Download citation
Download citation
link to html
The organic ligands 4-methyl-1H-imidazole and 2-ethyl-4-methyl-1H-imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5-methyl-1H-imidazole-κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2-ethyl-5-methyl-1H-imidazole-κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2-methyl-1H-imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square-pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021061/av1148sup1.cif
Contains datablocks III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021061/av1148IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021061/av1148IVsup3.hkl
Contains datablock IV

CCDC references: 229068; 229069

Comment top

It is important to synthesize simple CuII–imidazole complexes and study their structures in order to help us understand the interactions of histidyl residues with copper ions in metalloproteins (Jian et al., 1999; Wang et al., 1999; Ohtsu et al., 2001). For example, the counter-ion effects on the structures of copper complexes have been revealed by structural studies and comparisions of nitrate (McFadden et al., 1976), sulfate (Fransson & Lundgerg, 1972), perchlorate (Ivarsson, 1973) and trifluoromethanesulfonate (Liu & Su, 1995) complexes of tetrakis(imidazole)copper(II). Similarly, the substituting effects of imidazole on their complexes can be investigated by structural studies of the corresponding complexes?. The crystal structures of tetrakis(imidazole)copper(II) trifluoromethylsulfonate, (I) (Liu & Su, 1995), and tetrakis(2-methylimidazole)copper(II) trifluoromethanesulfonate, (II) (Liu et al., 2002), have been reported previously. We report here the preparation and X-ray crystal structure determination of another two analogous complexes, viz. tetrakis(5-methyl-1H-imidazole-κN3)copper(II) trifluoromethanesulfonate, (III), and tetrakis(2-ethyl-5-methyl-1H-imidazole-κN3)copper(II) trifluoromethanesulfonate, (IV).

The crystal structure of (III) (Fig. 1) consists of discrete molecules. The structure of (III) is similar to the structures of (I) and (II). The coordination environment of the central Cu ion can be described as an elongated? octahedron with four N atoms of the substituted imidazole rings at the equatorial positions and two O atoms from the trifluoromethylsulfonate groups at the axial positions. The lengths of the Cu—N bonds are in the usual range [1.992 (4)–2.001 (4) Å], while the lengths of the axial Cu—O bonds [2.639 (3) and 2.867 (4) Å] are significantly longer than those found in (I) (2.593 Å; Liu & Su, 1995) and shorter than those found in (II) (2.651 and 3.069 Å; Liu et al., 2002). However, in the (IV), the larger substituent, i.e. the ethyl group, at the 2-position of the imidazole ring blocks the central Cu atom and allows the coordination environment around the Cu atom to become square pyramidal, with four N atoms of substituted imidazole rings at basal positions and a water molecule at the axial position, as shown in Fig. 2. The Cu—N bonds have typical lengths [1.997 (5)–2.026 (6) Å] and the axial Cu—O bond is 2.373 (5) Å, which is significantly shorter than those found in the hexacoordinated copper complexes (I), (II) and (III). The closest-contact distance between the Cu atom and an O atom of a trifluoromethanesulfonate group is longer than 4 Å, which suggests that the anion groups are free counter-ions in the crystal structure of (IV). Figs. 3 and 4 show the crystal packing of (III) and (IV), respectively. The complexe cations and trifluoromethylsulfonate ions are connected by possible hydrogen-bonding interactions, which were denoted by dashed lines in Figs. 3 and 4.

It was found that the conformations of the organic ligands in (I)–(IV) are affected by the substituents on the imidazole ring and the substituted positions. The dihedral angles between the imidazole planes and the CuN4 plane of the coordination polyhedron are listed in Table 2.

In (I), which contains unsubstituted imidazole rings, two imidazole rings are almost perpendicular to the equatorial plane and the other two are tilted by 59.4°. All imidazole rings with a substituent at the 2-position in (II) and (IV) are tilted by 47.2–61.3° with respect to the CuN4 plane of the coordination polyhedron. However, one of the imidazole rings with a substituent at the 4-position is almost parallel to the equatorial plane, and the other three lie nearly perpendicular to it in (III).

We conclude that the substituents and their positions on the imidazole ring can affect the structure of copper–imidazole complexes, specifically the coordination number of the Cu ion, the bond lengths of axial Cu—O bonds and the dihedral angles between the plane of the imidazole ring and the CuN4 plane of the coordination polyhedron. However, there is almost no influence on the Cu—N bond lengths.

Experimental top

The organic ligands 4-methyl-1H-imidazole and 2-ethyl-4-methyl-1H-imidazole (Merck), 2,2'-dimethoxypropane (Aldrich), cupric oxide (Merck), trifluoromethylsulfonic acid (Aldrich), and organic solvents of reagent grade were used as received. Cu(CF3SO3)2·6H2O was prepared from CuO and CF3SO3H. The title compounds were prepared by the following procedure: Cu(CF3SO3)2·6H2O (1 mmol) and the corresponding ligand (4 mmol) were dissolved in acetonitrile containing 5% 2,2-dimethoxypropane. The mixture was stirred at room temperature for 2 h, and then diethyl ether was added dropwise until a precipitate began to appear. The solution was stored in a refrigerator for 2 d and yielded dark-blue crystal [yield 92 and 65% for (III) and (IV), respectively].

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms in the final refinement. The ethyl group in (IV) is diorientationally disordered and was represented by atom C4/C5 and C4/C5'. The occupancies of atoms C5 and C5' were fixed at 0.55 and 0.45, respectively, in the final refinement, according to the results of occupancy refinement.

Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1992) for (III); CAD-4-PC (Enraf–Nonius, 1992) for (IV). For both compounds, cell refinement: CAD-4-PC; data reduction: XCAD4/PC (Harms, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997). Program(s) used to refine structure: SHELXTL) for (III); SHELXTL for (IV). For both compounds, molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (III), showing displacement ellipsoids at the 35% probability level and the atomic numbering scheme.
[Figure 2] Fig. 2. The molecular structure of (IV), showing displacement ellipsoids at the 35% probability level and the atomic numbering scheme.
[Figure 3] Fig. 3. The crystal packing of (III), viewed along the b direction. Crosshatched circles denote Cu and S atoms, circles shaded by slanting lines denote F and O atoms, open circles denote N atoms, and circles shaded by dots denote C atoms. Hydrogen bonds are denoted by dashed lines.
[Figure 4] Fig. 4. The crystal packing of (IV), viewed along the b direction; atoms are represented as described in Fig. 3. Hydrogen bonds are denoted by dashed lines.
(III) tetrakis(5-methyl-1H-imidazole-κN3)copper(II) trifluoromethanesulfonate top
Crystal data top
[Cu(C4H6N2)4](CF3SO3)2F(000) = 1404
Mr = 690.11Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.400 (3) Åθ = 10.3–15.0°
b = 10.174 (2) ŵ = 1.01 mm1
c = 17.016 (3) ÅT = 293 K
β = 95.50 (3)°Prism, blue
V = 2826.1 (9) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2890 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scanh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.706, Tmax = 0.817l = 020
5140 measured reflections3 standard reflections every 7200 min
4954 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.001P)2 + 7P]
where P = (Fo2 + 2Fc2)/3
4954 reflections(Δ/σ)max = 0.006
370 parametersΔρmax = 0.36 e Å3
36 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C4H6N2)4](CF3SO3)2V = 2826.1 (9) Å3
Mr = 690.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.400 (3) ŵ = 1.01 mm1
b = 10.174 (2) ÅT = 293 K
c = 17.016 (3) Å0.4 × 0.3 × 0.2 mm
β = 95.50 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2890 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.706, Tmax = 0.8173 standard reflections every 7200 min
5140 measured reflections intensity decay: none
4954 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04136 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
4954 reflectionsΔρmin = 0.31 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22066 (4)0.22516 (6)0.15852 (3)0.04250 (16)
S10.12378 (8)0.05689 (12)0.01003 (7)0.0441 (3)
S20.34659 (8)0.53309 (13)0.26798 (8)0.0512 (3)
F10.2757 (3)0.1386 (5)0.0277 (3)0.1318 (19)
F20.2496 (2)0.0009 (5)0.0651 (3)0.1059 (14)
F30.2108 (2)0.1983 (4)0.0796 (2)0.0950 (12)
F40.4582 (3)0.6563 (5)0.1991 (2)0.142 (2)
F50.3920 (3)0.5142 (5)0.1257 (2)0.1315 (19)
F60.4816 (3)0.4559 (7)0.2167 (3)0.159 (2)
O10.1471 (2)0.0404 (4)0.0688 (2)0.0609 (10)
O20.0761 (2)0.0098 (4)0.0590 (2)0.0673 (11)
O30.0968 (3)0.1784 (3)0.0409 (2)0.0772 (13)
O40.3153 (2)0.4033 (4)0.2611 (3)0.0755 (12)
O50.2870 (3)0.6289 (4)0.2411 (3)0.0959 (16)
O60.3906 (2)0.5710 (5)0.3398 (2)0.0961 (17)
N10.1252 (2)0.2628 (4)0.2190 (2)0.0427 (10)
N20.0469 (3)0.3349 (4)0.3060 (2)0.0573 (12)
H2A0.03050.37730.34810.069*
N30.2577 (2)0.0872 (4)0.2378 (2)0.0428 (10)
N40.2950 (3)0.1030 (4)0.2876 (2)0.0547 (12)
H4A0.30410.19010.29170.066*
N50.3246 (2)0.2032 (4)0.1080 (2)0.0419 (10)
N60.4529 (3)0.1618 (4)0.0973 (3)0.0585 (12)
H6A0.50530.13800.11040.070*
N70.1773 (2)0.3582 (4)0.0787 (2)0.0419 (10)
N80.1388 (3)0.5486 (4)0.0299 (2)0.0523 (11)
H8A0.13100.63600.02560.063*
C10.1229 (3)0.3352 (5)0.2824 (3)0.0524 (13)
H1A0.16890.38120.30830.063*
C20.0017 (3)0.2583 (5)0.2543 (3)0.0514 (13)
C30.0469 (3)0.2151 (5)0.2013 (3)0.0444 (12)
H3A0.03000.15820.15770.053*
C40.0900 (3)0.2345 (8)0.2636 (4)0.088 (2)
H4B0.11320.17890.22160.106*
H4C0.09510.19270.31340.106*
H4D0.11840.31700.26170.106*
C70.2908 (3)0.1021 (5)0.3148 (3)0.0505 (13)
H7A0.29670.18460.34210.061*
C60.3138 (3)0.0142 (5)0.3462 (3)0.0471 (12)
C50.2619 (3)0.0401 (5)0.2240 (3)0.0524 (13)
H5A0.24340.08110.17470.063*
C80.3533 (4)0.0538 (6)0.4250 (3)0.0776 (19)
H8B0.36130.02200.45850.093*
H8C0.31930.11620.44870.093*
H8D0.40540.09310.41820.093*
C90.3944 (3)0.1653 (6)0.1452 (3)0.0594 (15)
H9A0.40170.14300.20030.071*
C100.4210 (3)0.2005 (5)0.0239 (3)0.0489 (13)
C110.3417 (3)0.2255 (5)0.0322 (3)0.0464 (12)
H11A0.30260.25600.00950.056*
C120.4716 (4)0.2074 (7)0.0438 (3)0.0795 (19)
H12A0.43790.23630.08980.095*
H12B0.51540.26900.03190.095*
H12C0.49400.12240.05360.095*
C130.1774 (3)0.4850 (5)0.0911 (3)0.0490 (13)
H13A0.20250.52670.13790.059*
C140.1121 (3)0.4588 (5)0.0261 (3)0.0502 (13)
C150.1363 (3)0.3410 (5)0.0054 (3)0.0486 (13)
H15A0.12690.25820.02100.058*
C160.0681 (4)0.4970 (6)0.1030 (3)0.084 (2)
H16A0.05500.41920.13360.101*
H16B0.01850.54280.09450.101*
H16C0.10260.55310.13080.101*
C170.2199 (4)0.1017 (7)0.0275 (4)0.0677 (17)
C180.4214 (5)0.5436 (9)0.1974 (4)0.093 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0440 (3)0.0405 (3)0.0431 (3)0.0074 (3)0.0050 (2)0.0094 (3)
S10.0602 (8)0.0303 (6)0.0415 (7)0.0044 (6)0.0029 (6)0.0007 (6)
S20.0487 (8)0.0476 (8)0.0570 (8)0.0109 (7)0.0025 (6)0.0077 (7)
F10.095 (3)0.193 (5)0.101 (3)0.080 (3)0.025 (3)0.050 (3)
F20.093 (3)0.111 (3)0.121 (3)0.016 (3)0.049 (3)0.023 (3)
F30.114 (3)0.088 (3)0.085 (3)0.016 (2)0.019 (2)0.040 (2)
F40.178 (5)0.160 (5)0.093 (3)0.120 (4)0.045 (3)0.013 (3)
F50.160 (4)0.179 (5)0.058 (2)0.083 (4)0.024 (3)0.029 (3)
F60.087 (3)0.207 (6)0.191 (6)0.004 (4)0.063 (4)0.035 (5)
O10.069 (3)0.051 (2)0.062 (2)0.0045 (19)0.0016 (19)0.0210 (19)
O20.073 (3)0.077 (3)0.050 (2)0.013 (2)0.0019 (19)0.012 (2)
O30.112 (3)0.036 (2)0.089 (3)0.001 (2)0.031 (3)0.013 (2)
O40.079 (3)0.046 (2)0.105 (3)0.015 (2)0.027 (3)0.005 (2)
O50.092 (3)0.051 (3)0.138 (4)0.011 (2)0.023 (3)0.022 (3)
O60.062 (3)0.169 (5)0.058 (3)0.046 (3)0.005 (2)0.020 (3)
N10.043 (2)0.042 (2)0.043 (2)0.004 (2)0.0046 (18)0.002 (2)
N20.070 (3)0.055 (3)0.048 (3)0.015 (2)0.012 (2)0.005 (2)
N30.051 (2)0.036 (2)0.042 (2)0.0017 (19)0.0060 (19)0.0064 (19)
N40.075 (3)0.029 (2)0.058 (3)0.003 (2)0.001 (2)0.008 (2)
N50.044 (2)0.039 (2)0.043 (2)0.0029 (19)0.0031 (19)0.0060 (19)
N60.039 (2)0.073 (3)0.064 (3)0.014 (2)0.006 (2)0.009 (3)
N70.050 (2)0.032 (2)0.043 (2)0.0050 (19)0.0010 (19)0.0019 (19)
N80.069 (3)0.030 (2)0.057 (3)0.004 (2)0.002 (2)0.004 (2)
C10.051 (3)0.049 (3)0.057 (3)0.000 (3)0.003 (3)0.003 (3)
C20.048 (3)0.059 (3)0.047 (3)0.003 (3)0.001 (2)0.004 (3)
C30.045 (3)0.046 (3)0.041 (3)0.001 (2)0.002 (2)0.000 (2)
C40.050 (3)0.145 (7)0.071 (4)0.001 (4)0.019 (3)0.006 (5)
C70.078 (4)0.031 (3)0.041 (3)0.002 (3)0.003 (3)0.002 (2)
C60.059 (3)0.036 (3)0.045 (3)0.000 (2)0.002 (3)0.008 (2)
C50.067 (4)0.042 (3)0.048 (3)0.003 (3)0.001 (3)0.000 (3)
C80.107 (5)0.058 (4)0.063 (4)0.004 (4)0.014 (4)0.016 (3)
C90.044 (3)0.084 (4)0.050 (3)0.011 (3)0.004 (3)0.015 (3)
C100.053 (3)0.041 (3)0.053 (3)0.000 (2)0.009 (3)0.000 (2)
C110.047 (3)0.047 (3)0.045 (3)0.003 (3)0.003 (2)0.008 (3)
C120.074 (4)0.102 (5)0.066 (4)0.001 (4)0.022 (3)0.001 (4)
C130.060 (3)0.039 (3)0.046 (3)0.004 (3)0.004 (3)0.002 (2)
C140.064 (3)0.035 (3)0.049 (3)0.004 (3)0.004 (3)0.004 (2)
C150.067 (4)0.031 (3)0.045 (3)0.004 (2)0.006 (3)0.003 (2)
C160.120 (6)0.064 (4)0.062 (4)0.019 (4)0.026 (4)0.004 (3)
C170.070 (4)0.066 (4)0.067 (4)0.006 (3)0.007 (3)0.015 (3)
C180.091 (6)0.111 (6)0.082 (5)0.045 (5)0.029 (4)0.025 (5)
Geometric parameters (Å, º) top
Cu1—N11.992 (4)N6—H6A0.9000
Cu1—N51.994 (4)N7—C131.307 (6)
Cu1—N72.000 (4)N7—C151.369 (6)
Cu1—N32.001 (4)N8—C131.333 (6)
Cu1—O12.639 (3)N8—C141.362 (6)
Cu1—O42.867 (4)N8—H8A0.9000
S1—O21.429 (4)C1—H1A0.9601
S1—O31.430 (4)C2—C31.334 (7)
S1—O11.433 (3)C2—C41.491 (7)
S1—C171.815 (6)C3—H3A0.9600
S2—O61.412 (4)C4—H4B0.9599
S2—O41.417 (4)C4—H4C0.9600
S2—O51.424 (4)C4—H4D0.9600
S2—C181.800 (7)C7—C61.337 (6)
F1—C171.302 (7)C7—H7A0.9600
F2—C171.341 (7)C6—C81.488 (7)
F3—C171.323 (6)C5—H5A0.9600
F4—C181.294 (8)C8—H8B0.9600
F5—C181.303 (8)C8—H8C0.9600
F6—C181.348 (10)C8—H8D0.9601
N1—C11.309 (6)C9—H9A0.9599
N1—C31.379 (6)C10—C111.346 (6)
N2—C11.345 (6)C10—C121.485 (7)
N2—C21.371 (6)C11—H11A0.9601
N2—H2A0.9001C12—H12A0.9599
N3—C51.319 (6)C12—H12B0.9599
N3—C71.378 (6)C12—H12C0.9600
N4—C51.329 (6)C13—H13A0.9600
N4—C61.359 (6)C14—C151.357 (6)
N4—H4A0.9000C14—C161.484 (7)
N5—C91.312 (6)C15—H15A0.9600
N5—C111.366 (6)C16—H16A0.9600
N6—C91.317 (6)C16—H16B0.9600
N6—C101.365 (6)C16—H16C0.9600
N1—Cu1—N5172.42 (16)C2—C4—H4C109.5
N1—Cu1—N788.55 (16)H4B—C4—H4C109.5
N5—Cu1—N792.67 (16)C2—C4—H4D109.2
N1—Cu1—N389.41 (16)H4B—C4—H4D109.5
N5—Cu1—N389.70 (15)H4C—C4—H4D109.5
N7—Cu1—N3176.70 (16)C6—C7—N3110.6 (4)
N1—Cu1—O195.62 (14)C6—C7—H7A124.6
N5—Cu1—O191.89 (14)N3—C7—H7A124.7
N7—Cu1—O188.63 (14)C7—C6—N4105.1 (4)
N3—Cu1—O189.00 (14)C7—C6—C8132.9 (5)
N1—Cu1—O488.29 (14)N4—C6—C8121.9 (5)
N5—Cu1—O484.14 (14)N3—C5—N4110.6 (5)
N7—Cu1—O497.01 (14)N3—C5—H5A124.4
N3—Cu1—O485.50 (14)N4—C5—H5A125.0
O1—Cu1—O4173.23 (12)C6—C8—H8B110.0
O2—S1—O3115.3 (3)C6—C8—H8C109.8
O2—S1—O1115.5 (2)H8B—C8—H8C109.5
O3—S1—O1114.3 (2)C6—C8—H8D108.7
O2—S1—C17102.8 (3)H8B—C8—H8D109.5
O3—S1—C17102.8 (3)H8C—C8—H8D109.5
O1—S1—C17103.7 (3)N5—C9—N6111.3 (5)
O6—S2—O4118.5 (3)N5—C9—H9A124.1
O6—S2—O5111.6 (3)N6—C9—H9A124.6
O4—S2—O5112.3 (3)C11—C10—N6104.4 (4)
O6—S2—C18103.7 (3)C11—C10—C12133.6 (5)
O4—S2—C18105.3 (3)N6—C10—C12122.0 (5)
O5—S2—C18103.6 (4)C10—C11—N5110.8 (4)
S1—O1—Cu1166.5 (2)C10—C11—H11A124.5
S2—O4—Cu1144.1 (3)N5—C11—H11A124.7
C1—N1—C3106.1 (4)C10—C12—H12A109.1
C1—N1—Cu1128.4 (3)C10—C12—H12B109.2
C3—N1—Cu1125.5 (3)H12A—C12—H12B109.5
C1—N2—C2107.9 (4)C10—C12—H12C110.1
C1—N2—H2A126.4H12A—C12—H12C109.5
C2—N2—H2A125.8H12B—C12—H12C109.5
C5—N3—C7104.8 (4)N7—C13—N8111.1 (4)
C5—N3—Cu1125.9 (3)N7—C13—H13A124.3
C7—N3—Cu1129.1 (3)N8—C13—H13A124.6
C5—N4—C6108.9 (4)C15—C14—N8104.7 (4)
C5—N4—H4A126.0C15—C14—C16132.8 (5)
C6—N4—H4A125.1N8—C14—C16122.5 (5)
C9—N5—C11104.8 (4)C14—C15—N7110.3 (4)
C9—N5—Cu1124.6 (3)C14—C15—H15A124.2
C11—N5—Cu1130.5 (3)N7—C15—H15A125.5
C9—N6—C10108.7 (4)C14—C16—H16A109.1
C9—N6—H6A126.0C14—C16—H16B110.0
C10—N6—H6A125.3H16A—C16—H16B109.5
C13—N7—C15105.4 (4)C14—C16—H16C109.3
C13—N7—Cu1124.3 (3)H16A—C16—H16C109.5
C15—N7—Cu1130.0 (3)H16B—C16—H16C109.5
C13—N8—C14108.5 (4)F1—C17—F3107.2 (5)
C13—N8—H8A126.6F1—C17—F2107.9 (6)
C14—N8—H8A124.9F3—C17—F2106.4 (5)
N1—C1—N2110.2 (5)F1—C17—S1113.1 (5)
N1—C1—H1A124.7F3—C17—S1112.1 (5)
N2—C1—H1A125.0F2—C17—S1109.9 (4)
C3—C2—N2105.8 (5)F4—C18—F5110.7 (7)
C3—C2—C4131.8 (5)F4—C18—F6104.6 (7)
N2—C2—C4122.3 (5)F5—C18—F6105.8 (7)
C2—C3—N1109.9 (4)F4—C18—S2112.6 (6)
C2—C3—H3A125.0F5—C18—S2113.3 (5)
N1—C3—H3A125.1F6—C18—S2109.2 (6)
C2—C4—H4B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.902.162.910 (6)141
N4—H4A···O5ii0.902.042.839 (6)147
N6—H6A···O6iii0.901.962.840 (6)167
N8—H8A···O3iv0.901.992.872 (5)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.
(IV) aquatetrakis(2-ethyl-5-methyl-1H-imidazole-κN3)copper(II) trifluoromethanesulfonate top
Crystal data top
[Cu(C6H10N2)4(H2O)](CF3SO3)2F(000) = 1700
Mr = 820.34Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.408 (3) Åθ = 8.8–12.5°
b = 12.627 (3) ŵ = 0.76 mm1
c = 20.380 (4) ÅT = 293 K
β = 104.37 (3)°Prism, blue
V = 3841.0 (14) Å30.25 × 0.15 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2847 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω scanh = 1817
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.807, Tmax = 0.913l = 024
6948 measured reflections3 standard reflections every 7200 min
6740 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.001P)2 + 14P]
where P = (Fo2 + 2Fc2)/3
6740 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C6H10N2)4(H2O)](CF3SO3)2V = 3841.0 (14) Å3
Mr = 820.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.408 (3) ŵ = 0.76 mm1
b = 12.627 (3) ÅT = 293 K
c = 20.380 (4) Å0.25 × 0.15 × 0.12 mm
β = 104.37 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2847 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.807, Tmax = 0.9133 standard reflections every 7200 min
6948 measured reflections intensity decay: none
6740 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.001P)2 + 14P]
where P = (Fo2 + 2Fc2)/3
6740 reflectionsΔρmax = 0.43 e Å3
460 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.26043 (6)0.14810 (7)0.24746 (4)0.0621 (3)
S10.27679 (16)0.0416 (2)0.12107 (11)0.0828 (6)
S20.78397 (16)0.0321 (2)0.40456 (11)0.0846 (7)
O1W0.2678 (4)0.3349 (4)0.2382 (3)0.0957 (17)
H1A0.28750.36140.27750.115*
H1B0.21570.35880.22050.115*
O10.1911 (5)0.0326 (7)0.1595 (4)0.172 (4)
O20.2839 (7)0.0634 (7)0.0544 (3)0.210 (5)
O30.3293 (6)0.0387 (7)0.1367 (5)0.186 (4)
O40.7787 (6)0.0795 (7)0.4635 (3)0.171 (4)
O50.7124 (4)0.0443 (9)0.3492 (3)0.188 (4)
O60.8065 (7)0.0747 (7)0.4119 (6)0.208 (4)
F10.2659 (9)0.2300 (8)0.1550 (8)0.309 (8)
F20.3345 (8)0.1443 (8)0.2092 (5)0.262 (5)
F30.3914 (7)0.1903 (10)0.1187 (6)0.280 (7)
F40.8866 (5)0.0517 (9)0.3263 (4)0.230 (5)
F50.8633 (11)0.1902 (8)0.3724 (8)0.313 (9)
F60.9475 (6)0.0782 (11)0.4229 (5)0.273 (6)
N10.3922 (4)0.1471 (5)0.2960 (3)0.0661 (16)
N20.5363 (4)0.1265 (6)0.3337 (3)0.078 (2)
H2A0.59180.09960.33980.094*
N30.2288 (3)0.1529 (5)0.3368 (3)0.0602 (15)
N40.2061 (4)0.1216 (6)0.4359 (3)0.080 (2)
H4A0.20710.08800.47500.096*
N50.1292 (4)0.1455 (5)0.2007 (3)0.0648 (16)
N60.0154 (4)0.1234 (6)0.1706 (3)0.0761 (19)
H6A0.06970.09560.16880.091*
N70.2892 (4)0.1268 (5)0.1579 (3)0.0641 (17)
N80.3050 (4)0.0678 (6)0.0617 (3)0.079 (2)
H8A0.29910.02600.02520.095*
C10.4616 (5)0.0890 (7)0.2906 (4)0.070 (2)
C20.5142 (5)0.2124 (7)0.3672 (4)0.071 (2)
C30.4251 (5)0.2250 (6)0.3440 (3)0.066 (2)
H3A0.39030.27920.35850.079*
C40.4618 (7)0.0068 (7)0.2479 (4)0.094 (3)
H4B0.42630.01000.20280.113*0.55
H4C0.52290.01700.24440.113*0.55
C50.432 (2)0.105 (2)0.2657 (12)0.175 (15)0.55
H5A0.43450.15610.23170.263*0.55
H5B0.37090.09770.26920.263*0.55
H5C0.46890.12690.30850.263*0.55
H4D0.40060.02540.22540.113*0.45
H4E0.49310.00920.21330.113*0.45
C5'0.5036 (19)0.094 (3)0.2867 (15)0.149 (16)0.45
H5'10.50500.15310.25730.224*0.45
H5'20.47050.11320.31910.224*0.45
H5'30.56370.07530.31000.224*0.45
C60.5829 (5)0.2753 (7)0.4166 (4)0.103 (3)
H6B0.55330.33250.43320.124*
H6C0.61080.22970.45350.124*
H6D0.62770.30330.39600.124*
C70.2434 (5)0.0859 (7)0.3873 (3)0.064 (2)
C80.1643 (5)0.2145 (8)0.4161 (4)0.075 (2)
C90.1784 (5)0.2344 (7)0.3549 (4)0.073 (2)
H9A0.15750.29570.32770.088*
C100.2943 (5)0.0149 (6)0.3937 (4)0.081 (2)
H10A0.30370.03210.35010.097*
H10B0.25880.07020.40620.097*
C110.3848 (5)0.0123 (7)0.4449 (4)0.102 (3)
H11A0.41470.07930.44660.123*
H11B0.42090.04210.43210.123*
H11C0.37550.00360.48880.123*
C120.1174 (5)0.2776 (8)0.4588 (4)0.107 (3)
H12A0.09320.34090.43510.128*
H12B0.06970.23660.46870.128*
H12C0.15960.29620.50030.128*
C130.0636 (5)0.0883 (7)0.2113 (3)0.067 (2)
C140.0020 (6)0.2068 (7)0.1329 (4)0.076 (2)
C150.0913 (5)0.2207 (7)0.1512 (4)0.072 (2)
H15A0.12360.27330.13290.086*
C160.0692 (6)0.0025 (7)0.2570 (4)0.091 (3)
H16A0.04640.01910.29470.109*
H16B0.13130.02000.27430.109*
C170.0202 (8)0.0965 (9)0.2299 (5)0.169 (6)
H17A0.02790.15120.26350.203*
H17B0.04240.08060.21350.203*
H17C0.04360.12010.19290.203*
C180.0706 (5)0.2664 (8)0.0839 (4)0.111 (3)
H18A0.12850.23690.08260.133*
H18B0.06910.33920.09760.133*
H18C0.05940.26180.03970.133*
C190.2669 (4)0.0503 (7)0.1126 (3)0.066 (2)
C200.3527 (5)0.1597 (8)0.0732 (4)0.077 (2)
C210.3440 (5)0.1956 (7)0.1337 (4)0.077 (2)
H21A0.37070.25920.15550.092*
C220.2097 (5)0.0440 (7)0.1152 (4)0.086 (2)
H22A0.19870.04790.15950.103*
H22B0.24050.10730.10800.103*
C230.1206 (6)0.0405 (8)0.0635 (4)0.121 (4)
H23A0.08470.10160.06660.145*
H23B0.08940.02230.07110.145*
H23C0.13160.03760.01920.145*
C240.4028 (6)0.2048 (9)0.0256 (4)0.128 (4)
H24A0.39610.15890.01280.154*
H24B0.37950.27360.01080.154*
H24C0.46520.21070.04830.154*
C250.3195 (8)0.1534 (10)0.1521 (6)0.152 (5)
C260.8761 (9)0.0930 (15)0.3802 (7)0.143 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0600 (5)0.0766 (6)0.0480 (4)0.0012 (5)0.0105 (4)0.0009 (5)
S10.0920 (16)0.0810 (17)0.0703 (13)0.0012 (14)0.0107 (12)0.0008 (13)
S20.0802 (15)0.106 (2)0.0650 (13)0.0062 (14)0.0140 (11)0.0025 (14)
O1W0.114 (4)0.085 (4)0.075 (3)0.005 (4)0.002 (3)0.003 (3)
O10.086 (5)0.206 (9)0.205 (8)0.020 (6)0.000 (5)0.005 (7)
O20.398 (14)0.172 (8)0.063 (4)0.069 (9)0.064 (6)0.001 (5)
O30.202 (9)0.113 (7)0.250 (10)0.055 (6)0.069 (8)0.028 (7)
O40.218 (8)0.214 (9)0.099 (5)0.046 (7)0.075 (6)0.060 (6)
O50.076 (4)0.382 (14)0.101 (5)0.036 (7)0.011 (4)0.027 (7)
O60.252 (11)0.110 (7)0.280 (12)0.018 (7)0.098 (9)0.018 (8)
F10.404 (18)0.110 (7)0.49 (2)0.012 (10)0.264 (18)0.050 (10)
F20.408 (15)0.230 (10)0.208 (9)0.122 (10)0.193 (10)0.035 (8)
F30.243 (11)0.326 (15)0.223 (10)0.195 (11)0.035 (8)0.000 (9)
F40.161 (7)0.397 (15)0.166 (7)0.082 (8)0.105 (6)0.086 (8)
F50.47 (2)0.128 (8)0.396 (19)0.048 (11)0.217 (17)0.054 (10)
F60.140 (7)0.46 (2)0.205 (9)0.118 (10)0.012 (6)0.069 (11)
N10.063 (4)0.074 (4)0.059 (3)0.000 (4)0.011 (3)0.005 (4)
N20.057 (4)0.103 (6)0.071 (4)0.005 (4)0.009 (3)0.001 (4)
N30.055 (3)0.072 (4)0.052 (3)0.002 (3)0.011 (3)0.001 (3)
N40.077 (4)0.117 (7)0.047 (4)0.005 (4)0.017 (3)0.004 (4)
N50.061 (3)0.078 (5)0.055 (3)0.003 (4)0.015 (3)0.004 (4)
N60.058 (4)0.098 (6)0.072 (4)0.001 (4)0.014 (3)0.001 (4)
N70.062 (4)0.079 (5)0.052 (3)0.009 (3)0.013 (3)0.006 (3)
N80.074 (4)0.112 (6)0.051 (4)0.004 (4)0.016 (3)0.011 (4)
C10.076 (5)0.074 (6)0.058 (5)0.007 (5)0.012 (4)0.005 (4)
C20.075 (5)0.081 (6)0.061 (5)0.011 (5)0.021 (4)0.001 (5)
C30.070 (5)0.072 (6)0.051 (4)0.009 (4)0.007 (4)0.001 (4)
C40.108 (7)0.084 (7)0.079 (6)0.024 (6)0.002 (5)0.006 (5)
C50.36 (5)0.090 (18)0.12 (2)0.04 (3)0.14 (3)0.019 (17)
C40.108 (7)0.084 (7)0.079 (6)0.024 (6)0.002 (5)0.006 (5)
C5'0.17 (3)0.10 (2)0.13 (2)0.07 (2)0.05 (2)0.053 (18)
C60.088 (6)0.108 (8)0.106 (7)0.026 (6)0.011 (5)0.022 (6)
C70.061 (4)0.081 (6)0.048 (4)0.004 (4)0.008 (4)0.002 (4)
C80.063 (5)0.102 (7)0.060 (5)0.001 (5)0.012 (4)0.013 (5)
C90.066 (5)0.088 (6)0.062 (5)0.011 (5)0.010 (4)0.001 (4)
C100.092 (6)0.072 (6)0.079 (5)0.009 (5)0.022 (5)0.020 (5)
C110.090 (6)0.115 (8)0.094 (6)0.025 (6)0.005 (5)0.023 (6)
C120.082 (6)0.152 (9)0.092 (6)0.008 (6)0.031 (5)0.038 (6)
C130.062 (5)0.083 (6)0.054 (4)0.006 (5)0.011 (4)0.001 (4)
C140.079 (6)0.092 (7)0.052 (5)0.011 (5)0.005 (4)0.003 (5)
C150.075 (5)0.080 (6)0.058 (5)0.005 (5)0.013 (4)0.010 (4)
C160.098 (6)0.106 (8)0.062 (5)0.035 (6)0.006 (5)0.009 (5)
C170.226 (14)0.149 (12)0.116 (9)0.064 (11)0.011 (9)0.033 (9)
C180.102 (7)0.136 (9)0.077 (6)0.032 (7)0.014 (5)0.015 (6)
C190.055 (4)0.096 (7)0.050 (4)0.008 (4)0.015 (3)0.003 (4)
C200.060 (5)0.116 (8)0.054 (4)0.002 (5)0.012 (4)0.012 (5)
C210.068 (5)0.092 (7)0.072 (5)0.018 (5)0.019 (4)0.002 (5)
C220.088 (6)0.075 (6)0.097 (6)0.005 (5)0.029 (5)0.011 (5)
C230.115 (8)0.136 (9)0.108 (7)0.053 (7)0.020 (6)0.020 (7)
C240.111 (7)0.197 (12)0.082 (6)0.020 (8)0.035 (6)0.031 (7)
C250.238 (17)0.131 (12)0.093 (8)0.031 (13)0.052 (10)0.039 (9)
C260.096 (8)0.239 (18)0.088 (8)0.009 (11)0.013 (7)0.010 (10)
Geometric parameters (Å, º) top
Cu1—N31.999 (5)C5—H5B0.9600
Cu1—N72.000 (5)C5—H5C0.9600
Cu1—N52.010 (6)C4—C5'1.42 (3)
Cu1—N12.026 (5)C4—H4D0.9700
Cu1—O1W2.372 (5)C4—H4E0.9700
S1—O11.362 (7)C5'—H5'10.9600
S1—O21.364 (7)C5'—H5'20.9600
S1—O31.383 (7)C5'—H5'30.9600
S1—C251.742 (13)C6—H6B0.9600
S2—O41.364 (6)C6—H6C0.9601
S2—O51.376 (6)C6—H6D0.9600
S2—O61.391 (9)C7—C101.483 (10)
S2—C261.789 (14)C8—C91.340 (9)
O1W—H1A0.8499C8—C121.493 (10)
O1W—H1B0.8500C9—H9A0.9600
F1—C251.264 (9)C10—C111.521 (9)
F2—C251.246 (12)C10—H10A0.9600
F3—C251.239 (8)C10—H10B0.9599
F4—C261.262 (14)C11—H11A0.9600
F5—C261.248 (18)C11—H11B0.9601
F6—C261.235 (13)C11—H11C0.9599
N1—C11.323 (9)C12—H12A0.9600
N1—C31.391 (9)C12—H12B0.9600
N2—C11.348 (9)C12—H12C0.9601
N2—C21.368 (9)C13—C161.467 (10)
N2—H2A0.9000C14—C151.345 (10)
N3—C71.309 (8)C14—C181.504 (10)
N3—C91.394 (9)C15—H15A0.9600
N4—C71.340 (8)C16—C171.441 (11)
N4—C81.351 (10)C16—H16A0.9600
N4—H4A0.8999C16—H16B0.9599
N5—C131.304 (9)C17—H17A0.9600
N5—C151.402 (9)C17—H17B0.9600
N6—C131.365 (8)C17—H17C0.9600
N6—C141.369 (9)C18—H18A0.9600
N6—H6A0.9000C18—H18B0.9600
N7—C191.322 (9)C18—H18C0.9601
N7—C211.385 (9)C19—C221.490 (10)
N8—C191.329 (8)C20—C211.351 (9)
N8—C201.363 (10)C20—C241.494 (10)
N8—H8A0.9000C21—H21A0.9600
C1—C41.492 (10)C22—C231.510 (10)
C1—C41.492 (10)C22—H22A0.9600
C2—C31.346 (9)C22—H22B0.9600
C2—C61.495 (10)C23—H23A0.9600
C3—H3A0.9601C23—H23B0.9600
C4—C51.40 (2)C23—H23C0.9600
C4—H4B0.9700C24—H24A0.9600
C4—H4C0.9700C24—H24B0.9600
C5—H5A0.9600C24—H24C0.9599
N3—Cu1—N7173.9 (3)N3—C7—C10127.4 (7)
N3—Cu1—N589.4 (2)N4—C7—C10122.5 (7)
N7—Cu1—N589.4 (2)C9—C8—N4105.4 (7)
N3—Cu1—N189.8 (2)C9—C8—C12131.0 (9)
N7—Cu1—N191.3 (2)N4—C8—C12123.6 (8)
N5—Cu1—N1178.5 (3)C8—C9—N3109.8 (7)
N3—Cu1—O1W94.0 (2)C8—C9—H9A125.5
N7—Cu1—O1W92.0 (2)N3—C9—H9A124.8
N5—Cu1—O1W92.3 (2)C7—C10—C11114.6 (7)
N1—Cu1—O1W89.0 (2)C7—C10—H10A108.2
O1—S1—O2114.6 (6)C11—C10—H10A108.5
O1—S1—O3110.3 (6)C7—C10—H10B108.9
O2—S1—O3118.1 (6)C11—C10—H10B108.6
O1—S1—C25105.0 (6)H10A—C10—H10B107.9
O2—S1—C25104.7 (5)C10—C11—H11A110.9
O3—S1—C25102.4 (6)C10—C11—H11B108.8
O4—S2—O5117.6 (5)H11A—C11—H11B109.5
O4—S2—O6113.5 (6)C10—C11—H11C108.7
O5—S2—O6108.9 (7)H11A—C11—H11C109.5
O4—S2—C26106.3 (6)H11B—C11—H11C109.5
O5—S2—C26104.7 (6)C8—C12—H12A109.6
O6—S2—C26104.6 (7)C8—C12—H12B109.9
Cu1—O1W—H1A109.2H12A—C12—H12B109.5
Cu1—O1W—H1B109.1C8—C12—H12C108.9
H1A—O1W—H1B109.9H12A—C12—H12C109.5
C1—N1—C3106.8 (6)H12B—C12—H12C109.5
C1—N1—Cu1134.1 (5)N5—C13—N6109.3 (7)
C3—N1—Cu1119.0 (5)N5—C13—C16127.8 (7)
C1—N2—C2109.0 (6)N6—C13—C16122.9 (7)
C1—N2—H2A125.8C15—C14—N6105.9 (7)
C2—N2—H2A125.2C15—C14—C18131.3 (9)
C7—N3—C9105.4 (6)N6—C14—C18122.7 (8)
C7—N3—Cu1131.6 (5)C14—C15—N5109.0 (7)
C9—N3—Cu1122.8 (5)C14—C15—H15A125.1
C7—N4—C8109.3 (7)N5—C15—H15A125.8
C7—N4—H4A125.5C17—C16—C13117.2 (7)
C8—N4—H4A125.2C17—C16—H16A106.3
C13—N5—C15107.0 (6)C13—C16—H16A108.0
C13—N5—Cu1131.3 (5)C17—C16—H16B109.4
C15—N5—Cu1121.4 (5)C13—C16—H16B108.0
C13—N6—C14108.7 (6)H16A—C16—H16B107.6
C13—N6—H6A125.3C16—C17—H17A111.0
C14—N6—H6A125.9C16—C17—H17B110.3
C19—N7—C21106.5 (6)H17A—C17—H17B109.5
C19—N7—Cu1131.1 (5)C16—C17—H17C107.1
C21—N7—Cu1122.3 (5)H17A—C17—H17C109.5
C19—N8—C20109.4 (7)H17B—C17—H17C109.5
C19—N8—H8A125.0C14—C18—H18A110.9
C20—N8—H8A125.5C14—C18—H18B109.1
N1—C1—N2109.2 (7)H18A—C18—H18B109.5
N1—C1—C4128.1 (8)C14—C18—H18C108.4
N2—C1—C4122.7 (8)H18A—C18—H18C109.5
N1—C1—C4128.1 (8)H18B—C18—H18C109.5
N2—C1—C4122.7 (8)N7—C19—N8109.5 (7)
C4—C1—C40.0 (11)N7—C19—C22127.7 (7)
C3—C2—N2106.1 (7)N8—C19—C22122.7 (8)
C3—C2—C6131.6 (8)C21—C20—N8105.7 (7)
N2—C2—C6122.3 (7)C21—C20—C24130.5 (9)
C2—C3—N1109.0 (7)N8—C20—C24123.9 (8)
C2—C3—H3A125.1C20—C21—N7108.8 (7)
N1—C3—H3A125.9C20—C21—H21A125.1
C5—C4—C1121.0 (12)N7—C21—H21A126.1
C5—C4—H4B107.1C19—C22—C23113.3 (8)
C1—C4—H4B107.1C19—C22—H22A108.6
C5—C4—H4C107.1C23—C22—H22A108.4
C1—C4—H4C107.1C19—C22—H22B109.9
H4B—C4—H4C106.8C23—C22—H22B108.4
C4—C5—H5A109.5H22A—C22—H22B108.1
C4—C5—H5B109.5C22—C23—H23A111.6
H5A—C5—H5B109.5C22—C23—H23B108.4
C4—C5—H5C109.5H23A—C23—H23B109.5
H5A—C5—H5C109.5C22—C23—H23C108.4
H5B—C5—H5C109.5H23A—C23—H23C109.5
C5'—C4—C1111.9 (13)H23B—C23—H23C109.5
C5'—C4—H4D109.2C20—C24—H24A109.3
C1—C4—H4D109.2C20—C24—H24B109.7
C5'—C4—H4E109.2H24A—C24—H24B109.5
C1—C4—H4E109.2C20—C24—H24C109.5
H4D—C4—H4E107.9H24A—C24—H24C109.5
C4—C5'—H5'1109.5H24B—C24—H24C109.5
C4—C5'—H5'2109.5F3—C25—F2101.5 (12)
H5'1—C5'—H5'2109.5F3—C25—F1102.8 (12)
C4—C5'—H5'3109.5F2—C25—F1107.3 (14)
H5'1—C5'—H5'3109.5F3—C25—S1118.2 (11)
H5'2—C5'—H5'3109.5F2—C25—S1116.0 (9)
C2—C6—H6B108.6F1—C25—S1109.7 (10)
C2—C6—H6C108.3F6—C26—F5108.9 (16)
H6B—C6—H6C109.5F6—C26—F4105.5 (13)
C2—C6—H6D111.6F5—C26—F4110.2 (15)
H6B—C6—H6D109.5F6—C26—S2111.7 (11)
H6C—C6—H6D109.5F5—C26—S2110.2 (12)
N3—C7—N4110.1 (7)F4—C26—S2110.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.901.952.849 (9)178
N4—H4A···O6i0.902.373.211 (12)155
N6—H6A···O1ii0.902.002.897 (10)177
N8—H8A···O20.901.942.841 (9)179
O1W—H1A···O3iii0.852.122.957 (10)167
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

(III)(IV)
Crystal data
Chemical formula[Cu(C4H6N2)4](CF3SO3)2[Cu(C6H10N2)4(H2O)](CF3SO3)2
Mr690.11820.34
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)16.400 (3), 10.174 (2), 17.016 (3)15.408 (3), 12.627 (3), 20.380 (4)
β (°) 95.50 (3) 104.37 (3)
V3)2826.1 (9)3841.0 (14)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.010.76
Crystal size (mm)0.4 × 0.3 × 0.20.25 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Enraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.706, 0.8170.807, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
5140, 4954, 2890 6948, 6740, 2847
Rint0.0250.034
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.03 0.064, 0.155, 1.02
No. of reflections49546740
No. of parameters370460
No. of restraints362
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.001P)2 + 7P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.001P)2 + 14P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.310.43, 0.34

Computer programs: CAD-4-PC (Enraf-Nonius, 1992), CAD-4-PC (Enraf–Nonius, 1992), CAD-4-PC, XCAD4/PC (Harms, 1997), SHELXTL (Bruker, 1997), SHELXTL), SHELXTL.

Selected geometric parameters (Å, º) for (III) top
Cu1—N11.992 (4)Cu1—N32.001 (4)
Cu1—N51.994 (4)Cu1—O12.639 (3)
Cu1—N72.000 (4)Cu1—O42.867 (4)
N1—Cu1—N5172.42 (16)N7—Cu1—O188.63 (14)
N1—Cu1—N788.55 (16)N3—Cu1—O189.00 (14)
N5—Cu1—N792.67 (16)N1—Cu1—O488.29 (14)
N1—Cu1—N389.41 (16)N5—Cu1—O484.14 (14)
N5—Cu1—N389.70 (15)N7—Cu1—O497.01 (14)
N7—Cu1—N3176.70 (16)N3—Cu1—O485.50 (14)
N1—Cu1—O195.62 (14)O1—Cu1—O4173.23 (12)
N5—Cu1—O191.89 (14)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.902.162.910 (6)140.8
N4—H4A···O5ii0.902.042.839 (6)147.3
N6—H6A···O6iii0.901.962.840 (6)167.2
N8—H8A···O3iv0.901.992.872 (5)164.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.
Selected geometric parameters (Å, º) for (IV) top
Cu1—N31.999 (5)Cu1—N12.026 (5)
Cu1—N72.000 (5)Cu1—O1W2.372 (5)
Cu1—N52.010 (6)
N3—Cu1—N7173.9 (3)N5—Cu1—N1178.5 (3)
N3—Cu1—N589.4 (2)N3—Cu1—O1W94.0 (2)
N7—Cu1—N589.4 (2)N7—Cu1—O1W92.0 (2)
N3—Cu1—N189.8 (2)N5—Cu1—O1W92.3 (2)
N7—Cu1—N191.3 (2)N1—Cu1—O1W89.0 (2)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.901.952.849 (9)177.6
N4—H4A···O6i0.902.373.211 (12)155.3
N6—H6A···O1ii0.902.002.897 (10)176.9
N8—H8A···O20.901.942.841 (9)178.8
O1W—H1A···O3iii0.852.122.957 (10)166.7
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z; (iii) x, y+1/2, z+1/2.
The dihedral angles between imidazole planes and the CuN4 plane in complexes 1 to 4 top
ComplexesDihedral angles (°)References
159.4 (x2), 88.2 (x2)Liu & Su, 1995
247.2 (2) 47.8 (3) 51.3 (2) 51.9 (3)Liu et al., 2002
326.7 (2) 71.6 (2) 77.6 (2) 79.9 (1)this work
448.1 (3) 55.4 (2) 57.9 (3) 61.3 (3)this work
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds