Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecule of the title compound {systematic name: di-μ-sulfido-bis[di­aqua(1,4,7,10,13,16-hexaoxa­cyclo­octade­cane-κ6O)barium(II)] bis­[1,2-benzisothiazol-3(2H)-one 1,1-dioxide]}, [Ba2S2(C12H24O6)2(H2O)4](C7H5NO3S)2, lies on an inversion centre. The BaII atom encapsulated by the 18-crown-6 ring is coordinated by the six O atoms of the crown, two water O atoms and two bridging S atoms. The four-membered ring composed of the BaII atoms and the bridging S atoms makes a dihedral angle of 67.1 (1)° with the crown-ether ring. The aromatic ring system of the saccharin moiety is essentially planar. The packing is built up from layers of the mol­ecules and is stabilized by three intermolecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102016712/av1115sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102016712/av1115Isup2.hkl
Contains datablock I

CCDC reference: 199404

Comment top

Complexes of alkaline earth metal cations with 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) have been investigated intensively (Dyer et al., 1986; Wei et al., 1988; Luger et al., 1992; Rheingold et al., 1993; Usman et al., 2002). Generally, these studies have been devoted to the structures of the complexes, including the conformation of the macrocycle and the position of the metal cation relative to the crown centre, due to the different nature of the metal cation and the counteranion.

In continuing our interest on the variation with temperature of the cell parameters of barium-18-crown-6 complexes, we have prepared the title complex, (I), which is a 2:2 complex of diaquo(18-crown-6)barium(II)sulfide and saccharin. However, for this complex, the cell parameters are almost constant in the temperature range 183–300 K. An X-ray crystal structure determination of (I) was undertaken at 293 K, and the result is reported here. \sch

The asymmetric unit of (I) contains only one half of the molecule, and the other half is generated by a centre of inversion. The BaII atom is encapsulated by an 18-crown-6 ring and is coordinated to the six O atoms of the crown, two water O atoms and two bridging S atoms. The atomic numbering scheme and molecular conformation of (I) are shown in Fig. 1. The bond lengths and angles have normal values (Allen et al., 1987).

The average Ba—Ocrown distance is 2.896 Å, which is slightly elongated when compared with that in barium-bis(trimethylacetate)-18-crown-6 [2.823 (6) Å; Rheingold et al., 1993] or barium-2,4-dinitrophenolate-18-crown-6 [2.794 (3) Å; Usman et al., 2002]. The average Ba—Owater distance [2.832 Å] is comparable with that in aqua(18-crown-6)barium(II)bis(o-nitrophenolate) [2.836 (4) Å; Chantrapromma et al., 2002].

The aromatic ring systems of the saccharin moieties in (I) are essentially planar, with a maximum deviation of 0.042 (4) Å for atom C19, and the dihedral angle between the five- and six-membered rings is 2.2 (2)°. The bond lengths and angles within this moiety are comparable with those in free saccharin (Deng et al., 2001). Atom O9 is displaced by 0.153 (3) Å from the saccharin plane, whereas atoms O7 and O8 are conditioned by the tetrahedral conformation of the S2 atom, with the average angle subtended at S2 being 109.2°.

In the crown of (I), the C atoms deviate from the least-squares plane by -0.352 (4) to 0.443 (5) Å, with the BaII atom displaced from the crown ring by 0.908 (1) Å. The average C—O and C—C bond distances are 1.426 and 1.486 Å, respectively. The average C—O distance is normal for a C—O single bond (Allen et al., 1987), whereas that of the C—C bond is shorter than the average for a Csp3—Csp3 single bond, due to the macrocyclic C—C shortening of the crown ether (Shoham et al., 1983).

The O—C—C and C—O—C angles are almost tetrahedral, with average values of 108.7 and 111.8°, respectively. The O atoms of the crown ring form a regular hexagon, with nonbonded O···O distances in the range 2.766 (4)–2.824 (4) Å, and their maximum deviations from the mean plane are 0.12 and -0.28 Å. For which atoms?

The conformation of the crown in (I) is that of the typical crown ether arrangement, i.e. approximately D3 d symmetry, determined by the +sc or -sc and ap conformations of the O—C—C—O and C—O—C—C torsion angles. The mean plane of the crown makes a dihedral angle of 67.1 (1)° with respect to the Ba1/Ba1A/S1/S1A plane.

The symmetry-related molecules are linked by intermolcular O2W-H1W2···O9ii and O2W-H2W2···O9iii hydrogen bonds into molecular columns, which are interconnected by O1W-H1W1···O8i hydrogen bonds into molecular layers (Fig. 2).

Experimental top

The title complex was prepared by thoroughly mixing Ba(OH)2·8H2O (1.58 g, 5 mmol), sodium saccharine (2.05 g, 10 mmol) and 18-crown-6 (2.64 g, 5 mmol) in ethanol (50 ml). Distilled water (5 ml) was then added and the mixture was warmed until a solution was obtained. The solution was filtered and left to evaporate slowly in air. Colourless single crystals of (I) suitable for X-ray data collection were obtained from the solution after a few days.

Refinement top

All H atoms were geometrically fixed with ideal bond lengths and angles, and were treated as riding atoms. The highest peak of 2.18 e Å-3 and deepest hole of -0.74 e Å-3 were 0.78 and 0.53 Å from Ba1, respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms attached to C atoms have been omitted.
[Figure 2] Fig. 2. A packing diagram for (I) viewed down the a axis. H atoms attached to C atoms have been omitted.
di-(µ-sulfido-1:2κ2S)bis[(diaqua-1,4,7,10,13,16-hexaoxacyclooctadecane- 6κO)barium(II)] bis(saccharin) top
Crystal data top
[Ba2(C12H24O6)2(H2O)4S2](C7H5NO3S)2Z = 1
Mr = 1305.85F(000) = 660
Triclinic, P1Dx = 1.679 Mg m3
a = 8.5668 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9073 (6) ÅCell parameters from 6797 reflections
c = 14.0768 (8) Åθ = 2.6–28.3°
α = 109.195 (1)°µ = 1.75 mm1
β = 103.383 (1)°T = 293 K
γ = 96.374 (1)°Block, colourless
V = 1291.6 (1) Å30.28 × 0.26 × 0.24 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
6090 independent reflections
Radiation source: fine-focus sealed tube5704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.6°
ω scansh = 118
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.639, Tmax = 0.678l = 1318
8231 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0544P)2 + 2.0593P]
where P = (Fo2 + 2Fc2)/3
6090 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Ba2(C12H24O6)2(H2O)4S2](C7H5NO3S)2γ = 96.374 (1)°
Mr = 1305.85V = 1291.6 (1) Å3
Triclinic, P1Z = 1
a = 8.5668 (5) ÅMo Kα radiation
b = 11.9073 (6) ŵ = 1.75 mm1
c = 14.0768 (8) ÅT = 293 K
α = 109.195 (1)°0.28 × 0.26 × 0.24 mm
β = 103.383 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
6090 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
5704 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.678Rint = 0.012
8231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.10Δρmax = 2.18 e Å3
6090 reflectionsΔρmin = 0.74 e Å3
307 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 5 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.14244 (2)0.159804 (17)0.692474 (15)0.03004 (8)
S10.15027 (12)0.09419 (9)0.51629 (8)0.0426 (2)
S20.30448 (14)0.27839 (10)0.24311 (8)0.0450 (2)
O10.1432 (4)0.1522 (2)0.8984 (2)0.0414 (6)
O20.3742 (3)0.0563 (2)0.8046 (2)0.0380 (6)
O30.4661 (3)0.1670 (3)0.6711 (2)0.0411 (6)
O40.2645 (3)0.2891 (3)0.5733 (2)0.0420 (6)
O50.0451 (3)0.3811 (2)0.6795 (2)0.0378 (5)
O60.0633 (3)0.2806 (2)0.8142 (2)0.0410 (6)
O1W0.0826 (5)0.0491 (3)0.6702 (3)0.0604 (9)
H2W10.09940.10110.60760.091*
H1W10.13090.08520.70200.091*
O2W0.3686 (4)0.3481 (3)0.8633 (2)0.0532 (8)
H2W20.45390.38810.85950.080*
H1W20.38810.34620.92460.080*
O70.2985 (6)0.3452 (4)0.3476 (3)0.0804 (13)
O80.2163 (5)0.1528 (3)0.1988 (3)0.0648 (9)
O90.3644 (4)0.4444 (3)0.0744 (2)0.0430 (6)
N10.2496 (4)0.3486 (3)0.1664 (3)0.0394 (7)
H10.15300.36340.15000.047*
C10.1993 (6)0.0491 (4)0.9130 (3)0.0493 (10)
H1A0.12930.02510.85970.059*
H1B0.19670.04850.98140.059*
C20.3703 (6)0.0570 (4)0.9050 (3)0.0512 (11)
H2A0.43960.13100.95880.061*
H2B0.41260.01140.91620.061*
C30.5389 (5)0.0803 (4)0.7998 (4)0.0492 (10)
H3A0.59750.02200.81860.059*
H3B0.59440.16090.84960.059*
C40.5390 (5)0.0716 (4)0.6922 (4)0.0479 (10)
H4A0.65030.08030.68700.057*
H4B0.47680.00680.64150.057*
C50.4674 (5)0.1703 (4)0.5711 (3)0.0486 (10)
H5A0.38600.10350.51600.058*
H5B0.57420.16280.56040.058*
C60.4297 (5)0.2875 (5)0.5683 (4)0.0521 (10)
H6A0.50510.35420.62730.062*
H6B0.44110.29650.50400.062*
C70.2221 (6)0.4034 (4)0.5788 (3)0.0492 (10)
H7A0.23070.41920.51670.059*
H7B0.29710.46800.63970.059*
C80.0531 (6)0.4007 (4)0.5862 (3)0.0472 (9)
H8A0.02200.47710.58800.057*
H8B0.02200.33590.52550.057*
C90.1102 (5)0.3895 (4)0.6980 (4)0.0506 (10)
H9A0.19250.32010.64710.061*
H9B0.14220.46270.69090.061*
C100.0981 (6)0.3926 (4)0.8062 (4)0.0547 (11)
H10A0.01180.45970.85650.066*
H10B0.20050.40510.82220.066*
C110.0416 (5)0.2840 (4)0.9186 (3)0.0474 (10)
H11A0.14010.29840.93950.057*
H11B0.04850.34970.96660.057*
C120.0060 (5)0.1650 (4)0.9232 (3)0.0471 (9)
H12A0.00310.16400.99290.057*
H12B0.09370.09870.87320.057*
C130.5089 (5)0.2828 (3)0.2368 (3)0.0408 (8)
C140.6367 (7)0.2418 (4)0.2864 (4)0.0586 (12)
H140.62520.20520.33410.070*
C150.7825 (6)0.2581 (4)0.2616 (5)0.0695 (16)
H150.87090.23110.29300.083*
C160.8001 (6)0.3130 (5)0.1919 (5)0.0667 (15)
H160.89970.32180.17670.080*
C170.6726 (5)0.3555 (4)0.1439 (4)0.0494 (10)
H170.68490.39300.09690.059*
C180.5253 (5)0.3401 (3)0.1684 (3)0.0360 (7)
C190.3718 (4)0.3821 (3)0.1305 (3)0.0342 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.02802 (11)0.03112 (11)0.03217 (12)0.00826 (7)0.00949 (8)0.01178 (8)
S10.0339 (4)0.0371 (5)0.0441 (5)0.0103 (4)0.0026 (4)0.0037 (4)
S20.0570 (6)0.0471 (5)0.0427 (5)0.0129 (4)0.0246 (4)0.0237 (4)
O10.0491 (15)0.0393 (14)0.0429 (14)0.0105 (12)0.0200 (12)0.0190 (12)
O20.0346 (13)0.0389 (13)0.0345 (13)0.0126 (10)0.0009 (10)0.0115 (10)
O30.0356 (13)0.0446 (14)0.0439 (14)0.0153 (11)0.0161 (11)0.0116 (12)
O40.0408 (14)0.0417 (14)0.0460 (15)0.0037 (11)0.0151 (12)0.0189 (12)
O50.0379 (13)0.0368 (13)0.0417 (14)0.0140 (10)0.0102 (11)0.0168 (11)
O60.0393 (14)0.0353 (13)0.0488 (15)0.0130 (11)0.0193 (12)0.0097 (11)
O1W0.073 (2)0.0573 (19)0.0478 (17)0.0077 (16)0.0218 (16)0.0189 (15)
O2W0.067 (2)0.0466 (16)0.0396 (15)0.0089 (14)0.0204 (14)0.0111 (12)
O70.125 (4)0.097 (3)0.0462 (19)0.049 (3)0.050 (2)0.034 (2)
O80.064 (2)0.0550 (19)0.088 (3)0.0003 (16)0.0297 (19)0.0399 (19)
O90.0486 (15)0.0450 (15)0.0432 (15)0.0077 (12)0.0181 (12)0.0230 (12)
N10.0373 (16)0.0469 (17)0.0441 (17)0.0126 (13)0.0194 (13)0.0229 (14)
C10.071 (3)0.042 (2)0.0360 (19)0.0096 (19)0.0103 (19)0.0190 (17)
C20.063 (3)0.049 (2)0.0345 (19)0.020 (2)0.0032 (18)0.0161 (17)
C30.0308 (18)0.048 (2)0.059 (2)0.0143 (16)0.0026 (17)0.0149 (19)
C40.0292 (17)0.044 (2)0.066 (3)0.0162 (16)0.0135 (17)0.0118 (19)
C50.040 (2)0.059 (2)0.045 (2)0.0046 (18)0.0226 (17)0.0095 (19)
C60.044 (2)0.066 (3)0.052 (2)0.002 (2)0.0215 (19)0.026 (2)
C70.072 (3)0.0374 (19)0.043 (2)0.0071 (19)0.020 (2)0.0186 (17)
C80.063 (3)0.0374 (19)0.040 (2)0.0170 (18)0.0055 (18)0.0165 (16)
C90.040 (2)0.044 (2)0.072 (3)0.0240 (17)0.016 (2)0.021 (2)
C100.054 (2)0.040 (2)0.076 (3)0.0228 (19)0.035 (2)0.014 (2)
C110.039 (2)0.051 (2)0.047 (2)0.0048 (17)0.0236 (17)0.0040 (18)
C120.048 (2)0.055 (2)0.040 (2)0.0005 (18)0.0205 (17)0.0181 (18)
C130.046 (2)0.0274 (16)0.043 (2)0.0074 (15)0.0082 (16)0.0088 (14)
C140.067 (3)0.035 (2)0.062 (3)0.013 (2)0.001 (2)0.0164 (19)
C150.053 (3)0.039 (2)0.091 (4)0.019 (2)0.007 (3)0.006 (2)
C160.039 (2)0.045 (2)0.095 (4)0.0099 (19)0.017 (2)0.001 (3)
C170.041 (2)0.039 (2)0.062 (3)0.0043 (16)0.0205 (19)0.0071 (18)
C180.0371 (18)0.0271 (15)0.0378 (18)0.0045 (13)0.0106 (14)0.0049 (13)
C190.0386 (18)0.0305 (16)0.0304 (16)0.0049 (13)0.0131 (14)0.0058 (13)
Geometric parameters (Å, º) top
Ba1—O2W2.810 (3)C2—H2B0.9700
Ba1—O32.852 (3)C3—C41.485 (7)
Ba1—O1W2.854 (3)C3—H3A0.9700
Ba1—O22.885 (2)C3—H3B0.9700
Ba1—O52.900 (3)C4—H4A0.9700
Ba1—O42.903 (3)C4—H4B0.9700
Ba1—O62.907 (3)C5—C61.478 (7)
Ba1—O12.929 (3)C5—H5A0.9700
Ba1—S1i3.1904 (10)C5—H5B0.9700
Ba1—S13.2391 (10)C6—H6A0.9700
S1—Ba1i3.1904 (10)C6—H6B0.9700
S2—O71.440 (4)C7—C81.473 (7)
S2—O81.454 (4)C7—H7A0.9700
S2—N11.591 (3)C7—H7B0.9700
S2—C131.770 (4)C8—H8A0.9700
O1—C121.412 (5)C8—H8B0.9700
O1—C11.425 (5)C9—C101.490 (7)
O2—C21.418 (5)C9—H9A0.9700
O2—C31.429 (5)C9—H9B0.9700
O3—C51.424 (5)C10—H10A0.9700
O3—C41.435 (5)C10—H10B0.9700
O4—C71.430 (5)C11—C121.501 (7)
O4—C61.436 (5)C11—H11A0.9700
O5—C81.422 (5)C11—H11B0.9700
O5—C91.422 (5)C12—H12A0.9700
O6—C111.425 (5)C12—H12B0.9700
O6—C101.433 (5)C13—C181.374 (5)
O1W—H2W10.8619C13—C141.383 (6)
O1W—H1W10.8533C14—C151.383 (8)
O2W—H2W20.8494C14—H140.9300
O2W—H1W20.8491C15—C161.371 (9)
O9—C191.244 (4)C15—H150.9300
N1—C191.340 (5)C16—C171.382 (7)
N1—H10.8600C16—H160.9300
C1—C21.491 (7)C17—C181.392 (5)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C191.503 (5)
C2—H2A0.9700
O2W—Ba1—O368.96 (9)O2—C2—H2A109.6
O2W—Ba1—O1W134.69 (9)C1—C2—H2A109.6
O3—Ba1—O1W126.57 (10)O2—C2—H2B109.6
O2W—Ba1—O270.95 (9)C1—C2—H2B109.6
O3—Ba1—O258.95 (8)H2A—C2—H2B108.1
O1W—Ba1—O282.74 (10)O2—C3—C4110.0 (3)
O2W—Ba1—O575.12 (9)O2—C3—H3A109.7
O3—Ba1—O5107.66 (8)C4—C3—H3A109.7
O1W—Ba1—O5123.58 (10)O2—C3—H3B109.7
O2—Ba1—O5146.06 (8)C4—C3—H3B109.7
O2W—Ba1—O482.65 (8)H3A—C3—H3B108.2
O3—Ba1—O457.91 (8)O3—C4—C3108.1 (3)
O1W—Ba1—O4142.66 (9)O3—C4—H4A110.1
O2—Ba1—O4116.64 (8)C3—C4—H4A110.1
O5—Ba1—O456.91 (8)O3—C4—H4B110.1
O2W—Ba1—O676.76 (9)C3—C4—H4B110.1
O3—Ba1—O6145.50 (8)H4A—C4—H4B108.4
O1W—Ba1—O681.04 (9)O3—C5—C6107.9 (3)
O2—Ba1—O6113.32 (8)O3—C5—H5A110.1
O5—Ba1—O658.12 (8)C6—C5—H5A110.1
O4—Ba1—O6114.81 (8)O3—C5—H5B110.1
O2W—Ba1—O165.38 (8)C6—C5—H5B110.1
O3—Ba1—O1109.46 (8)H5A—C5—H5B108.4
O1W—Ba1—O169.38 (9)O4—C6—C5108.1 (3)
O2—Ba1—O156.94 (8)O4—C6—H6A110.1
O5—Ba1—O1108.85 (8)C5—C6—H6A110.1
O4—Ba1—O1147.89 (8)O4—C6—H6B110.1
O6—Ba1—O156.76 (8)C5—C6—H6B110.1
O2W—Ba1—S1i145.47 (7)H6A—C6—H6B108.4
O3—Ba1—S1i117.17 (6)O4—C7—C8109.3 (3)
O1W—Ba1—S1i71.69 (7)O4—C7—H7A109.8
O2—Ba1—S1i142.93 (6)C8—C7—H7A109.8
O5—Ba1—S1i70.70 (6)O4—C7—H7B109.8
O4—Ba1—S1i74.86 (6)C8—C7—H7B109.8
O6—Ba1—S1i89.17 (6)H7A—C7—H7B108.3
O1—Ba1—S1i131.13 (6)O5—C8—C7108.7 (3)
O2W—Ba1—S1137.28 (8)O5—C8—H8A110.0
O3—Ba1—S171.25 (6)C7—C8—H8A110.0
O1W—Ba1—S163.67 (8)O5—C8—H8B110.0
O2—Ba1—S175.74 (6)C7—C8—H8B110.0
O5—Ba1—S1132.79 (6)H8A—C8—H8B108.3
O4—Ba1—S189.23 (6)O5—C9—C10108.6 (3)
O6—Ba1—S1142.60 (6)O5—C9—H9A110.0
O1—Ba1—S1115.90 (6)C10—C9—H9A110.0
S1i—Ba1—S169.06 (3)O5—C9—H9B110.0
Ba1i—S1—Ba1110.94 (3)C10—C9—H9B110.0
O7—S2—O8114.7 (3)H9A—C9—H9B108.3
O7—S2—N1111.1 (2)O6—C10—C9109.9 (3)
O8—S2—N1111.5 (2)O6—C10—H10A109.7
O7—S2—C13111.5 (2)C9—C10—H10A109.7
O8—S2—C13109.2 (2)O6—C10—H10B109.7
N1—S2—C1397.60 (18)C9—C10—H10B109.7
C12—O1—C1112.2 (3)H10A—C10—H10B108.2
C12—O1—Ba1114.2 (2)O6—C11—C12109.0 (3)
C1—O1—Ba1112.1 (2)O6—C11—H11A109.9
C2—O2—C3111.2 (3)C12—C11—H11A109.9
C2—O2—Ba1120.5 (2)O6—C11—H11B109.9
C3—O2—Ba1116.1 (2)C12—C11—H11B109.9
C5—O3—C4112.5 (3)H11A—C11—H11B108.3
C5—O3—Ba1110.1 (2)O1—C12—C11107.5 (3)
C4—O3—Ba1113.3 (2)O1—C12—H12A110.2
C7—O4—C6111.7 (3)C11—C12—H12A110.2
C7—O4—Ba1119.5 (2)O1—C12—H12B110.2
C6—O4—Ba1117.5 (2)C11—C12—H12B110.2
C8—O5—C9112.1 (3)H12A—C12—H12B108.5
C8—O5—Ba1114.3 (2)C18—C13—C14122.4 (4)
C9—O5—Ba1111.3 (2)C18—C13—S2105.8 (3)
C11—O6—C10110.9 (3)C14—C13—S2131.8 (4)
C11—O6—Ba1119.5 (2)C13—C14—C15116.6 (5)
C10—O6—Ba1117.6 (2)C13—C14—H14121.7
Ba1—O1W—H2W1107.3C15—C14—H14121.7
Ba1—O1W—H1W1145.7C16—C15—C14121.8 (5)
H2W1—O1W—H1W1106.3C16—C15—H15119.1
Ba1—O2W—H2W2124.5C14—C15—H15119.1
Ba1—O2W—H1W2120.6C15—C16—C17121.3 (5)
H2W2—O2W—H1W2107.8C15—C16—H16119.4
C19—N1—S2112.0 (3)C17—C16—H16119.4
C19—N1—H1124.0C16—C17—C18117.6 (5)
S2—N1—H1124.0C16—C17—H17121.2
O1—C1—C2107.8 (3)C18—C17—H17121.2
O1—C1—H1A110.1C13—C18—C17120.3 (4)
C2—C1—H1A110.1C13—C18—C19111.8 (3)
O1—C1—H1B110.1C17—C18—C19128.0 (4)
C2—C1—H1B110.1O9—C19—N1124.9 (4)
H1A—C1—H1B108.5O9—C19—C18122.3 (3)
O2—C2—C1110.3 (3)N1—C19—C18112.7 (3)
O2W—Ba1—S1—Ba1i152.35 (9)O1—Ba1—O5—C8175.0 (2)
O3—Ba1—S1—Ba1i130.26 (7)S1i—Ba1—O5—C856.9 (2)
O1W—Ba1—S1—Ba1i79.28 (9)S1—Ba1—O5—C824.1 (3)
O2—Ba1—S1—Ba1i168.15 (7)O2W—Ba1—O5—C9113.6 (3)
O5—Ba1—S1—Ba1i33.22 (8)O3—Ba1—O5—C9175.2 (3)
O4—Ba1—S1—Ba1i74.07 (6)O1W—Ba1—O5—C920.6 (3)
O6—Ba1—S1—Ba1i58.26 (11)O2—Ba1—O5—C9115.0 (3)
O1—Ba1—S1—Ba1i126.67 (7)O4—Ba1—O5—C9155.6 (3)
S1i—Ba1—S1—Ba1i0.0O6—Ba1—O5—C930.1 (3)
O2W—Ba1—O1—C12117.3 (3)O1—Ba1—O5—C956.7 (3)
O3—Ba1—O1—C12171.8 (2)S1i—Ba1—O5—C971.4 (3)
O1W—Ba1—O1—C1265.3 (3)S1—Ba1—O5—C9104.3 (3)
O2—Ba1—O1—C12160.1 (3)O2W—Ba1—O6—C1161.8 (3)
O5—Ba1—O1—C1254.4 (3)O3—Ba1—O6—C1168.3 (3)
O4—Ba1—O1—C12111.6 (3)O1W—Ba1—O6—C1178.4 (3)
O6—Ba1—O1—C1227.4 (2)O2—Ba1—O6—C110.4 (3)
S1i—Ba1—O1—C1226.1 (3)O5—Ba1—O6—C11142.4 (3)
S1—Ba1—O1—C12110.1 (2)O4—Ba1—O6—C11137.1 (3)
O2W—Ba1—O1—C1113.6 (3)O1—Ba1—O6—C117.2 (2)
O3—Ba1—O1—C159.1 (3)S1i—Ba1—O6—C11150.0 (3)
O1W—Ba1—O1—C163.7 (3)S1—Ba1—O6—C1197.4 (3)
O2—Ba1—O1—C131.1 (3)O2W—Ba1—O6—C1077.6 (3)
O5—Ba1—O1—C1176.6 (3)O3—Ba1—O6—C1071.1 (3)
O4—Ba1—O1—C1119.3 (3)O1W—Ba1—O6—C10142.2 (3)
O6—Ba1—O1—C1156.4 (3)O2—Ba1—O6—C10139.8 (3)
S1i—Ba1—O1—C1103.0 (3)O5—Ba1—O6—C103.0 (3)
S1—Ba1—O1—C118.9 (3)O4—Ba1—O6—C102.3 (3)
O2W—Ba1—O2—C271.4 (3)O1—Ba1—O6—C10146.6 (3)
O3—Ba1—O2—C2147.8 (3)S1i—Ba1—O6—C1070.6 (3)
O1W—Ba1—O2—C271.1 (3)S1—Ba1—O6—C10123.2 (3)
O5—Ba1—O2—C272.9 (3)O7—S2—N1—C19116.1 (3)
O4—Ba1—O2—C2142.5 (3)O8—S2—N1—C19114.7 (3)
O6—Ba1—O2—C25.8 (3)C13—S2—N1—C190.5 (3)
O1—Ba1—O2—C21.0 (3)C12—O1—C1—C2169.3 (3)
S1i—Ba1—O2—C2117.2 (3)Ba1—O1—C1—C260.6 (3)
S1—Ba1—O2—C2135.7 (3)C3—O2—C2—C1172.1 (3)
O2W—Ba1—O2—C367.8 (3)Ba1—O2—C2—C131.2 (4)
O3—Ba1—O2—C38.6 (2)O1—C1—C2—O260.5 (4)
O1W—Ba1—O2—C3149.7 (3)C2—O2—C3—C4176.6 (3)
O5—Ba1—O2—C366.3 (3)Ba1—O2—C3—C440.5 (4)
O4—Ba1—O2—C33.3 (3)C5—O3—C4—C3177.2 (3)
O6—Ba1—O2—C3133.4 (3)Ba1—O3—C4—C357.1 (4)
O1—Ba1—O2—C3140.2 (3)O2—C3—C4—O365.1 (4)
S1i—Ba1—O2—C3103.6 (3)C4—O3—C5—C6165.9 (3)
S1—Ba1—O2—C385.1 (3)Ba1—O3—C5—C666.7 (3)
O2W—Ba1—O3—C5127.8 (3)C7—O4—C6—C5175.7 (3)
O1W—Ba1—O3—C5101.5 (3)Ba1—O4—C6—C532.2 (4)
O2—Ba1—O3—C5152.4 (3)O3—C5—C6—O465.8 (4)
O5—Ba1—O3—C562.1 (3)C6—O4—C7—C8178.7 (3)
O4—Ba1—O3—C533.2 (2)Ba1—O4—C7—C836.1 (4)
O6—Ba1—O3—C5121.0 (3)C9—O5—C8—C7174.1 (3)
O1—Ba1—O3—C5179.8 (2)Ba1—O5—C8—C758.0 (4)
S1i—Ba1—O3—C514.9 (3)O4—C7—C8—O561.2 (4)
S1—Ba1—O3—C568.1 (2)C8—O5—C9—C10168.9 (3)
O2W—Ba1—O3—C4105.3 (3)Ba1—O5—C9—C1061.6 (4)
O1W—Ba1—O3—C425.5 (3)C11—O6—C10—C9176.6 (3)
O2—Ba1—O3—C425.4 (2)Ba1—O6—C10—C933.9 (4)
O5—Ba1—O3—C4171.0 (2)O5—C9—C10—O664.0 (5)
O4—Ba1—O3—C4160.2 (3)C10—O6—C11—C12179.9 (3)
O6—Ba1—O3—C4112.0 (3)Ba1—O6—C11—C1238.3 (4)
O1—Ba1—O3—C452.8 (3)C1—O1—C12—C11172.7 (3)
S1i—Ba1—O3—C4112.1 (2)Ba1—O1—C12—C1158.3 (4)
S1—Ba1—O3—C458.9 (2)O6—C11—C12—O163.0 (4)
O2W—Ba1—O4—C771.3 (3)O7—S2—C13—C18117.9 (3)
O3—Ba1—O4—C7141.0 (3)O8—S2—C13—C18114.4 (3)
O1W—Ba1—O4—C7109.3 (3)N1—S2—C13—C181.6 (3)
O2—Ba1—O4—C7135.6 (3)O7—S2—C13—C1461.5 (5)
O5—Ba1—O4—C75.7 (3)O8—S2—C13—C1466.2 (5)
O6—Ba1—O4—C70.4 (3)N1—S2—C13—C14177.9 (4)
O1—Ba1—O4—C766.0 (3)C18—C13—C14—C151.8 (6)
S1i—Ba1—O4—C782.3 (3)S2—C13—C14—C15178.8 (4)
S1—Ba1—O4—C7150.8 (3)C13—C14—C15—C160.5 (7)
O2W—Ba1—O4—C669.3 (3)C14—C15—C16—C170.5 (8)
O3—Ba1—O4—C60.4 (3)C15—C16—C17—C180.3 (7)
O1W—Ba1—O4—C6110.2 (3)C14—C13—C18—C172.1 (6)
O2—Ba1—O4—C65.0 (3)S2—C13—C18—C17178.4 (3)
O5—Ba1—O4—C6146.3 (3)C14—C13—C18—C19176.5 (4)
O6—Ba1—O4—C6141.0 (3)S2—C13—C18—C193.0 (4)
O1—Ba1—O4—C674.5 (3)C16—C17—C18—C131.0 (6)
S1i—Ba1—O4—C6137.1 (3)C16—C17—C18—C19177.4 (4)
S1—Ba1—O4—C668.6 (3)S2—N1—C19—O9175.5 (3)
O2W—Ba1—O5—C8118.1 (3)S2—N1—C19—C182.4 (4)
O3—Ba1—O5—C856.4 (3)C13—C18—C19—O9174.3 (3)
O1W—Ba1—O5—C8107.7 (3)C17—C18—C19—O94.2 (6)
O2—Ba1—O5—C8116.7 (3)C13—C18—C19—N13.7 (4)
O4—Ba1—O5—C827.2 (2)C17—C18—C19—N1177.8 (4)
O6—Ba1—O5—C8158.4 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O8i0.852.052.898 (7)170
O2W—H1W2···O9ii0.852.122.822 (4)140
O2W—H2W2···O9iii0.852.162.915 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ba2(C12H24O6)2(H2O)4S2](C7H5NO3S)2
Mr1305.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5668 (5), 11.9073 (6), 14.0768 (8)
α, β, γ (°)109.195 (1), 103.383 (1), 96.374 (1)
V3)1291.6 (1)
Z1
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.639, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
8231, 6090, 5704
Rint0.012
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.102, 1.10
No. of reflections6090
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.18, 0.74

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Ba1—S1i3.1904 (10)Ba1—S13.2391 (10)
C12—O1—C1—C2169.3 (3)C6—O4—C7—C8178.7 (3)
C3—O2—C2—C1172.1 (3)C9—O5—C8—C7174.1 (3)
O1—C1—C2—O260.5 (4)O4—C7—C8—O561.2 (4)
C2—O2—C3—C4176.6 (3)C8—O5—C9—C10168.9 (3)
C5—O3—C4—C3177.2 (3)C11—O6—C10—C9176.6 (3)
O2—C3—C4—O365.1 (4)O5—C9—C10—O664.0 (5)
C4—O3—C5—C6165.9 (3)C10—O6—C11—C12179.9 (3)
C7—O4—C6—C5175.7 (3)C1—O1—C12—C11172.7 (3)
O3—C5—C6—O465.8 (4)O6—C11—C12—O163.0 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O8i0.852.052.898 (7)170
O2W—H1W2···O9ii0.852.122.822 (4)140
O2W—H2W2···O9iii0.852.162.915 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds