*
C16A0.3434 (5)0.8975 (4)0.1925 (3)0.0802 (13)
H16A0.31230.82390.22230.096*
C17A0.5992 (5)1.2648 (4)0.1614 (3)0.0965 (16)
H17C0.64981.30480.18960.116*
H17D0.52801.31600.15230.116*
H17E0.65661.24920.11310.116*
C18A0.1828 (5)0.8735 (4)0.0265 (3)0.0812 (13)
H18A0.20800.95020.00070.097*
C19A0.1065 (4)0.8033 (4)0.0003 (2)0.0702 (12)
H19A0.08210.72790.02950.084*
C20A0.0550 (4)0.8268 (4)0.0679 (3)0.0668 (11)
C21A0.0264 (5)0.7426 (4)0.0828 (3)0.0828 (14)
H21A0.04960.67150.04870.099*
C22A0.0766 (5)0.7603 (5)0.1489 (3)0.0979 (15)
H22A0.13360.70250.15840.118*
C23A0.0395 (5)0.8647 (5)0.1987 (3)0.0918 (15)
H23A0.06980.87710.24340.110*
C24A0.0394 (6)0.9490 (5)0.1841 (3)0.1105 (19)
H24A0.06301.01970.21850.133*
C25A0.0862 (6)0.9326 (4)0.1187 (3)0.0948 (16)
H25A0.13930.99320.10860.114*
O2B0.2828 (3)0.7556 (2)0.38952 (16)0.0749 (8)
O3B0.6991 (3)0.3462 (3)0.31561 (17)0.0835 (9)
C10B0.2777 (4)0.6524 (4)0.4267 (2)0.0634 (11)
C11B0.3851 (4)0.5662 (3)0.4002 (2)0.0570 (10)
C12B0.3952 (4)0.4527 (3)0.4393 (2)0.0698 (12)
H12B0.33020.42680.48420.084*
C13B0.4980 (4)0.3767 (4)0.4140 (2)0.0705 (12)
H13B0.50340.30140.44200.085*
C14B0.5926 (4)0.4130 (4)0.3471 (2)0.0625 (11)
C15B0.5831 (4)0.5245 (4)0.3061 (2)0.0742 (12)
H15B0.64690.54880.26030.089*
C16B0.4804 (4)0.6002 (3)0.3321 (2)0.0680 (12)
H16B0.47490.67510.30370.082*
C17B0.7086 (5)0.2247 (4)0.3500 (3)0.0959 (16)
H17F0.78790.18820.32240.115*
H17G0.63150.17760.34930.115*
H17H0.71260.22690.40230.115*
C18B0.1710 (4)0.6182 (4)0.4961 (2)0.0729 (12)
H18B0.17290.54180.52370.087*
C19B0.0720 (4)0.6903 (4)0.5217 (2)0.0646 (11)
H19B0.07330.76570.49240.078*
C20B0.0395 (4)0.6671 (4)0.5902 (2)0.0666 (11)
C21B0.1371 (4)0.7533 (4)0.6056 (3)0.0755 (13)
H21B0.13160.82490.57200.091*
C22B0.2422 (5)0.7338 (5)0.6702 (3)0.0932 (16)
H22B0.30700.79260.68000.112*
C23B0.2525 (5)0.6296 (6)0.7198 (3)0.0974 (16)
H23B0.32400.61740.76330.117*
C24B0.1576 (5)0.5429 (5)0.7056 (3)0.1015 (17)
H24B0.16480.47110.73920.122*
C25B0.0508 (5)0.5619 (4)0.6411 (3)0.0901 (15)
H25B0.01410.50310.63200.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0514 (19)0.084 (2)0.095 (2)0.0050 (15)0.0092 (15)0.0225 (18)
C1A0.058 (3)0.060 (2)0.072 (3)0.009 (2)0.014 (2)0.012 (2)
C2A0.049 (3)0.060 (2)0.068 (3)0.006 (2)0.006 (2)0.005 (2)
C3A0.053 (3)0.059 (2)0.064 (3)0.0117 (19)0.013 (2)0.007 (2)
C4A0.061 (3)0.069 (3)0.057 (3)0.016 (2)0.008 (2)0.001 (2)
C5A0.061 (3)0.086 (3)0.071 (3)0.018 (2)0.011 (2)0.005 (2)
C6A0.061 (3)0.128 (4)0.073 (3)0.028 (3)0.015 (3)0.006 (3)
C7A0.084 (4)0.149 (5)0.066 (3)0.054 (4)0.012 (3)0.016 (3)
C8A0.104 (4)0.098 (4)0.073 (3)0.043 (3)0.007 (3)0.012 (3)
C9A0.083 (3)0.077 (3)0.073 (3)0.022 (2)0.015 (3)0.009 (2)
O1B0.072 (2)0.0742 (18)0.098 (2)0.0152 (15)0.0419 (17)0.0276 (16)
C1B0.063 (3)0.062 (2)0.061 (3)0.009 (2)0.020 (2)0.0090 (19)
C2B0.056 (3)0.058 (2)0.066 (3)0.0055 (19)0.028 (2)0.006 (2)
C3B0.064 (3)0.054 (2)0.061 (3)0.005 (2)0.022 (2)0.0014 (19)
C4B0.062 (3)0.065 (3)0.056 (3)0.008 (2)0.018 (2)0.003 (2)
C5B0.066 (3)0.074 (3)0.072 (3)0.011 (2)0.020 (2)0.004 (2)
C6B0.064 (3)0.098 (4)0.072 (3)0.010 (3)0.019 (2)0.007 (3)
C7B0.077 (4)0.106 (4)0.076 (3)0.029 (3)0.021 (3)0.009 (3)
C8B0.086 (4)0.080 (3)0.074 (3)0.022 (3)0.021 (3)0.013 (2)
C9B0.062 (3)0.069 (3)0.066 (3)0.009 (2)0.016 (2)0.011 (2)
O2A0.089 (2)0.0706 (18)0.075 (2)0.0088 (16)0.0203 (17)0.0022 (16)
O3A0.107 (3)0.093 (2)0.087 (2)0.029 (2)0.029 (2)0.0121 (19)
C10A0.067 (3)0.069 (3)0.064 (3)0.005 (2)0.008 (2)0.006 (2)
C11A0.066 (3)0.055 (2)0.062 (3)0.004 (2)0.011 (2)0.005 (2)
C12A0.095 (4)0.097 (3)0.067 (3)0.019 (3)0.026 (3)0.004 (3)
C13A0.083 (3)0.084 (3)0.067 (3)0.023 (3)0.023 (3)0.009 (2)
C14A0.069 (3)0.080 (3)0.068 (3)0.003 (2)0.018 (2)0.017 (3)
C15A0.117 (4)0.077 (3)0.075 (3)0.007 (3)0.039 (3)0.004 (3)
C16A0.098 (4)0.074 (3)0.067 (3)0.008 (3)0.022 (3)0.002 (2)
C17A0.090 (4)0.101 (4)0.095 (4)0.020 (3)0.008 (3)0.030 (3)
C18A0.093 (4)0.077 (3)0.074 (3)0.009 (3)0.026 (3)0.001 (2)
C19A0.065 (3)0.077 (3)0.063 (3)0.000 (2)0.011 (2)0.001 (2)
C20A0.061 (3)0.064 (3)0.074 (3)0.001 (2)0.013 (2)0.008 (2)
C21A0.081 (3)0.087 (3)0.076 (3)0.016 (3)0.019 (3)0.007 (3)
C22A0.087 (4)0.107 (4)0.102 (4)0.019 (3)0.031 (3)0.007 (3)
C23A0.096 (4)0.103 (4)0.081 (4)0.000 (3)0.035 (3)0.003 (3)
C24A0.155 (6)0.089 (4)0.098 (4)0.025 (4)0.064 (4)0.014 (3)
C25A0.134 (5)0.075 (3)0.084 (4)0.021 (3)0.050 (3)0.007 (3)
O2B0.079 (2)0.0635 (17)0.075 (2)0.0086 (15)0.0093 (16)0.0009 (15)
O3B0.075 (2)0.078 (2)0.091 (2)0.0177 (17)0.0076 (17)0.0130 (17)
C10B0.067 (3)0.063 (3)0.062 (3)0.003 (2)0.021 (2)0.005 (2)
C11B0.060 (3)0.053 (2)0.056 (2)0.0015 (19)0.011 (2)0.0063 (18)
C12B0.067 (3)0.070 (3)0.063 (3)0.008 (2)0.004 (2)0.003 (2)
C13B0.074 (3)0.064 (3)0.064 (3)0.009 (2)0.008 (2)0.009 (2)
C14B0.063 (3)0.061 (2)0.064 (3)0.006 (2)0.014 (2)0.015 (2)
C15B0.075 (3)0.064 (3)0.070 (3)0.005 (2)0.004 (2)0.001 (2)
C16B0.073 (3)0.051 (2)0.073 (3)0.001 (2)0.005 (2)0.004 (2)
C17B0.109 (4)0.078 (3)0.102 (4)0.035 (3)0.027 (3)0.016 (3)
C18B0.076 (3)0.071 (3)0.066 (3)0.009 (2)0.010 (2)0.002 (2)
C19B0.062 (3)0.070 (3)0.063 (3)0.006 (2)0.017 (2)0.009 (2)
C20B0.060 (3)0.073 (3)0.068 (3)0.010 (2)0.017 (2)0.015 (2)
C21B0.066 (3)0.085 (3)0.083 (3)0.019 (2)0.027 (3)0.025 (2)
C22B0.062 (3)0.123 (4)0.097 (4)0.024 (3)0.012 (3)0.041 (4)
C23B0.076 (4)0.130 (5)0.081 (4)0.001 (3)0.005 (3)0.025 (3)
C24B0.096 (4)0.109 (4)0.086 (4)0.008 (3)0.001 (3)0.007 (3)
C25B0.082 (4)0.089 (3)0.086 (4)0.020 (3)0.000 (3)0.004 (3)
Geometric parameters (Å, º) top
O1A—C2A1.380 (4)C16A—H16A0.9300
O1A—H1OA0.8200C17A—H17C0.9569
C1A—C2A1.380 (5)C17A—H17D0.9605
C1A—C3Ai1.386 (5)C17A—H17E0.9588
C1A—H1A0.9300C18A—C19A1.313 (6)
C2A—C3A1.398 (5)C18A—H18A0.9300
C3A—C1Ai1.386 (5)C19A—C20A1.453 (6)
C3A—C4A1.473 (6)C19A—H19A0.9300
C4A—C9A1.393 (5)C20A—C21A1.351 (6)
C4A—C5A1.402 (5)C20A—C25A1.382 (6)
C5A—C6A1.379 (6)C21A—C22A1.408 (7)
C5A—H5A0.9300C21A—H21A0.9300
C6A—C7A1.368 (7)C22A—C23A1.367 (6)
C6A—H6A0.9300C22A—H22A0.9300
C7A—C8A1.387 (7)C23A—C24A1.331 (7)
C7A—H7A0.9300C23A—H23A0.9300
C8A—C9A1.377 (6)C24A—C25A1.376 (6)
C8A—H8A0.9300C24A—H24A0.9300
C9A—H9A0.9300C25A—H25A0.9300
O1B—C2B1.380 (4)O2B—C10B1.247 (4)
O1B—H1OB0.8200O3B—C14B1.362 (4)
C1B—C2B1.381 (5)O3B—C17B1.423 (5)
C1B—C3Bii1.391 (5)C10B—C18B1.458 (6)
C1B—H1B0.9300C10B—C11B1.483 (5)
C2B—C3B1.398 (5)C11B—C12B1.380 (5)
C3B—C1Bii1.391 (5)C11B—C16B1.381 (5)
C3B—C4B1.491 (5)C12B—C13B1.371 (5)
C4B—C9B1.388 (5)C12B—H12B0.9300
C4B—C5B1.392 (5)C13B—C14B1.367 (5)
C5B—C6B1.387 (5)C13B—H13B0.9300
C5B—H5B0.9300C14B—C15B1.376 (5)
C6B—C7B1.384 (6)C15B—C16B1.371 (5)
C6B—H6B0.9300C15B—H15B0.9300
C7B—C8B1.372 (6)C16B—H16B0.9300
C7B—H7B0.9300C17B—H17F0.9593
C8B—C9B1.363 (5)C17B—H17G0.9575
C8B—H8B0.9300C17B—H17H0.9584
C9B—H9B0.9300C18B—C19B1.318 (5)
O2A—C10A1.248 (5)C18B—H18B0.9300
O3A—C14A1.364 (5)C19B—C20B1.461 (6)
O3A—C17A1.409 (5)C19B—H19B0.9300
C10A—C18A1.454 (6)C20B—C25B1.378 (6)
C10A—C11A1.483 (6)C20B—C21B1.383 (5)
C11A—C16A1.376 (6)C21B—C22B1.376 (6)
C11A—C12A1.379 (5)C21B—H21B0.9300
C12A—C13A1.393 (6)C22B—C23B1.358 (7)
C12A—H12A0.9300C22B—H22B0.9300
C13A—C14A1.356 (6)C23B—C24B1.367 (6)
C13A—H13A0.9300C23B—H23B0.9300
C14A—C15A1.378 (6)C24B—C25B1.384 (6)
C15A—C16A1.385 (6)C24B—H24B0.9300
C15A—H15A0.9300C25B—H25B0.9300
C2A—O1A—H1OA109.5H17C—C17A—H17D109.5
C2A—C1A—C3Ai122.6 (4)O3A—C17A—H17E110.5
C2A—C1A—H1A118.7H17C—C17A—H17E109.4
C3Ai—C1A—H1A118.7H17D—C17A—H17E109.4
C1A—C2A—O1A120.8 (4)C19A—C18A—C10A124.1 (4)
C1A—C2A—C3A120.3 (4)C19A—C18A—H18A117.9
O1A—C2A—C3A118.8 (4)C10A—C18A—H18A117.9
C1Ai—C3A—C2A117.1 (4)C18A—C19A—C20A129.1 (4)
C1Ai—C3A—C4A119.1 (4)C18A—C19A—H19A115.5
C2A—C3A—C4A123.8 (4)C20A—C19A—H19A115.5
C9A—C4A—C5A117.2 (4)C21A—C20A—C25A118.3 (5)
C9A—C4A—C3A120.4 (4)C21A—C20A—C19A119.2 (4)
C5A—C4A—C3A122.4 (4)C25A—C20A—C19A122.5 (4)
C6A—C5A—C4A121.6 (5)C20A—C21A—C22A121.3 (4)
C6A—C5A—H5A119.2C20A—C21A—H21A119.4
C4A—C5A—H5A119.2C22A—C21A—H21A119.4
C7A—C6A—C5A119.9 (5)C23A—C22A—C21A118.3 (5)
C7A—C6A—H6A120.1C23A—C22A—H22A120.8
C5A—C6A—H6A120.1C21A—C22A—H22A120.8
C6A—C7A—C8A120.0 (5)C24A—C23A—C22A120.9 (5)
C6A—C7A—H7A120.0C24A—C23A—H23A119.5
C8A—C7A—H7A120.0C22A—C23A—H23A119.5
C9A—C8A—C7A120.0 (5)C23A—C24A—C25A120.7 (5)
C9A—C8A—H8A120.0C23A—C24A—H24A119.7
C7A—C8A—H8A120.0C25A—C24A—H24A119.7
C8A—C9A—C4A121.3 (5)C24A—C25A—C20A120.5 (5)
C8A—C9A—H9A119.3C24A—C25A—H25A119.8
C4A—C9A—H9A119.3C20A—C25A—H25A119.8
C2B—O1B—H1OB109.5C14B—O3B—C17B118.7 (3)
C2B—C1B—C3Bii122.6 (4)O2B—C10B—C18B120.9 (4)
C2B—C1B—H1B118.7O2B—C10B—C11B118.5 (4)
C3Bii—C1B—H1B118.7C18B—C10B—C11B120.6 (3)
O1B—C2B—C1B120.4 (4)C12B—C11B—C16B117.6 (3)
O1B—C2B—C3B119.1 (3)C12B—C11B—C10B123.8 (4)
C1B—C2B—C3B120.5 (4)C16B—C11B—C10B118.6 (3)
C1Bii—C3B—C2B116.9 (3)C13B—C12B—C11B122.1 (4)
C1Bii—C3B—C4B119.6 (4)C13B—C12B—H12B118.9
C2B—C3B—C4B123.5 (4)C11B—C12B—H12B118.9
C9B—C4B—C5B117.8 (4)C14B—C13B—C12B119.3 (4)
C9B—C4B—C3B119.6 (4)C14B—C13B—H13B120.3
C5B—C4B—C3B122.6 (4)C12B—C13B—H13B120.3
C6B—C5B—C4B120.7 (4)O3B—C14B—C13B125.1 (4)
C6B—C5B—H5B119.7O3B—C14B—C15B115.2 (4)
C4B—C5B—H5B119.7C13B—C14B—C15B119.7 (4)
C7B—C6B—C5B120.1 (5)C16B—C15B—C14B120.5 (4)
C7B—C6B—H6B119.9C16B—C15B—H15B119.7
C5B—C6B—H6B119.9C14B—C15B—H15B119.7
C8B—C7B—C6B118.9 (4)C15B—C16B—C11B120.7 (4)
C8B—C7B—H7B120.5C15B—C16B—H16B119.7
C6B—C7B—H7B120.5C11B—C16B—H16B119.7
C9B—C8B—C7B121.2 (5)O3B—C17B—H17F110.2
C9B—C8B—H8B119.4O3B—C17B—H17G109.6
C7B—C8B—H8B119.4H17F—C17B—H17G109.6
C8B—C9B—C4B121.2 (4)O3B—C17B—H17H108.7
C8B—C9B—H9B119.4H17F—C17B—H17H109.4
C4B—C9B—H9B119.4H17G—C17B—H17H109.4
C14A—O3A—C17A117.6 (4)C19B—C18B—C10B123.2 (4)
O2A—C10A—C18A119.8 (4)C19B—C18B—H18B118.4
O2A—C10A—C11A119.3 (4)C10B—C18B—H18B118.4
C18A—C10A—C11A120.8 (4)C18B—C19B—C20B128.3 (4)
C16A—C11A—C12A117.4 (4)C18B—C19B—H19B115.8
C16A—C11A—C10A120.5 (4)C20B—C19B—H19B115.8
C12A—C11A—C10A122.1 (4)C25B—C20B—C21B118.3 (4)
C11A—C12A—C13A122.0 (4)C25B—C20B—C19B122.2 (4)
C11A—C12A—H12A119.0C21B—C20B—C19B119.5 (4)
C13A—C12A—H12A119.0C22B—C21B—C20B120.4 (5)
C14A—C13A—C12A118.9 (4)C22B—C21B—H21B119.8
C14A—C13A—H13A120.5C20B—C21B—H21B119.8
C12A—C13A—H13A120.5C23B—C22B—C21B120.8 (5)
C13A—C14A—O3A124.4 (4)C23B—C22B—H22B119.6
C13A—C14A—C15A120.9 (4)C21B—C22B—H22B119.6
O3A—C14A—C15A114.7 (4)C22B—C23B—C24B119.8 (5)
C14A—C15A—C16A119.1 (4)C22B—C23B—H23B120.1
C14A—C15A—H15A120.4C24B—C23B—H23B120.1
C16A—C15A—H15A120.4C23B—C24B—C25B119.9 (5)
C11A—C16A—C15A121.7 (4)C23B—C24B—H24B120.0
C11A—C16A—H16A119.2C25B—C24B—H24B120.0
C15A—C16A—H16A119.2C20B—C25B—C24B120.8 (4)
O3A—C17A—H17C109.0C20B—C25B—H25B119.6
O3A—C17A—H17D108.9C24B—C25B—H25B119.6
C3Ai—C1A—C2A—O1A178.0 (3)C13A—C14A—C15A—C16A1.1 (7)
C3Ai—C1A—C2A—C3A1.4 (6)O3A—C14A—C15A—C16A179.3 (4)
C1A—C2A—C3A—C1Ai1.3 (6)C12A—C11A—C16A—C15A0.4 (7)
O1A—C2A—C3A—C1Ai178.0 (3)C10A—C11A—C16A—C15A179.5 (4)
C1A—C2A—C3A—C4A179.5 (4)C14A—C15A—C16A—C11A0.9 (7)
O1A—C2A—C3A—C4A3.8 (6)O2A—C10A—C18A—C19A1.6 (7)
C1Ai—C3A—C4A—C9A40.4 (5)C11A—C10A—C18A—C19A177.7 (4)
C2A—C3A—C4A—C9A141.5 (4)C10A—C18A—C19A—C20A179.0 (4)
C1Ai—C3A—C4A—C5A136.9 (4)C18A—C19A—C20A—C21A177.7 (5)
C2A—C3A—C4A—C5A41.2 (6)C18A—C19A—C20A—C25A2.4 (7)
C9A—C4A—C5A—C6A0.4 (6)C25A—C20A—C21A—C22A1.1 (7)
C3A—C4A—C5A—C6A177.8 (4)C19A—C20A—C21A—C22A178.7 (4)
C4A—C5A—C6A—C7A0.1 (7)C20A—C21A—C22A—C23A0.9 (7)
C5A—C6A—C7A—C8A1.0 (7)C21A—C22A—C23A—C24A1.7 (8)
C6A—C7A—C8A—C9A1.8 (7)C22A—C23A—C24A—C25A0.4 (9)
C7A—C8A—C9A—C4A1.6 (7)C23A—C24A—C25A—C20A1.7 (9)
C5A—C4A—C9A—C8A0.4 (6)C21A—C20A—C25A—C24A2.4 (7)
C3A—C4A—C9A—C8A177.0 (4)C19A—C20A—C25A—C24A177.5 (5)
C3Bii—C1B—C2B—O1B178.0 (3)O2B—C10B—C11B—C12B175.6 (4)
C3Bii—C1B—C2B—C3B0.7 (6)C18B—C10B—C11B—C12B2.5 (6)
O1B—C2B—C3B—C1Bii178.0 (3)O2B—C10B—C11B—C16B5.1 (6)
C1B—C2B—C3B—C1Bii0.7 (6)C18B—C10B—C11B—C16B176.9 (4)
O1B—C2B—C3B—C4B3.5 (5)C16B—C11B—C12B—C13B2.4 (6)
C1B—C2B—C3B—C4B179.2 (3)C10B—C11B—C12B—C13B178.3 (4)
C1Bii—C3B—C4B—C9B35.6 (5)C11B—C12B—C13B—C14B1.3 (7)
C2B—C3B—C4B—C9B146.0 (4)C17B—O3B—C14B—C13B6.0 (6)
C1Bii—C3B—C4B—C5B143.1 (4)C17B—O3B—C14B—C15B173.5 (4)
C2B—C3B—C4B—C5B35.3 (6)C12B—C13B—C14B—O3B179.8 (4)
C9B—C4B—C5B—C6B1.5 (6)C12B—C13B—C14B—C15B0.2 (7)
C3B—C4B—C5B—C6B177.3 (3)O3B—C14B—C15B—C16B179.8 (4)
C4B—C5B—C6B—C7B1.9 (6)C13B—C14B—C15B—C16B0.7 (7)
C5B—C6B—C7B—C8B1.3 (7)C14B—C15B—C16B—C11B0.4 (7)
C6B—C7B—C8B—C9B0.3 (7)C12B—C11B—C16B—C15B1.9 (6)
C7B—C8B—C9B—C4B0.0 (6)C10B—C11B—C16B—C15B178.8 (4)
C5B—C4B—C9B—C8B0.5 (6)O2B—C10B—C18B—C19B3.0 (7)
C3B—C4B—C9B—C8B178.3 (4)C11B—C10B—C18B—C19B179.0 (4)
O2A—C10A—C11A—C16A6.7 (6)C10B—C18B—C19B—C20B179.6 (4)
C18A—C10A—C11A—C16A172.6 (4)C18B—C19B—C20B—C25B3.3 (7)
O2A—C10A—C11A—C12A172.4 (4)C18B—C19B—C20B—C21B177.3 (4)
C18A—C10A—C11A—C12A8.3 (6)C25B—C20B—C21B—C22B0.1 (7)
C16A—C11A—C12A—C13A0.0 (7)C19B—C20B—C21B—C22B179.3 (4)
C10A—C11A—C12A—C13A179.1 (4)C20B—C21B—C22B—C23B0.3 (8)
C11A—C12A—C13A—C14A0.1 (7)C21B—C22B—C23B—C24B0.0 (8)
C12A—C13A—C14A—O3A179.8 (4)C22B—C23B—C24B—C25B0.6 (8)
C12A—C13A—C14A—C15A0.7 (7)C21B—C20B—C25B—C24B0.5 (7)
C17A—O3A—C14A—C13A2.5 (6)C19B—C20B—C25B—C24B179.8 (5)
C17A—O3A—C14A—C15A177.9 (4)C23B—C24B—C25B—C20B0.8 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.

Experimental details

(pyr0)(Ib)(Ic)
Crystal data
Chemical formulaC18H14O2·2C5H5NOC18H14O2·2C15H12OC18H14O2·2C16H14O2
Mr452.49678.78738.84
Crystal system, space groupTriclinic, P1Triclinic, P1Triclinic, P1
Temperature (K)293293293
a, b, c (Å)6.510 (1), 8.971 (1), 11.085 (2)9.413 (2), 10.042 (2), 11.848 (2)10.322 (2), 11.051 (2), 18.041 (3)
α, β, γ (°)70.746 (2), 73.108 (2), 73.807 (2)65.74 (2), 81.57 (2), 62.81 (2)83.11 (2), 75.54 (2), 89.70 (2)
V3)572.66 (15)907.0 (3)1977.6 (7)
Z112
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.080.08
Crystal size (mm)0.3 × 0.2 × 0.10.2 × 0.1 × 0.080.2 × 0.1 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2021, 2021, 1611 5064, 3153, 1284 6990, 6990, 2911
Rint0.0000.0430.000
(sin θ/λ)max1)0.5960.5960.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.06 0.043, 0.142, 0.86 0.068, 0.224, 0.85
No. of reflections202131536990
No. of parameters165239506
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.150.13, 0.180.14, 0.14

Computer programs: Collect (Nonius, 2000), DENZO SMN (Otwinowski & Minor 1997), DENZO SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, °) in the three title compounds top
D—H···AD—HH···AD···AD—H···A
Ia
O1—H1O1···O2i0.821.862.603 (2)151
N1—H1N···O2ii0.862.002.854 (2)171
Ib
O1—H1O1···O20.821.982.803 (3)177
Ic
O1a—H1Oa···O2aiii0.821.982.793 (4)172
O1b—H1Ob···O2biv0.821.912.727 (4)174
Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 1 − x, −y, −z; (iii) 1 − x, 1 − y, −z; (iv) x, y − 1, z.
Comparison of selected torsion angles (°) top
Chalcone
C11-C10-C17-C18C10-C17-C18-C19
I-b153.3175.3
DEGPUA171.9-179.4
BZYACO-160.5178.7
BZYACO01167.8177.8
4'-Methoxychalcone
C11-C10-C18-C19C10-C18-C19-C20
I-c(A)-177.6-179.0
I-c(B)-179.0-179.5
KOTSER160.4176.4
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds