Download citation
Download citation
link to html
In the molecule of the title compound, [Cu(NO3)2(C6H6ClN)2], the Cu atom lies on an inversion centre and is six-coordinated by two pyridine N atoms and four nitrate O atoms in trans positions. The nitrate acts as an unsymmetrical bidentate ligand. The coordination geometry is octahedral, with the Cu—N and the two Cu—O distances being 1.9939 (16), 2.0246 (16) and 2.4866 (19) Å, respectively. There are five types of C—H...O hydrogen bonds. Two of these generate two-dimensional molecular networks in the direction of the a axis, and the others connect adjacent molecular networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010302198X/av1150sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010302198X/av1150Isup2.hkl
Contains datablock I

CCDC reference: 209476

Comment top

2-Chloro-5-methylpyridine can form a complex with CuCl2·2H2O [dichlorobis(2-chloro-5-methylpyridine-κN)copper(II); Xuan et al.,2003]. In recent work, we have found that it can also form a complex with Cu(NO3)2, but the melting point of this complex is much higher than that of the former. In order to study the specific structural features of this latter copper complex, (I), we have performed an X-ray structral analysis, and the results are presented here. \sch

The molecular structure of (I) is shown in Fig.1. The Cu atom lies on a crystallographic inversion centre, so the N1—Cu—N1i, O2—Cu—O2i and O3—Cu—O3i angles are 180° [symmetry code:(i)-x, 1 − y, −z]. The two pyridine rings are coplanar in the molecule of (I) because of crystallographic symmetry, but they are twisted from the Cu/N1/O2 plane, with an O1—Cu—N1—C1 torsion angle of 113.70 (15)°. The title complex forms a distorted octahedral structure, with Cu—N1, Cu—O1 and Cu—O3 distances of 1.9939 (16), 2.0246 (16) and 2.4866 (19) Å, respectively, N1—Cu—O1 and N1—Cu—O3 angles of 88.23 (6) and 92.80 (7)°, respectively, and O3—N2—O1—Cu and N1—Cu—O1—N2 torsion angles of −5.1 (2) and −91.88 (33)°, respectively. The Cu—N1 and Cu—O1 bond distances (Table 1) agree with the corresponding values for other CuII complexes (Zavalij et al., 2002), but Cu—O3 is 0.46 Å longer than Cu—O1. The N2—O1 bond is longer than N2—O3, so the nitrate is unsymmetrical. The nitrate groups act as bidentate ligands, just as they do in other metal complexes (Eleonora et al., 2001; Yoshida et al., 2001; Sommerer et al., 1994), but in (I) they are unsymmetrical bidentate ligands. The nitrate bite angle is 55.49 (7)°.

Analysis of the short intermolecular contacts (Nardelli, 1995; Desiraju, 1996) in (I) shows that there are five types of C—H···O hydrogen-bonding interactions (Table 2), and the nitrate group acts as a C—H···O acceptor. A detailed analysis of the crystal packing shows that two types of hydrogen bonds [C2···O2(x, 3/2 − y, z − 1/2) and C2···O1(x, 3/2 − y, z − 1/2)] generate two-dimensional networks in the direction of the a axis (Fig. 2), and these molecular networks are stacked on top of each other. Three other types of hydrogen bonds [C3···O2(-x, y + 1/2, 1/2 − z), C5···O3(x − 1, y, z) and C6···O2(x − 1, 3/2 − y, z − 1/2)] (Fig. 3) enforce the connection between adjacent molecular networks. Because the centroid-centroid distance between pyridine rings in adjacent molecular networks is 6.6855 Å, any intermolecular forces between these rings should be very weak (Panda et al., 2001). Thus, the C—H···O interactions are likely to be the major intermolecular forces, causing the complex molecules to pack in a compact fashion.

In the crystal of (I), every single complex molecule can form 10 C—H···O hydrogen bonds with neighbouring molecules, but dichlorobis(2-chloro-5-methylpyridine-κN)copper(II) can only form six C—H···Cl hydrogen bonds. This maybe why the melting point of the title complex is much higher than that of the latter.

Table 2. Hydrogen-bonding and short-contact geometry

Experimental top

2-Chloro-5-methylpyridine (0.8 g; 7.8 mmol) in absolute ethanol (5 ml) was mixed with Cu(NO3)2·3H2O (0.7 g; 3.3 mmol) in What? (5 ml) in a round-bottomed flask. The solution appeared cloudy in a short time. It was heated until it became clear, cooled to room temperature and filtered. A single-crystal of (I) was obtained in the filtrate in 3 d (m.p 463 K, decomposed). Analysis calculated for C12H12O6CuN4: C 32.55, H 2.738, N 12.66%; found: C 32.55, H 2.778, N 12.55%.

Refinement top

H atoms were added at calculated positions, refined using a riding model and given Uiso parameters equal to 1.2 (or 1.5 for methyl H atoms) times the Ueq parameters of their parent atoms. C—H distances were restrained to 0.98 Å for methyl H and 0.95 Å for H atoms bonded to atoms C2, C3 and C5.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Molecular Structure Corporation & Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of (I) viewed along the a axis. The C2—H2···O2(x, 3/2 − y, z − 1/2), C2—H2···O1(x, 3/2 − y, z − 1/2) and C3—H3···O2(-x, y + 1/2, 1/2 − z) interactions are indicated by dotted lines.
[Figure 3] Fig. 3. The packing diagram of (I) viewed along the c axis. The C3—H3···O2(x − 1, 3/2 − y, z − 1/2), C3—H3···O2(-x, y + 1/2, 1/2 − z), C5—H5···O3(x − 1, y, z) and C6—H6B···O2(x − 1, 3/2 − y, z − 1/2) interactions are indicated by dotted lines.
(I) top
Crystal data top
[Cu(NO3)2(C6H6ClN)2]F(000) = 446
Mr = 442.7Dx = 1.717 Mg m3
Monoclinic, P21/cMelting point: 190 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6855 (2) ÅCell parameters from 6378 reflections
b = 13.2221 (3) Åθ = 2.6–27.4°
c = 9.9254 (3) ŵ = 1.62 mm1
β = 102.5430 (8)°T = 293 K
V = 856.43 (4) Å3Prism, dark violet
Z = 20.40 × 0.25 × 0.23 mm
Data collection top
Rigaku R-AXIS Rapid
diffractometer
1743 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.019
ω scansθmax = 27.4°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.621, Tmax = 0.688k = 1617
7866 measured reflectionsl = 1212
1945 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0342P)2 + 0.4423P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.013
wR(F2) = 0.072Δρmax = 0.40 e Å3
S = 1.08Δρmin = 0.26 e Å3
1945 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
117 parametersExtinction coefficient: 0.0063 (12)
0 restraints
Crystal data top
[Cu(NO3)2(C6H6ClN)2]V = 856.43 (4) Å3
Mr = 442.7Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6855 (2) ŵ = 1.62 mm1
b = 13.2221 (3) ÅT = 293 K
c = 9.9254 (3) Å0.40 × 0.25 × 0.23 mm
β = 102.5430 (8)°
Data collection top
Rigaku R-AXIS Rapid
diffractometer
1945 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1743 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.688Rint = 0.019
7866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
1945 reflectionsΔρmin = 0.26 e Å3
117 parameters
Special details top

Experimental. Melting point determination was performed on XRC1 melting-point apparatus (made by Science Instrument Company of Sichuan University). The crystal melted at 463k(decomposed).

CHN analysis was obtained by using Eger 2000 elemental analyzer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00.50.00.03203 (12)
Cl0.18862 (9)0.68108 (5)0.15480 (6)0.05497 (17)
N10.0808 (2)0.64536 (12)0.00593 (15)0.0330 (3)
N20.2899 (3)0.53765 (14)0.22194 (19)0.0460 (4)
C10.0049 (3)0.71822 (15)0.06730 (19)0.0362 (4)
C20.0475 (3)0.81897 (16)0.0637 (2)0.0447 (5)
H20.01630.86790.1070.054*
O10.1014 (2)0.51426 (12)0.20667 (17)0.0502 (4)
C40.2912 (3)0.77128 (14)0.06954 (19)0.0354 (4)
C50.2282 (3)0.67275 (14)0.06107 (19)0.0343 (4)
H50.29010.62260.10350.041*
O30.3605 (3)0.53783 (16)0.1163 (2)0.0721 (5)
O20.3874 (3)0.55805 (16)0.3365 (2)0.0804 (6)
C60.4564 (3)0.79613 (17)0.1459 (2)0.0475 (5)
H6A0.52120.73480.16590.071*
H6B0.55640.83930.08990.071*
H6C0.39680.83010.23060.071*
C30.1970 (3)0.84501 (15)0.0059 (2)0.0431 (5)
H30.23490.91240.01030.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03108 (17)0.03316 (18)0.03294 (18)0.00107 (12)0.00932 (12)0.00547 (12)
Cl0.0486 (3)0.0697 (4)0.0555 (3)0.0076 (3)0.0309 (2)0.0052 (3)
N10.0330 (7)0.0345 (8)0.0333 (8)0.0018 (6)0.0111 (6)0.0021 (6)
N20.0518 (10)0.0330 (8)0.0484 (10)0.0019 (8)0.0003 (8)0.0042 (7)
C10.0333 (9)0.0449 (10)0.0323 (9)0.0049 (8)0.0112 (7)0.0010 (8)
C20.0494 (11)0.0416 (11)0.0444 (11)0.0076 (9)0.0131 (9)0.0082 (9)
O10.0488 (9)0.0484 (9)0.0536 (9)0.0022 (7)0.0115 (7)0.0049 (7)
C40.0331 (9)0.0377 (10)0.0345 (9)0.0013 (7)0.0057 (7)0.0041 (7)
C50.0334 (8)0.0350 (9)0.0368 (10)0.0037 (7)0.0128 (7)0.0018 (7)
O30.0772 (13)0.0680 (12)0.0792 (13)0.0161 (10)0.0349 (11)0.0069 (10)
O20.0865 (14)0.0665 (12)0.0676 (12)0.0090 (11)0.0282 (10)0.0114 (10)
C60.0433 (11)0.0466 (12)0.0557 (12)0.0058 (9)0.0174 (9)0.0097 (10)
C30.0487 (11)0.0324 (10)0.0469 (11)0.0027 (8)0.0072 (9)0.0015 (8)
Geometric parameters (Å, º) top
Cu—N1i1.9939 (16)C1—C21.380 (3)
Cu—N11.9939 (16)C2—C31.376 (3)
Cu—O12.0246 (16)C2—H20.93
Cu—O32.4866 (19)C4—C51.377 (3)
Cu—O1i2.0246 (16)C4—C31.385 (3)
Cl—C11.7224 (19)C4—C61.505 (3)
N1—C11.334 (2)C5—H50.93
N1—C51.352 (2)C6—H6A0.96
N2—O21.211 (2)C6—H6B0.96
N2—O31.240 (3)C6—H6C0.96
N2—O11.274 (2)C3—H30.93
N1i—Cu—N1180C3—C2—H2121
N1i—Cu—O191.77 (6)C1—C2—H2121
N1—Cu—O188.23 (6)N2—O1—Cu104.37 (13)
N1—Cu—O392.80 (7)C5—C4—C3117.53 (17)
O1—Cu—O355.49 (7)C5—C4—C6120.33 (18)
N1i—Cu—O1i88.23 (6)C3—C4—C6122.14 (18)
N1—Cu—O1i91.77 (6)N1—C5—C4123.27 (17)
O1—Cu—O1i180.00 (9)N1—C5—H5118.4
C1—N1—C5117.54 (16)C4—C5—H5118.4
C1—N1—Cu124.69 (13)C4—C6—H6A109.5
C5—N1—Cu117.73 (12)C4—C6—H6B109.5
O2—N2—O3124.5 (2)H6A—C6—H6B109.5
O2—N2—O1118.8 (2)C4—C6—H6C109.5
O3—N2—O1116.63 (18)H6A—C6—H6C109.5
N1—C1—C2123.27 (18)H6B—C6—H6C109.5
N1—C1—Cl116.65 (15)C2—C3—C4120.30 (19)
C2—C1—Cl120.08 (15)C2—C3—H3119.9
C3—C2—C1118.08 (18)C4—C3—H3119.9
O1—Cu—N1—C1113.70 (15)O3—N2—O1—Cu5.1 (2)
O1i—Cu—N1—C166.30 (15)N1i—Cu—O1—N288.12 (13)
O1—Cu—N1—C563.90 (14)N1—Cu—O1—N291.88 (13)
O1i—Cu—N1—C5116.10 (14)C1—N1—C5—C40.6 (3)
C5—N1—C1—C21.0 (3)Cu—N1—C5—C4177.18 (14)
Cu—N1—C1—C2176.65 (15)C3—C4—C5—N10.2 (3)
C5—N1—C1—Cl178.76 (13)C6—C4—C5—N1179.98 (18)
Cu—N1—C1—Cl3.6 (2)C1—C2—C3—C40.3 (3)
N1—C1—C2—C30.5 (3)C5—C4—C3—C20.6 (3)
Cl—C1—C2—C3179.16 (16)C6—C4—C3—C2179.6 (2)
O2—N2—O1—Cu174.87 (17)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.833.651 (3)147
C2—H2···O1ii0.932.573.469 (3)162
C3—H3···O2iii0.932.783.587 (3)146
C5—H5···O3iv0.932.623.420 (3)145
C6—H6B···O2v0.962.813.584 (3)138
C5—H5···O10.932.963.155 (2)93
C3—H3···O2v0.932.763.188 (3)109
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C6H6ClN)2]
Mr442.7
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.6855 (2), 13.2221 (3), 9.9254 (3)
β (°) 102.5430 (8)
V3)856.43 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.40 × 0.25 × 0.23
Data collection
DiffractometerRigaku R-AXIS Rapid
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.621, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
7866, 1945, 1743
Rint0.019
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.08
No. of reflections1945
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Molecular Structure Corporation & Rigaku, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu—N11.9939 (16)N2—O21.211 (2)
Cu—O12.0246 (16)N2—O31.240 (3)
Cu—O32.4866 (19)N2—O11.274 (2)
N1—Cu—O188.23 (6)O1—Cu—O355.49 (7)
N1—Cu—O392.80 (7)
O1—Cu—N1—C1113.70 (15)N1—Cu—O1—N291.88 (13)
O3—N2—O1—Cu5.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.833.651 (3)147
C2—H2···O1i0.932.573.469 (3)162
C3—H3···O2ii0.932.783.587 (3)146
C5—H5···O3iii0.932.623.420 (3)145
C6—H6B···O2iv0.962.813.584 (3)138
C5—H5···O10.932.963.155 (2)93
C3—H3···O2iv0.932.763.188 (3)109
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x1, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds