Download citation
Download citation
link to html
In the title ternary complex, C10H9N2+·C7H3N2O6·C7H4N2O6, the pyridinium cation adopts the role of the donor in an intermolecular N—H...O hydrogen-bonding interaction with the carboxyl­ate group of the 3,5-di­nitro­benzoate anion. The mol­ecules of the ternary complex form molecular ribbons perpendicular to the b direction, which are stabilized by one N—H...O, one O—H...O and five C—H...O intermolecular hydrogen bonds. The ribbons are further interconnected by three intermolecular C—H...O hydrogen bonds into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102013100/av1113sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102013100/av1113Isup2.hkl
Contains datablock I

CCDC reference: 195637

Comment top

In the crystals of adducts of carboxylic acids with organic amine bases, there is complete or occasionally only partial transfer of H atoms from the acid to the base (Burchell et al., 2001). In our previous study of such bases, the trigonally substituted 3,5-dinitrobenzoic acid, (O2N)2C6H3COOH, readily formed the anion (O2N)2C6H3COO- and therefore can act as a multiple acceptor of hydrogen bonds (Chantrapromma et al., 2002). Our ongoing studies of 3,5-dinitrobenzoic acid complexes with amine bases led to the title adduct, (I), in which 2,4'-bipyridine was selected as the amine base. The crystal structure, hydrogen bonds and weak interactions are reported here for (I) from data collected at 153 K.

3,5-Dinitrobenzoic acid forms a 2:1 salt with 2,4'-bipyridine, in which one of the acid molecules tranfers an H atom to the bipyridine, making a ternary complex involving a 3,5-dinitrobenzoate anion, a 2'-pyridyl-4-pyridinium cation and a neutral 3,5-dinitrobenzoic acid molecule.

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). The values within the 3,5-dinitrobenzoate anion and neutral 3,5-dinitrobenzoic acid agree with each other, except for those of the carboxylate group; O1—C17 is shorter than O7—C24, whereas O2—C17 is longer than O8—C24. This is due to the H-atom transfer process.

The benzoate anion and benzoic acid molecule are nearly planar. For the benzoate anion, the two O atoms of the nitro groups are slightly displaced from the aromatic ring, so that the O3/O4/N4/C15 and O5/O6/N3/C13 planes are twisted around the N—C bond by angles of 8.3 (1) and 4.8 (1)°, respectively. Similarly, the O9/O10/N6/C22 and O11/O12/N5/C20 planes are twisted by 8.3 (1) and 3.5 (1)°, respectively, from the plane of the benzoic acid aromatic ring. Though the dihedral angle of the neutral carboxylic acid group (O7/O8/C24/C18) with respect to its attached aromatic ring is 6.9 (1)°, that of the carboxylate group (O1/O2/C17/C11) with respect to its attached aromatic ring is 22.7 (1)°. This implies that the H-atom tranfer process leads to geometric changes in the carboxylate anion, but does not make any significant changes in the pyridinium cation, since the C—N bonds within both the charged and uncharged heterocyclic rings are almost the same. This is due to the bond-length constraints within the aromatic rings.

Within the asymmetric unit of (I), both the benzoate anion and benzoic acid molecule are interconnected by an intermolecular C14—H14···O9 interaction. The pyridinium cation is nearly planar; the dihedral angle between the two aromatic rings is 2.0 (1)°. In the packing, this cation is interconnected to the benzoate anion and benzoic acid molecule by one N—H···O and six C—H···O interactions, while both the benzoate anion and benzoic acid molecule are linked by one O—H···O and one C—H···O interactions (see Table 2). The N2—H111···O1 and O7—H117···O1 hydrogen bonds, together with the five C—H···O hydrogen bonds (C1—H1···O5, C2—H2···O12, C8—H8···O8, C9—H9···O2 and C12—H12···O7) interconnect the molecules into molecular ribbons perpendicular to the b direction (Fig. 2). There are three other hydrogen bonds (C3—H3···O10, C7—H7···O4 and C14—H14···O9), which interconnect the ribbons into a three-dimensional moleuclar arrangement.

Experimental top

3,5-Dinitrobenzoic acid (1.06 g, 5 mmol) and 2',4-bipyridine (0.39 g, 2.5 mmol) were thoroughly mixed and dissolved in acetone (40 ml), and water (2 ml) was added. The resulting mixture was stirred and warmed for 15 min. A clear light-yellow solution was obtained which was filtered and left to evaporate slowly in air. Single crystals for suitable X-ray diffraction studies were obtained after a few days.

Refinement top

All H atoms were located from difference Fourier maps and were refined isotropically; C—H distances were in the range 0.91 (2)–1.00 (2) Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title ternary complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title ternary complex, showing the molecular ribbons perpendicular to the b direction.
(I) top
Crystal data top
C10H9N2+·C7H3N2O6·C7H4N2O6F(000) = 1192
Mr = 580.43Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5786 reflections
a = 9.0193 (1) Åθ = 2.5–28.3°
b = 20.6107 (2) ŵ = 0.13 mm1
c = 13.6609 (3) ÅT = 153 K
β = 104.372 (1)°Block, colorless
V = 2460.01 (7) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
5931 independent reflections
Radiation source: fine-focus sealed tube4473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 1112
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2719
Tmin = 0.950, Tmax = 0.962l = 1717
14651 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059All H-atom parameters refined
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5931 reflectionsΔρmax = 0.60 e Å3
444 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (3)
Crystal data top
C10H9N2+·C7H3N2O6·C7H4N2O6V = 2460.01 (7) Å3
Mr = 580.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0193 (1) ŵ = 0.13 mm1
b = 20.6107 (2) ÅT = 153 K
c = 13.6609 (3) Å0.40 × 0.40 × 0.30 mm
β = 104.372 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5931 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
4473 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.962Rint = 0.088
14651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.144All H-atom parameters refined
S = 0.98Δρmax = 0.60 e Å3
5931 reflectionsΔρmin = 0.56 e Å3
444 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 30 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15016 (14)0.36713 (5)0.83796 (9)0.0257 (3)
O20.08295 (16)0.46887 (6)0.86487 (10)0.0332 (3)
O30.00916 (15)0.61118 (6)0.56459 (11)0.0360 (3)
O40.14167 (17)0.60431 (6)0.46409 (10)0.0370 (3)
O50.45866 (15)0.41558 (6)0.47414 (10)0.0343 (3)
O60.47123 (18)0.34290 (7)0.59077 (12)0.0467 (4)
O70.22231 (15)0.22730 (5)0.23480 (9)0.0288 (3)
O80.17238 (19)0.29327 (6)0.35206 (12)0.0485 (4)
O90.2316 (2)0.52882 (6)0.30898 (10)0.0454 (4)
O100.29633 (18)0.56535 (6)0.17667 (11)0.0422 (4)
O110.47864 (17)0.41716 (7)0.03973 (11)0.0402 (4)
O120.46440 (17)0.31345 (6)0.01737 (10)0.0404 (3)
N10.29030 (15)0.64763 (6)0.75907 (10)0.0216 (3)
N20.00691 (16)0.66272 (7)1.02621 (10)0.0233 (3)
N30.42668 (16)0.39497 (7)0.55092 (11)0.0261 (3)
N40.09294 (16)0.58466 (6)0.53490 (10)0.0240 (3)
N50.44243 (16)0.36984 (7)0.00374 (11)0.0270 (3)
N60.27081 (17)0.52090 (7)0.22986 (11)0.0268 (3)
C10.36239 (18)0.65592 (8)0.68567 (12)0.0229 (3)
C20.39027 (18)0.71601 (8)0.64781 (12)0.0231 (3)
C30.34298 (19)0.77095 (8)0.69023 (13)0.0260 (4)
C40.26697 (19)0.76379 (8)0.76654 (13)0.0233 (3)
C50.24184 (16)0.70142 (7)0.79883 (11)0.0173 (3)
C60.16066 (16)0.68889 (7)0.87991 (11)0.0176 (3)
C70.10055 (18)0.73914 (8)0.92752 (12)0.0217 (3)
C80.02382 (19)0.72475 (8)1.00031 (12)0.0246 (3)
C90.06328 (19)0.61333 (8)0.98266 (12)0.0236 (3)
C100.14090 (18)0.62491 (7)0.90956 (12)0.0216 (3)
C110.18754 (17)0.45003 (7)0.72428 (12)0.0197 (3)
C120.29060 (18)0.41387 (7)0.68450 (12)0.0209 (3)
C130.32539 (17)0.43507 (7)0.59611 (12)0.0202 (3)
C140.26406 (18)0.49099 (7)0.54576 (12)0.0202 (3)
C150.16357 (17)0.52560 (7)0.58758 (11)0.0193 (3)
C160.12477 (17)0.50697 (7)0.67563 (12)0.0202 (3)
C170.13661 (18)0.42816 (7)0.81677 (12)0.0220 (3)
C180.25913 (17)0.33942 (7)0.21703 (11)0.0185 (3)
C190.32403 (17)0.32812 (7)0.13548 (12)0.0192 (3)
C200.36793 (17)0.38137 (7)0.08692 (11)0.0201 (3)
C210.35013 (18)0.44487 (8)0.11450 (12)0.0212 (3)
C220.28635 (17)0.45383 (7)0.19606 (11)0.0198 (3)
C230.24125 (18)0.40277 (7)0.24857 (12)0.0196 (3)
C240.21311 (18)0.28457 (7)0.27569 (12)0.0223 (3)
H120.342 (2)0.3763 (9)0.7146 (15)0.029 (5)*
H210.383 (2)0.4794 (9)0.0814 (14)0.025 (5)*
H190.343 (3)0.2834 (11)0.1132 (17)0.045 (6)*
H1110.048 (2)0.6539 (11)1.0721 (17)0.037 (6)*
H20.442 (2)0.7199 (9)0.5983 (16)0.033 (5)*
H140.291 (2)0.5054 (9)0.4889 (15)0.030 (5)*
H80.021 (2)0.7568 (10)1.0364 (16)0.036 (5)*
H100.180 (2)0.5893 (10)0.8804 (16)0.033 (5)*
H10.396 (2)0.6155 (10)0.6573 (16)0.033 (5)*
H160.052 (2)0.5321 (9)0.7038 (15)0.027 (5)*
H40.237 (2)0.8002 (10)0.7988 (15)0.030 (5)*
H1170.176 (3)0.1942 (14)0.273 (2)0.072 (8)*
H30.365 (2)0.8137 (10)0.6667 (16)0.039 (6)*
H70.102 (2)0.7857 (10)0.9090 (16)0.034 (5)*
H90.044 (2)0.5721 (10)1.0024 (15)0.028 (5)*
H230.196 (2)0.4113 (9)0.3048 (15)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (7)0.0127 (5)0.0253 (6)0.0018 (4)0.0210 (5)0.0014 (4)
O20.0605 (8)0.0164 (6)0.0331 (7)0.0036 (5)0.0310 (6)0.0006 (5)
O30.0427 (7)0.0250 (7)0.0430 (8)0.0139 (5)0.0154 (6)0.0036 (5)
O40.0676 (9)0.0205 (6)0.0272 (7)0.0088 (6)0.0197 (6)0.0087 (5)
O50.0466 (8)0.0339 (7)0.0313 (7)0.0051 (5)0.0263 (6)0.0026 (5)
O60.0659 (9)0.0377 (8)0.0460 (9)0.0313 (7)0.0320 (8)0.0155 (6)
O70.0484 (7)0.0143 (6)0.0285 (6)0.0010 (5)0.0189 (6)0.0035 (4)
O80.0911 (12)0.0210 (7)0.0543 (9)0.0060 (7)0.0575 (9)0.0068 (6)
O90.0934 (12)0.0242 (7)0.0273 (7)0.0062 (7)0.0311 (8)0.0021 (5)
O100.0752 (10)0.0165 (6)0.0464 (8)0.0051 (6)0.0367 (8)0.0035 (5)
O110.0598 (9)0.0343 (8)0.0379 (8)0.0122 (6)0.0337 (7)0.0004 (6)
O120.0639 (9)0.0298 (7)0.0374 (8)0.0092 (6)0.0315 (7)0.0013 (6)
N10.0265 (7)0.0166 (6)0.0237 (7)0.0027 (5)0.0102 (6)0.0023 (5)
N20.0278 (7)0.0274 (7)0.0163 (6)0.0036 (5)0.0085 (6)0.0001 (5)
N30.0325 (7)0.0247 (7)0.0249 (7)0.0054 (6)0.0145 (6)0.0013 (5)
N40.0370 (8)0.0138 (6)0.0208 (7)0.0005 (5)0.0063 (6)0.0013 (5)
N50.0332 (7)0.0283 (8)0.0236 (7)0.0017 (6)0.0151 (6)0.0005 (6)
N60.0438 (8)0.0156 (7)0.0237 (7)0.0003 (6)0.0137 (6)0.0003 (5)
C10.0240 (7)0.0233 (8)0.0228 (8)0.0017 (6)0.0086 (6)0.0042 (6)
C20.0241 (8)0.0291 (9)0.0170 (7)0.0026 (6)0.0069 (6)0.0011 (6)
C30.0332 (9)0.0204 (8)0.0254 (9)0.0027 (6)0.0091 (7)0.0062 (6)
C40.0325 (8)0.0143 (7)0.0247 (8)0.0013 (6)0.0099 (7)0.0004 (6)
C50.0211 (7)0.0159 (7)0.0144 (7)0.0021 (5)0.0034 (6)0.0020 (5)
C60.0214 (7)0.0153 (7)0.0153 (7)0.0020 (5)0.0028 (6)0.0014 (5)
C70.0287 (8)0.0163 (7)0.0208 (8)0.0030 (6)0.0074 (7)0.0027 (6)
C80.0297 (8)0.0242 (8)0.0212 (8)0.0008 (6)0.0087 (7)0.0044 (6)
C90.0305 (8)0.0204 (8)0.0203 (8)0.0023 (6)0.0071 (7)0.0051 (6)
C100.0283 (8)0.0164 (8)0.0211 (8)0.0010 (6)0.0081 (7)0.0004 (6)
C110.0295 (8)0.0129 (7)0.0191 (7)0.0023 (6)0.0108 (6)0.0008 (5)
C120.0294 (8)0.0142 (7)0.0211 (8)0.0006 (6)0.0103 (6)0.0014 (6)
C130.0259 (7)0.0164 (7)0.0207 (8)0.0000 (6)0.0102 (6)0.0017 (6)
C140.0299 (8)0.0155 (7)0.0174 (7)0.0030 (6)0.0099 (6)0.0000 (5)
C150.0284 (8)0.0108 (7)0.0190 (7)0.0010 (5)0.0064 (6)0.0002 (5)
C160.0276 (8)0.0137 (7)0.0219 (8)0.0014 (6)0.0113 (6)0.0025 (5)
C170.0332 (8)0.0156 (7)0.0212 (8)0.0003 (6)0.0140 (7)0.0005 (6)
C180.0219 (7)0.0145 (7)0.0195 (7)0.0016 (5)0.0057 (6)0.0032 (5)
C190.0225 (7)0.0163 (7)0.0196 (7)0.0003 (5)0.0068 (6)0.0000 (6)
C200.0247 (7)0.0212 (8)0.0166 (7)0.0014 (6)0.0090 (6)0.0004 (6)
C210.0274 (8)0.0181 (8)0.0196 (7)0.0044 (6)0.0088 (6)0.0022 (6)
C220.0278 (8)0.0141 (7)0.0180 (7)0.0011 (5)0.0068 (6)0.0010 (5)
C230.0256 (7)0.0182 (8)0.0169 (7)0.0022 (6)0.0086 (6)0.0020 (6)
C240.0276 (8)0.0163 (7)0.0268 (8)0.0042 (6)0.0138 (7)0.0040 (6)
Geometric parameters (Å, º) top
O1—C171.2896 (18)C5—C61.494 (2)
O2—C171.2361 (18)C6—C71.402 (2)
O3—N41.2235 (18)C6—C101.404 (2)
O4—N41.2262 (18)C7—C81.377 (2)
O5—N31.2304 (18)C7—H70.99 (2)
O6—N31.2252 (19)C8—H80.97 (2)
O7—C241.3173 (19)C9—C101.375 (2)
O7—H1171.01 (3)C9—H90.92 (2)
O8—C241.202 (2)C10—H100.94 (2)
O9—N61.2287 (18)C11—C161.397 (2)
O10—N61.2261 (18)C11—C121.402 (2)
O11—N51.2275 (18)C11—C171.516 (2)
O12—N51.2253 (18)C12—C131.391 (2)
N1—C11.334 (2)C12—H120.94 (2)
N1—C51.3539 (19)C13—C141.385 (2)
N2—C91.341 (2)C14—C151.383 (2)
N2—C81.345 (2)C14—H140.92 (2)
N2—H1110.91 (2)C15—C161.388 (2)
N3—C131.4761 (19)C16—H160.984 (18)
N4—C151.4758 (19)C18—C231.397 (2)
N5—C201.476 (2)C18—C191.401 (2)
N6—C221.4751 (19)C18—C241.503 (2)
C1—C21.389 (2)C19—C201.390 (2)
C1—H11.00 (2)C19—H191.00 (2)
C2—C31.387 (2)C20—C211.382 (2)
C2—H20.91 (2)C21—C221.387 (2)
C3—C41.390 (2)C21—H210.932 (19)
C3—H30.97 (2)C22—C231.390 (2)
C4—C51.396 (2)C23—H230.97 (2)
C4—H40.94 (2)
C24—O7—H117108.0 (15)C9—C10—H10118.7 (13)
C1—N1—C5117.56 (13)C6—C10—H10121.5 (13)
C9—N2—C8121.63 (14)C16—C11—C12119.44 (14)
C9—N2—H111119.1 (14)C16—C11—C17118.38 (13)
C8—N2—H111119.2 (14)C12—C11—C17122.14 (13)
O6—N3—O5124.12 (14)C13—C12—C11118.91 (14)
O6—N3—C13118.25 (13)C13—C12—H12116.5 (12)
O5—N3—C13117.62 (13)C11—C12—H12124.6 (12)
O3—N4—O4124.09 (14)C14—C13—C12122.96 (14)
O3—N4—C15118.43 (13)C14—C13—N3118.07 (13)
O4—N4—C15117.47 (13)C12—C13—N3118.91 (13)
O12—N5—O11124.19 (14)C15—C14—C13116.47 (14)
O12—N5—C20117.71 (13)C15—C14—H14121.2 (12)
O11—N5—C20118.11 (14)C13—C14—H14122.3 (12)
O10—N6—O9124.01 (14)C14—C15—C16123.18 (14)
O10—N6—C22117.93 (14)C14—C15—N4118.14 (13)
O9—N6—C22118.06 (13)C16—C15—N4118.67 (13)
N1—C1—C2124.12 (15)C15—C16—C11119.02 (14)
N1—C1—H1115.9 (12)C15—C16—H16121.9 (11)
C2—C1—H1120.0 (12)C11—C16—H16119.1 (11)
C3—C2—C1118.01 (15)O2—C17—O1124.79 (14)
C3—C2—H2120.2 (12)O2—C17—C11118.73 (14)
C1—C2—H2121.7 (12)O1—C17—C11116.46 (13)
C2—C3—C4119.12 (15)C23—C18—C19120.26 (14)
C2—C3—H3119.5 (12)C23—C18—C24118.06 (13)
C4—C3—H3121.4 (12)C19—C18—C24121.63 (13)
C3—C4—C5118.93 (15)C20—C19—C18118.24 (14)
C3—C4—H4121.0 (12)C20—C19—H19119.5 (13)
C5—C4—H4120.0 (12)C18—C19—H19122.2 (13)
N1—C5—C4122.23 (14)C21—C20—C19123.47 (14)
N1—C5—C6114.99 (12)C21—C20—N5117.92 (13)
C4—C5—C6122.78 (13)C19—C20—N5118.58 (13)
C7—C6—C10117.96 (14)C20—C21—C22116.37 (14)
C7—C6—C5122.24 (13)C20—C21—H21121.2 (12)
C10—C6—C5119.79 (13)C22—C21—H21122.4 (12)
C8—C7—C6119.82 (15)C21—C22—C23123.13 (14)
C8—C7—H7115.6 (12)C21—C22—N6117.81 (13)
C6—C7—H7124.4 (12)C23—C22—N6119.02 (13)
N2—C8—C7120.30 (15)C22—C23—C18118.52 (14)
N2—C8—H8115.3 (13)C22—C23—H23120.3 (11)
C7—C8—H8124.4 (13)C18—C23—H23121.1 (11)
N2—C9—C10120.52 (15)O8—C24—O7124.51 (15)
N2—C9—H9116.9 (12)O8—C24—C18122.34 (14)
C10—C9—H9122.6 (12)O7—C24—C18113.16 (13)
C9—C10—C6119.77 (15)
C5—N1—C1—C20.1 (2)O3—N4—C15—C167.6 (2)
N1—C1—C2—C31.3 (2)O4—N4—C15—C16171.86 (15)
C1—C2—C3—C41.5 (2)C14—C15—C16—C111.1 (2)
C2—C3—C4—C50.6 (2)N4—C15—C16—C11178.06 (14)
C1—N1—C5—C40.9 (2)C12—C11—C16—C151.4 (2)
C1—N1—C5—C6179.42 (13)C17—C11—C16—C15176.33 (14)
C3—C4—C5—N10.7 (2)C16—C11—C17—O222.7 (2)
C3—C4—C5—C6179.70 (14)C12—C11—C17—O2159.60 (16)
N1—C5—C6—C7178.70 (13)C16—C11—C17—O1155.84 (15)
C4—C5—C6—C71.6 (2)C12—C11—C17—O121.8 (2)
N1—C5—C6—C100.4 (2)C23—C18—C19—C200.7 (2)
C4—C5—C6—C10179.25 (14)C24—C18—C19—C20178.06 (14)
C10—C6—C7—C80.5 (2)C18—C19—C20—C210.4 (2)
C5—C6—C7—C8178.59 (14)C18—C19—C20—N5177.43 (13)
C9—N2—C8—C70.0 (2)O12—N5—C20—C21176.69 (15)
C6—C7—C8—N20.3 (2)O11—N5—C20—C213.2 (2)
C8—N2—C9—C100.1 (2)O12—N5—C20—C191.2 (2)
N2—C9—C10—C60.3 (2)O11—N5—C20—C19178.89 (14)
C7—C6—C10—C90.5 (2)C19—C20—C21—C220.8 (2)
C5—C6—C10—C9178.60 (14)N5—C20—C21—C22177.02 (13)
C16—C11—C12—C131.3 (2)C20—C21—C22—C230.2 (2)
C17—C11—C12—C13176.38 (14)C20—C21—C22—N6177.85 (13)
C11—C12—C13—C140.8 (2)O10—N6—C22—C219.2 (2)
C11—C12—C13—N3176.41 (14)O9—N6—C22—C21171.51 (16)
O6—N3—C13—C14174.23 (16)O10—N6—C22—C23172.68 (15)
O5—N3—C13—C144.4 (2)O9—N6—C22—C236.6 (2)
O6—N3—C13—C123.1 (2)C21—C22—C23—C180.8 (2)
O5—N3—C13—C12178.26 (15)N6—C22—C23—C18178.83 (13)
C12—C13—C14—C150.4 (2)C19—C18—C23—C221.3 (2)
N3—C13—C14—C15176.82 (13)C24—C18—C23—C22178.73 (13)
C13—C14—C15—C160.5 (2)C23—C18—C24—O85.4 (2)
C13—C14—C15—N4178.60 (13)C19—C18—C24—O8172.01 (17)
O3—N4—C15—C14171.54 (14)C23—C18—C24—O7174.58 (14)
O4—N4—C15—C149.0 (2)C19—C18—C24—O78.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H111···O1i0.91 (2)1.76 (2)2.671 (2)177 (2)
O7—H117···O1ii1.01 (3)1.59 (3)2.579 (2)164 (3)
C1—H1···O5iii1.00 (2)2.55 (2)3.360 (2)138 (2)
C2—H2···O12iv0.92 (2)2.47 (2)3.176 (2)134 (2)
C3—H3···O10v0.98 (2)2.58 (2)3.399 (2)142 (2)
C7—H7···O4v0.99 (2)2.39 (2)3.272 (2)148 (2)
C8—H8···O8vi0.97 (2)2.40 (2)3.311 (2)155 (2)
C9—H9···O2i0.92 (2)2.52 (2)3.211 (2)132 (2)
C12—H12···O7vii0.94 (2)2.44 (2)3.087 (2)126 (2)
C14—H14···O90.92 (2)2.43 (2)3.269 (2)152 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H9N2+·C7H3N2O6·C7H4N2O6
Mr580.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)9.0193 (1), 20.6107 (2), 13.6609 (3)
β (°) 104.372 (1)
V3)2460.01 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
14651, 5931, 4473
Rint0.088
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.144, 0.98
No. of reflections5931
No. of parameters444
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.60, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS (Sheldrick, 1996), SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected bond lengths (Å) top
O1—C171.2896 (18)N1—C11.334 (2)
O2—C171.2361 (18)N1—C51.3539 (19)
O3—N41.2235 (18)N2—C91.341 (2)
O4—N41.2262 (18)N2—C81.345 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H111···O1i0.91 (2)1.76 (2)2.671 (2)177 (2)
O7—H117···O1ii1.01 (3)1.59 (3)2.579 (2)164 (3)
C1—H1···O5iii1.00 (2)2.55 (2)3.360 (2)138 (2)
C2—H2···O12iv0.92 (2)2.47 (2)3.176 (2)134 (2)
C3—H3···O10v0.98 (2)2.58 (2)3.399 (2)142 (2)
C7—H7···O4v0.99 (2)2.39 (2)3.272 (2)148 (2)
C8—H8···O8vi0.97 (2)2.40 (2)3.311 (2)155 (2)
C9—H9···O2i0.92 (2)2.52 (2)3.211 (2)132 (2)
C12—H12···O7vii0.94 (2)2.44 (2)3.087 (2)126 (2)
C14—H14···O90.92 (2)2.43 (2)3.269 (2)152 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds