Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Both title compounds, bis­[tris(2-amino­ethyl)­amine]­nickel(II) dichloride, [Ni(tren)2]Cl2, (I), and bis­[tris(2-amino­ethyl)­amine]­nickel(II) tetra­thio­tungstate, [Ni(tren)2]WS4, (II), contain the [Ni(tren)2]2+ cation [tren is tris(2-amino­ethyl)­amine, C6H18N4]. The tren mol­ecule acts as a tridentate ligand around the central Ni atom, with the remaining primary amine group not bound to the central atom. In (I), Ni2+ is located on a centre of inversion surrounded by one crystallographically independent tren mol­ecule. In the [Ni(tren)2]2+ cation of (II), the Ni atom is bound to two crystallographically independent tren mol­ecules. The Ni atoms in the [Ni(tren)2]2+ complexes are in a distorted octahedral environment consisting of six N atoms from the chelating tren mol­ecules. The counter-ions are chloride anions in (I) and the tetrahedral [WS4]2- anion in (II). Hydro­gen bonding is observed in both compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101015992/av1089sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015992/av1089Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101015992/av1089IIsup3.hkl
Contains datablock II

CCDC references: 181978; 181979

Comment top

It is well documented that the tren molecule can act as a tri- or tetradentate ligand and several transition metal complexes have been prepared (Gaudin et al., 1986). Many transition metal ions prefer the octahedral geometry with tren as a tetradentate ligand, leaving two cis positions available for bonding to other ligands. Examples are [Ni(tren)(H2O)Cl]Cl·H2O (Marzotto et al., 1993) and [Ni(tren){N(CN)2}2] (Březina et al., 1999). If the two cis positions are used by another multidentate ligand, such as the oxalate anion. dimeric complexes were obtained, with the two Ni(tren) units bridged by the other multidentate ligand, as in [Ni2(tren)2(C2O4)](ClO4)2 (Castro et al., 1997; Březina et al., 1997) and [Ni2(tren)2(C6O4Cl2)](BPh4)2 (Pierpont et al., 1977). Another binding mode of the tren ligand yields cationic chains. These chains are found in the two compounds {[Ni2(tren)3](ClO4)4·H2O}n (Masters et al., 1999) and {[Ni2(tren)3][Mo2O2S6]2·2.75H2O}n (Ellermeier & Bensch, 2001). In the polymeric chains, one Ni atom is coordinated by two tren molecules which act as tridentate ligands. The other Ni atom is coordinated by all four N atoms of one tren molecule and by the two remaining N atoms of the two tren ligands which are tridentate bound to the neighboured Ni atoms. The coordination behavior of the tren molecules leads to the formation of zigzag [Ni2(tren)3]n chains. The two new [Ni(tren)2]2+ complexes presented here contain isolated cations with the tren molecules acting as a tridentate ligand. This coordination mode was first reported by Colpas et al. (1990) for [Ni(tren)2](BF4)2.

Violet crystals of [Ni(tren)2]Cl2, (I), were obtained by attempts to synthesize compounds which could be used as precursors for the syntheses of new thioantimonates with complex transition metal cations (Stähler & Bensch, 2001). Due to the abovementioned variety in the bonding modes of the multidentate tren molecule, a single-crystal diffraction study was performed. In contrast, [Ni(tren)2]WS4, (II), was obtained as part of a project on the synthesis of new thiotungstates with transition metals under solvothermal conditions. Both compounds contain the [Ni(tren)2]2+ complex cation, and the counter-ions are Cl- in (I) and the tetrahedral [WS4]2- anion in (II). Each Ni2+ cation in [Ni(tren)2]2+ in (I) and (II) is sixfold coordinated by the N atoms of two tren molecules acting as tridentate ligands. Therefore, each tren ligand has one primary amine group which is not connected to the transition metal atom. The structures of the cations in (I) and (II) are illustrated in Figs. 1 and 2, and selected bond lengths and angles are given in Tables 1 and 3, respectively. In (I), the Ni atom is on a centre of inversion, surrounded by one crystallographically independent tren molecule. The environment is completed by a tren molecule generated by symmetry. In (II), the Ni atom is bound to two crystallographically independent tren molecules. The Ni—N bond lengths in (I) are between 2.105 (3) and 2.176 (3) Å. The N—Ni—N angles range from 80.56 (11) to 99.44 (11)°, reflecting the distortion of the octahedral geometry. The chloride anions in (I) are involved in a complicated hydrogen-bond network (Table 2) that may significantly contribute to the stability of the compound. There are five short intermolecular contacts between the Cl- anions and the H atoms of the tren ligand ranging from 2.40 (4) (H3N···Clii) to 2.61 (4) Å [H2N···Clii; symmetry code: (ii) -x, -y, -z]. A short contact is also observed between an H atom and an N atom of neighbouring tren molecules [H4N···N4iii; symmetry code: (iii) -x + 1/2, y + 1/2, -z + 3/2].

The WS4 tetrahedron in compound (II) is only slightly distorted (Fig. 2), with S—W—S angles between 108.39 (4) and 110.78 (4)° (Table 3). The W—S bond lengths range from 2.1580 (10) to 2.2122 (9) Å. The W—S3 distance of 2.2122 (9) Å is significantly longer than the average W—S bond length in [WS4]2- anions of 2.177 Å (Müller et al., 1981). One reason may be that S3 is involved in three short contacts to H atoms of the tren ligands (Table 4). The other S atoms have only one relatively short contact to H atoms. The geometrical parameters for the [Ni(tren)2]2+ cation in (II) are in good agreement with that found in the cation of (I) and with the [Ni(tren)2]2+ cation described by Colpas et al. (1990). The Ni—N bond lengths vary from 2.130 (3) to 2.152 (2) Å and the corresponding cis-N—Ni—N angles range from 80.95 (10) to 100.13 (10)° (Table 3). The [WS4]2- anions and [Ni(tren)2]2+ cations in (II) each form rods along the a and c axes and the rods alterante along the b axis (Fig. 3).

Experimental top

[Ni(tren)2]Cl2, (I), was prepared in a 100 ml glass flask at room temperature (293 K). NiCl2·6H2O (237.7 mg, 1 mmol) was dissolved in ethanol (99%, 10 ml) and tren (95%, 10 ml) was added to the mixture. Violet crystals were received after 48 h. The phase-pure product was washed with ethanol and dried under vacuum. [Ni(tren)2]WS4, (II), was prepared under solvothermal conditions. NiCl2·6H2O, Na2WO4·2H2O and sulfur (0.50 mmol, molar ratio 1:2:8) were reacted in tris(2-aminoethyl)amine (95%, 3 ml) in a Teflon-lined steel autoclave at 393 K for 5 d. The product was filtered off and washed with water. The yield of the phase-pure product is about 60%. The yellow–brown crystals obtained are stable on air.

Refinement top

The H atoms were positioned with idealized geometry and refined isotropically.

Computing details top

For both compounds, data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the [Ni(tren)2]2+ cation in (I) with the atom-labelling scheme and displacement ellipsoids drawn at the 50% propability level [symmetry code: (i) -x, 1 - y, 1 - z].
[Figure 2] Fig. 2. The crystal structure of the anion and cation in [Ni(tren)2]WS4, (II), showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 3] Fig. 3. The packing diagram for (II), viewed along the c axis. H atoms have been omitted for clarity.
(I) 'bis[tris(2-aminoethyl)amine]nickel(II) dichoride' top
Crystal data top
[Ni(C6H18N4)2]Cl2F(000) = 452
Mr = 422.10Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0336 (18) ÅCell parameters from 37 reflections
b = 10.630 (2) Åθ = 9–16°
c = 10.717 (2) ŵ = 1.28 mm1
β = 108.78 (3)°T = 293 K
V = 974.3 (3) Å3Needle, violet
Z = 20.5 × 0.1 × 0.1 mm
Data collection top
STOE AED-II four-circle
diffractometer
1131 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ωθ scansh = 010
Absorption correction: ψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
k = 121
Tmin = 0.810, Tmax = 0.840l = 1212
2042 measured reflections4 standard reflections every 120 min
1715 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073Only H-atom coordinates refined
S = 1.01Calculated w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
1715 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C6H18N4)2]Cl2V = 974.3 (3) Å3
Mr = 422.10Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0336 (18) ŵ = 1.28 mm1
b = 10.630 (2) ÅT = 293 K
c = 10.717 (2) Å0.5 × 0.1 × 0.1 mm
β = 108.78 (3)°
Data collection top
STOE AED-II four-circle
diffractometer
1131 reflections with I > 2σ(I)
Absorption correction: ψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
Rint = 0.034
Tmin = 0.810, Tmax = 0.8404 standard reflections every 120 min
2042 measured reflections intensity decay: none
1715 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.073Only H-atom coordinates refined
S = 1.01Δρmax = 0.28 e Å3
1715 reflectionsΔρmin = 0.27 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.50000.50000.02336 (16)
Cl0.60984 (11)0.22982 (9)0.43273 (9)0.0475 (3)
N10.0988 (3)0.5908 (3)0.3655 (3)0.0313 (7)
H1N0.024 (4)0.621 (3)0.293 (3)0.038*
H2N0.155 (4)0.651 (3)0.403 (3)0.038*
N20.1686 (3)0.3570 (3)0.4910 (2)0.0268 (6)
N30.1847 (3)0.5603 (3)0.6654 (3)0.0291 (6)
H3N0.236 (4)0.623 (3)0.642 (3)0.035*
H4N0.158 (4)0.587 (3)0.731 (3)0.035*
N40.3488 (3)0.0913 (3)0.5586 (3)0.0361 (7)
H5N0.360 (4)0.011 (4)0.553 (4)0.054*
H6N0.412 (4)0.135 (4)0.523 (4)0.054*
C10.1978 (4)0.5019 (5)0.3199 (3)0.0384 (8)
H1C0.310 (4)0.530 (3)0.357 (3)0.046*
H2C0.173 (4)0.505 (4)0.223 (3)0.046*
C20.1795 (4)0.3672 (4)0.3563 (3)0.0344 (8)
H3C0.088 (4)0.326 (3)0.299 (3)0.041*
H4C0.268 (4)0.319 (3)0.344 (3)0.041*
C30.2947 (4)0.4550 (3)0.7090 (3)0.0336 (8)
H5C0.249 (4)0.393 (3)0.756 (3)0.040*
H6C0.395 (4)0.487 (3)0.766 (3)0.040*
C40.3208 (3)0.3922 (4)0.5921 (3)0.0336 (8)
H7C0.373 (4)0.463 (3)0.553 (3)0.040*
H8C0.392 (4)0.325 (3)0.612 (3)0.040*
C50.1124 (4)0.2306 (3)0.5155 (3)0.0321 (8)
H9C0.005 (4)0.228 (3)0.465 (3)0.039*
H10C0.119 (3)0.228 (3)0.606 (3)0.039*
C60.1857 (4)0.1147 (4)0.4772 (4)0.0375 (9)
H11C0.130 (4)0.042 (3)0.493 (3)0.045*
H12C0.176 (4)0.119 (3)0.381 (3)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0198 (3)0.0282 (3)0.0206 (2)0.0007 (3)0.00450 (19)0.0012 (3)
Cl0.0483 (5)0.0425 (6)0.0569 (6)0.0148 (5)0.0242 (5)0.0105 (5)
N10.0301 (16)0.0325 (17)0.0305 (15)0.0024 (13)0.0085 (12)0.0052 (13)
N20.0218 (13)0.0330 (15)0.0229 (13)0.0002 (12)0.0033 (10)0.0022 (12)
N30.0292 (16)0.0332 (16)0.0234 (13)0.0009 (13)0.0065 (12)0.0018 (13)
N40.0340 (16)0.0361 (18)0.0402 (16)0.0052 (14)0.0146 (13)0.0037 (15)
C10.0339 (17)0.052 (2)0.0339 (16)0.004 (2)0.0164 (13)0.005 (2)
C20.0315 (19)0.045 (2)0.0283 (18)0.0036 (18)0.0124 (15)0.0039 (17)
C30.0252 (18)0.037 (2)0.0301 (16)0.0020 (15)0.0026 (14)0.0017 (15)
C40.0172 (16)0.044 (2)0.0357 (18)0.0043 (16)0.0028 (14)0.0041 (17)
C50.0268 (17)0.033 (2)0.0345 (18)0.0020 (15)0.0067 (15)0.0027 (16)
C60.041 (2)0.034 (2)0.0369 (19)0.0016 (17)0.0112 (16)0.0033 (17)
Geometric parameters (Å, º) top
Ni—N12.152 (3)N4—H6N0.90 (4)
Ni—N22.176 (3)C1—C21.507 (6)
Ni—N32.105 (3)C1—H1C1.01 (3)
Ni—N3i2.105 (3)C1—H2C0.99 (3)
Ni—N1i2.152 (3)C2—H3C0.96 (3)
Ni—N2i2.176 (3)C2—H4C0.99 (3)
N1—C11.487 (5)C3—C41.504 (5)
N1—H1N0.91 (3)C3—H5C0.99 (3)
N1—H2N0.84 (4)C3—H6C0.98 (3)
N2—C21.482 (4)C4—H7C1.04 (3)
N2—C51.490 (4)C4—H8C0.94 (4)
N2—C41.498 (4)C5—C61.516 (5)
N3—C31.469 (4)C5—H9C1.02 (3)
N3—H3N0.89 (3)C5—H10C0.96 (3)
N3—H4N0.86 (3)C6—H11C0.97 (3)
N4—C61.471 (4)C6—H12C1.00 (3)
N4—H5N0.87 (4)
N1—Ni—N280.56 (11)N1—C1—C2113.0 (3)
N1i—Ni—N299.44 (11)N1—C1—H1C109 (2)
N3i—Ni—N187.71 (11)C2—C1—H1C111 (2)
N3—Ni—N192.29 (11)N1—C1—H2C111 (2)
N3—Ni—N282.72 (10)C2—C1—H2C107 (2)
N3—Ni—N2i97.28 (10)H1C—C1—H2C106 (3)
N3—Ni—N3i180.0N2—C2—C1111.6 (3)
N3—Ni—N1i87.71 (11)N2—C2—H3C106 (2)
N3i—Ni—N1i92.29 (11)C1—C2—H3C114 (2)
N1i—Ni—N1180.0N2—C2—H4C113.8 (19)
N3i—Ni—N2i82.72 (10)C1—C2—H4C107 (2)
N1i—Ni—N2i80.56 (11)H3C—C2—H4C104 (3)
N1—Ni—N2i99.44 (10)N3—C3—C4110.1 (3)
N3i—Ni—N297.28 (10)N3—C3—H5C109 (2)
N2i—Ni—N2180.0C4—C3—H5C109 (2)
C1—N1—Ni111.0 (2)N3—C3—H6C110 (2)
C1—N1—H1N108 (2)C4—C3—H6C108.2 (18)
Ni—N1—H1N112 (2)H5C—C3—H6C111 (3)
C1—N1—H2N108 (2)N2—C4—C3111.1 (3)
Ni—N1—H2N110 (2)N2—C4—H7C108.4 (18)
H1N—N1—H2N108 (3)C3—C4—H7C103.2 (18)
C2—N2—C5111.8 (3)N2—C4—H8C112 (2)
C2—N2—C4110.7 (3)C3—C4—H8C116 (2)
C5—N2—C4112.5 (3)H7C—C4—H8C106 (3)
C2—N2—Ni105.0 (2)N2—C5—C6118.8 (3)
C5—N2—Ni109.81 (18)N2—C5—H9C106.5 (18)
C4—N2—Ni106.6 (2)C6—C5—H9C107.5 (18)
C3—N3—Ni107.9 (2)N2—C5—H10C107 (2)
C3—N3—H3N107 (2)C6—C5—H10C111 (2)
Ni—N3—H3N109 (2)H9C—C5—H10C105 (2)
C3—N3—H4N110 (2)N4—C6—C5114.7 (3)
Ni—N3—H4N116 (2)N4—C6—H11C104 (2)
H3N—N3—H4N107 (3)C5—C6—H11C108 (2)
C6—N4—H5N104 (3)N4—C6—H12C110.6 (19)
C6—N4—H6N108 (2)C5—C6—H12C110 (2)
H5N—N4—H6N112 (4)H11C—C6—H12C110 (3)
N3—Ni—N1—C193.6 (2)N3i—Ni—N3—C3121 (100)
N3i—Ni—N1—C186.4 (2)N1i—Ni—N3—C380.4 (2)
N1i—Ni—N1—C148 (100)N1—Ni—N3—C399.6 (2)
N2i—Ni—N1—C1168.7 (2)N2i—Ni—N3—C3160.6 (2)
N2—Ni—N1—C111.3 (2)N2—Ni—N3—C319.4 (2)
N3—Ni—N2—C2124.8 (2)Ni—N1—C1—C211.3 (3)
N3i—Ni—N2—C255.2 (2)C5—N2—C2—C1166.1 (3)
N1i—Ni—N2—C2148.7 (2)C4—N2—C2—C167.6 (4)
N1—Ni—N2—C231.3 (2)Ni—N2—C2—C147.1 (3)
N2i—Ni—N2—C2169 (100)N1—C1—C2—N240.2 (4)
N3—Ni—N2—C5114.8 (2)Ni—N3—C3—C443.5 (3)
N3i—Ni—N2—C565.2 (2)C2—N2—C4—C3146.7 (3)
N1i—Ni—N2—C528.4 (2)C5—N2—C4—C387.4 (3)
N1—Ni—N2—C5151.6 (2)Ni—N2—C4—C333.0 (3)
N2i—Ni—N2—C549 (100)N3—C3—C4—N252.6 (4)
N3—Ni—N2—C47.4 (2)C2—N2—C5—C647.0 (4)
N3i—Ni—N2—C4172.6 (2)C4—N2—C5—C678.3 (4)
N1i—Ni—N2—C493.8 (2)Ni—N2—C5—C6163.1 (2)
N1—Ni—N2—C486.2 (2)N2—C5—C6—N469.7 (4)
N2i—Ni—N2—C473 (100)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Clii0.91 (3)2.60 (3)3.475 (3)162 (3)
N1—H2N···Cliii0.84 (4)2.61 (4)3.402 (3)159 (3)
N3—H3N···Cliii0.89 (4)2.40 (4)3.284 (3)172 (3)
N3—H4N···N4iv0.86 (3)2.28 (3)3.087 (4)156 (3)
N4—H5N···Clv0.87 (4)2.57 (4)3.432 (3)172 (4)
N4—H6N···Cl0.90 (4)2.51 (4)3.406 (3)172 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1, y, z+1.
(II) bis[tris(2-aminoethyl)amine]nickel(II) tetrathiotungstate top
Crystal data top
[Ni(C6H18N4)2]WS4F(000) = 1320
Mr = 663.29Dx = 1.978 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.147 (2) ÅCell parameters from 128 reflections
b = 11.852 (2) Åθ = 4–20°
c = 19.122 (4) ŵ = 6.40 mm1
β = 104.44 (3)°T = 293 K
V = 2227.1 (8) Å3Polyhedron, yellow-orange
Z = 40.2 × 0.08 × 0.04 mm
Data collection top
Philips PW 1100 4-circle-
diffractometer
4522 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.0°, θmin = 2.7°
ωθ scansh = 013
Absorption correction: ψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
k = 152
Tmin = 0.358, Tmax = 0.463l = 2524
6750 measured reflections4 standard reflections every 120 min
5386 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053Only H-atom coordinates refined
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0246P)2 + 1.1404P]
where P = (Fo2 + 2Fc2)/3
5386 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ni(C6H18N4)2]WS4V = 2227.1 (8) Å3
Mr = 663.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.147 (2) ŵ = 6.40 mm1
b = 11.852 (2) ÅT = 293 K
c = 19.122 (4) Å0.2 × 0.08 × 0.04 mm
β = 104.44 (3)°
Data collection top
Philips PW 1100 4-circle-
diffractometer
4522 reflections with I > 2σ(I)
Absorption correction: ψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
Rint = 0.019
Tmin = 0.358, Tmax = 0.4634 standard reflections every 120 min
6750 measured reflections intensity decay: none
5386 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.053Only H-atom coordinates refined
S = 1.03Δρmax = 0.84 e Å3
5386 reflectionsΔρmin = 0.65 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W0.208831 (12)0.263872 (10)0.639058 (6)0.02600 (4)
Ni0.69114 (3)0.25185 (3)0.381889 (18)0.02017 (7)
S10.01227 (10)0.18292 (9)0.61700 (5)0.0498 (2)
S20.22893 (10)0.37285 (8)0.73337 (5)0.0411 (2)
S30.37402 (9)0.13706 (7)0.66069 (5)0.0444 (2)
S40.21983 (10)0.36718 (7)0.54555 (5)0.0417 (2)
N10.7978 (3)0.1048 (2)0.42911 (15)0.0299 (5)
H1N0.793 (3)0.092 (3)0.474 (2)0.036*
H2N0.765 (4)0.048 (3)0.4057 (19)0.036*
N20.8559 (2)0.2631 (2)0.33040 (13)0.0243 (5)
N30.5992 (3)0.1667 (2)0.28322 (14)0.0287 (5)
H3N0.595 (3)0.093 (3)0.2907 (18)0.034*
H4N0.521 (4)0.190 (3)0.2664 (19)0.034*
N41.1187 (3)0.5000 (3)0.3448 (2)0.0507 (8)
H5N1.148 (4)0.491 (4)0.392 (2)0.061*
H6N1.062 (4)0.553 (4)0.346 (2)0.061*
N50.5928 (3)0.4036 (2)0.33604 (14)0.0287 (5)
H7N0.647 (3)0.464 (3)0.3365 (18)0.034*
H8N0.558 (4)0.392 (3)0.291 (2)0.034*
N60.5187 (2)0.2402 (2)0.42811 (13)0.0248 (5)
N70.7791 (3)0.3383 (2)0.48101 (14)0.0284 (5)
H9N0.850 (4)0.305 (3)0.5061 (19)0.034*
H10N0.799 (3)0.403 (3)0.4761 (19)0.034*
N80.2772 (4)0.0069 (3)0.4206 (2)0.0484 (8)
H11N0.297 (4)0.029 (4)0.379 (2)0.058*
H12N0.197 (4)0.009 (4)0.400 (2)0.058*
C10.9396 (3)0.1191 (3)0.42383 (19)0.0349 (7)
H1C0.996 (4)0.048 (3)0.4361 (19)0.042*
H2C0.984 (4)0.175 (3)0.4580 (19)0.042*
C20.9370 (3)0.1575 (3)0.34778 (19)0.0331 (7)
H3C1.023 (4)0.176 (3)0.3394 (19)0.040*
H4C0.894 (3)0.099 (3)0.3124 (19)0.040*
C30.6805 (3)0.1805 (3)0.22942 (18)0.0361 (7)
H5C0.623 (4)0.205 (3)0.187 (2)0.043*
H6C0.721 (4)0.114 (3)0.2233 (19)0.043*
C40.7894 (3)0.2705 (3)0.25226 (16)0.0322 (6)
H7C0.852 (4)0.265 (3)0.223 (2)0.039*
H8C0.751 (4)0.342 (3)0.2403 (19)0.039*
C50.9393 (3)0.3646 (3)0.35566 (17)0.0282 (6)
H9C0.995 (3)0.352 (3)0.4084 (19)0.034*
H10C0.879 (3)0.427 (3)0.3526 (18)0.034*
C61.0417 (4)0.4006 (3)0.3134 (2)0.0392 (8)
H11C1.107 (4)0.345 (3)0.308 (2)0.047*
H12C0.997 (4)0.423 (3)0.265 (2)0.047*
C70.4840 (4)0.4312 (3)0.3716 (2)0.0369 (7)
H13C0.411 (4)0.467 (3)0.342 (2)0.044*
H14C0.525 (4)0.480 (3)0.413 (2)0.044*
C80.4189 (3)0.3245 (3)0.39028 (19)0.0327 (7)
H15C0.352 (4)0.343 (3)0.4167 (19)0.039*
H16C0.369 (4)0.287 (3)0.345 (2)0.039*
C90.6793 (4)0.3488 (4)0.5246 (2)0.0480 (9)
H17C0.611 (4)0.417 (4)0.508 (2)0.058*
H18C0.729 (4)0.337 (4)0.574 (2)0.058*
C100.5700 (4)0.2620 (3)0.50690 (18)0.0401 (8)
H19C0.495 (4)0.272 (3)0.531 (2)0.048*
H20C0.625 (4)0.187 (3)0.529 (2)0.048*
C110.4579 (3)0.1257 (3)0.41681 (19)0.0315 (6)
H21C0.528 (3)0.068 (3)0.4366 (18)0.038*
H22C0.438 (3)0.108 (3)0.3657 (19)0.038*
C120.3276 (4)0.1064 (3)0.4406 (2)0.0428 (8)
H23C0.349 (4)0.111 (3)0.491 (2)0.051*
H24C0.261 (4)0.166 (4)0.420 (2)0.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W0.03021 (7)0.02242 (6)0.02403 (6)0.00081 (5)0.00424 (4)0.00048 (4)
Ni0.02156 (16)0.01876 (17)0.02060 (16)0.00015 (12)0.00602 (13)0.00127 (12)
S10.0450 (5)0.0585 (6)0.0450 (5)0.0151 (4)0.0097 (4)0.0015 (4)
S20.0533 (5)0.0360 (4)0.0313 (4)0.0021 (4)0.0058 (4)0.0045 (3)
S30.0456 (5)0.0314 (4)0.0478 (5)0.0097 (4)0.0042 (4)0.0051 (4)
S40.0613 (6)0.0329 (4)0.0341 (4)0.0009 (4)0.0179 (4)0.0061 (3)
N10.0369 (14)0.0209 (12)0.0324 (14)0.0017 (10)0.0097 (12)0.0020 (10)
N20.0253 (11)0.0243 (12)0.0246 (11)0.0023 (9)0.0085 (9)0.0027 (9)
N30.0259 (12)0.0313 (14)0.0284 (13)0.0047 (11)0.0061 (10)0.0049 (10)
N40.0438 (19)0.0419 (19)0.071 (2)0.0165 (14)0.0227 (18)0.0084 (17)
N50.0320 (13)0.0245 (13)0.0307 (13)0.0010 (10)0.0097 (11)0.0048 (10)
N60.0252 (11)0.0261 (12)0.0240 (11)0.0004 (9)0.0079 (9)0.0008 (9)
N70.0302 (13)0.0280 (13)0.0265 (12)0.0035 (11)0.0061 (10)0.0029 (10)
N80.0417 (17)0.0440 (18)0.060 (2)0.0126 (15)0.0135 (16)0.0036 (15)
C10.0335 (17)0.0298 (16)0.0389 (17)0.0066 (13)0.0043 (14)0.0030 (13)
C20.0307 (16)0.0270 (15)0.0447 (18)0.0036 (12)0.0151 (14)0.0035 (13)
C30.0323 (17)0.048 (2)0.0289 (15)0.0036 (14)0.0099 (13)0.0125 (14)
C40.0317 (15)0.0420 (18)0.0248 (14)0.0061 (14)0.0106 (12)0.0034 (13)
C50.0255 (14)0.0276 (15)0.0316 (15)0.0049 (12)0.0076 (12)0.0032 (12)
C60.0324 (17)0.043 (2)0.046 (2)0.0110 (15)0.0169 (15)0.0059 (16)
C70.0351 (17)0.0291 (16)0.049 (2)0.0092 (13)0.0148 (15)0.0055 (14)
C80.0252 (15)0.0334 (17)0.0417 (18)0.0057 (12)0.0124 (14)0.0052 (14)
C90.047 (2)0.065 (3)0.0340 (18)0.0135 (19)0.0145 (16)0.0162 (18)
C100.0391 (17)0.058 (2)0.0263 (15)0.0104 (16)0.0144 (13)0.0049 (15)
C110.0303 (16)0.0277 (15)0.0384 (17)0.0015 (12)0.0123 (13)0.0025 (13)
C120.0405 (19)0.0385 (19)0.054 (2)0.0077 (15)0.0212 (17)0.0025 (17)
Geometric parameters (Å, º) top
W—S12.1580 (10)N8—H11N0.91 (4)
W—S22.1860 (9)N8—H12N0.81 (4)
W—S32.2122 (9)C1—C21.518 (5)
W—S42.1929 (9)C1—H1C1.01 (4)
Ni—N12.130 (3)C1—H2C0.96 (4)
Ni—N22.146 (2)C2—H3C0.95 (4)
Ni—N32.138 (3)C2—H4C0.99 (4)
Ni—N52.136 (3)C3—C41.519 (5)
Ni—N62.152 (2)C3—H5C0.93 (4)
Ni—N72.143 (3)C3—H6C0.91 (4)
N1—C11.477 (4)C4—H7C0.95 (4)
N1—H1N0.87 (4)C4—H8C0.94 (4)
N1—H2N0.83 (4)C5—C61.528 (4)
N2—C51.480 (4)C5—H9C1.04 (3)
N2—C41.481 (4)C5—H10C0.95 (3)
N2—C21.489 (4)C6—H11C0.96 (4)
N3—C31.480 (4)C6—H12C0.97 (4)
N3—H3N0.89 (4)C7—C81.510 (5)
N3—H4N0.83 (4)C7—H13C0.91 (4)
N4—C61.457 (5)C7—H14C0.98 (4)
N4—H5N0.88 (4)C8—H15C0.97 (4)
N4—H6N0.86 (4)C8—H16C0.99 (4)
N5—C71.471 (4)C9—C101.488 (5)
N5—H7N0.90 (4)C9—H17C1.06 (4)
N5—H8N0.86 (4)C9—H18C0.96 (4)
N6—C81.477 (4)C10—H19C0.99 (4)
N6—C111.485 (4)C10—H20C1.08 (4)
N6—C101.489 (4)C11—C121.519 (4)
N7—C91.468 (4)C11—H21C0.99 (4)
N7—H9N0.86 (4)C11—H22C0.97 (3)
N7—H10N0.80 (4)C12—H23C0.94 (4)
N8—C121.454 (5)C12—H24C0.99 (4)
S1—W—S2108.39 (4)H1C—C1—H2C106 (3)
S1—W—S3110.78 (4)N2—C2—C1110.0 (2)
S1—W—S4108.75 (5)N2—C2—H3C104 (2)
S2—W—S3109.68 (4)C1—C2—H3C116 (2)
S2—W—S4109.24 (4)N2—C2—H4C108 (2)
S4—W—S3109.97 (4)C1—C2—H4C110 (2)
N1—Ni—N282.75 (10)H3C—C2—H4C108 (3)
N1—Ni—N392.96 (11)N3—C3—C4111.7 (3)
N1—Ni—N5177.34 (11)N3—C3—H5C108 (2)
N1—Ni—N698.77 (10)C4—C3—H5C106 (2)
N1—Ni—N787.74 (11)N3—C3—H6C110 (2)
N3—Ni—N280.95 (10)C4—C3—H6C109 (2)
N5—Ni—N295.56 (10)H5C—C3—H6C112 (3)
N2—Ni—N6177.05 (9)N2—C4—C3111.4 (3)
N7—Ni—N2100.13 (10)N2—C4—H7C113 (2)
N5—Ni—N388.79 (11)C3—C4—H7C109 (2)
N3—Ni—N696.42 (10)N2—C4—H8C111 (2)
N3—Ni—N7178.78 (10)C3—C4—H8C110 (2)
N5—Ni—N683.01 (9)H7C—C4—H8C102 (3)
N5—Ni—N790.54 (11)N2—C5—C6117.6 (3)
N7—Ni—N682.49 (10)N2—C5—H9C109.0 (19)
C1—N1—Ni106.11 (19)C6—C5—H9C106.3 (19)
C1—N1—H1N112 (2)N2—C5—H10C108 (2)
Ni—N1—H1N114 (2)C6—C5—H10C105 (2)
C1—N1—H2N109 (2)H9C—C5—H10C111 (3)
Ni—N1—H2N110 (3)N4—C6—C5111.9 (3)
H1N—N1—H2N106 (3)N4—C6—H11C107 (2)
C5—N2—C4111.2 (2)C5—C6—H11C116 (2)
C5—N2—C2111.8 (2)N4—C6—H12C104 (2)
C4—N2—C2111.2 (2)C5—C6—H12C112 (2)
C5—N2—Ni110.36 (17)H11C—C6—H12C104 (3)
C4—N2—Ni104.81 (17)N5—C7—C8110.2 (3)
C2—N2—Ni107.19 (18)N5—C7—H13C113 (2)
C3—N3—Ni111.42 (19)C8—C7—H13C102 (2)
C3—N3—H3N106 (2)N5—C7—H14C107 (2)
Ni—N3—H3N110 (2)C8—C7—H14C115 (2)
C3—N3—H4N110 (2)H13C—C7—H14C110 (3)
Ni—N3—H4N111 (3)N6—C8—C7113.3 (3)
H3N—N3—H4N108 (3)N6—C8—H15C113 (2)
C6—N4—H5N110 (3)C7—C8—H15C110 (2)
C6—N4—H6N108 (3)N6—C8—H16C105 (2)
H5N—N4—H6N96 (4)C7—C8—H16C109 (2)
C7—N5—Ni108.98 (19)H15C—C8—H16C106 (3)
C7—N5—H7N111 (2)N7—C9—C10113.1 (3)
Ni—N5—H7N116 (2)N7—C9—H17C113 (2)
C7—N5—H8N109 (2)C10—C9—H17C94 (2)
Ni—N5—H8N108 (2)N7—C9—H18C106 (2)
H7N—N5—H8N104 (3)C10—C9—H18C108 (3)
C8—N6—C11109.8 (2)H17C—C9—H18C123 (3)
C8—N6—C10113.7 (3)C9—C10—N6113.7 (3)
C11—N6—C10109.5 (2)C9—C10—H19C116 (2)
C8—N6—Ni106.48 (18)N6—C10—H19C112 (2)
C11—N6—Ni110.46 (18)C9—C10—H20C101 (2)
C10—N6—Ni106.82 (18)N6—C10—H20C106 (2)
C9—N7—Ni110.4 (2)H19C—C10—H20C107 (3)
C9—N7—H9N109 (2)N6—C11—C12117.1 (3)
Ni—N7—H9N113 (2)N6—C11—H21C110 (2)
C9—N7—H10N102 (3)C12—C11—H21C112 (2)
Ni—N7—H10N114 (3)N6—C11—H22C109 (2)
H9N—N7—H10N108 (3)C12—C11—H22C107 (2)
C12—N8—H11N111 (3)H21C—C11—H22C101 (3)
C12—N8—H12N113 (3)N8—C12—C11109.6 (3)
H11N—N8—H12N89 (4)N8—C12—H23C107 (3)
N1—C1—C2108.4 (3)C11—C12—H23C108 (2)
N1—C1—H1C113 (2)N8—C12—H24C113 (2)
C2—C1—H1C110 (2)C11—C12—H24C110 (2)
N1—C1—H2C110 (2)H23C—C12—H24C109 (3)
C2—C1—H2C110 (2)
N5—Ni—N1—C129 (2)N2—Ni—N6—C1170.6 (18)
N3—Ni—N1—C1101.9 (2)N1—Ni—N6—C1068.7 (2)
N7—Ni—N1—C179.1 (2)N5—Ni—N6—C10109.3 (2)
N2—Ni—N1—C121.4 (2)N3—Ni—N6—C10162.7 (2)
N6—Ni—N1—C1161.2 (2)N7—Ni—N6—C1017.9 (2)
N1—Ni—N2—C5114.2 (2)N2—Ni—N6—C10170.4 (17)
N5—Ni—N2—C563.7 (2)N1—Ni—N7—C9101.8 (3)
N3—Ni—N2—C5151.6 (2)N5—Ni—N7—C980.2 (3)
N7—Ni—N2—C527.9 (2)N3—Ni—N7—C924 (5)
N6—Ni—N2—C5124.5 (17)N2—Ni—N7—C9176.0 (3)
N1—Ni—N2—C4126.0 (2)N6—Ni—N7—C92.7 (3)
N5—Ni—N2—C456.1 (2)Ni—N1—C1—C246.8 (3)
N3—Ni—N2—C431.82 (19)C5—N2—C2—C185.5 (3)
N7—Ni—N2—C4147.61 (19)C4—N2—C2—C1149.6 (3)
N6—Ni—N2—C44.7 (19)Ni—N2—C2—C135.5 (3)
N1—Ni—N2—C27.7 (2)N1—C1—C2—N256.7 (3)
N5—Ni—N2—C2174.35 (19)Ni—N3—C3—C412.1 (4)
N3—Ni—N2—C286.5 (2)C5—N2—C4—C3167.5 (3)
N7—Ni—N2—C294.1 (2)C2—N2—C4—C367.2 (3)
N6—Ni—N2—C2113.5 (18)Ni—N2—C4—C348.3 (3)
N1—Ni—N3—C393.3 (2)N3—C3—C4—N241.3 (4)
N5—Ni—N3—C384.7 (2)C4—N2—C5—C651.2 (4)
N7—Ni—N3—C3141 (5)C2—N2—C5—C673.8 (4)
N2—Ni—N3—C311.1 (2)Ni—N2—C5—C6167.0 (2)
N6—Ni—N3—C3167.5 (2)N2—C5—C6—N4178.8 (3)
N1—Ni—N5—C7120 (2)Ni—N5—C7—C834.9 (3)
N3—Ni—N5—C7109.0 (2)C11—N6—C8—C7155.7 (3)
N7—Ni—N5—C770.0 (2)C10—N6—C8—C781.2 (3)
N2—Ni—N5—C7170.3 (2)Ni—N6—C8—C736.1 (3)
N6—Ni—N5—C712.3 (2)N5—C7—C8—N649.2 (4)
N1—Ni—N6—C8169.5 (2)Ni—N7—C9—C1023.6 (4)
N5—Ni—N6—C812.5 (2)N7—C9—C10—N641.5 (5)
N3—Ni—N6—C875.4 (2)C8—N6—C10—C980.5 (4)
N7—Ni—N6—C8104.0 (2)C11—N6—C10—C9156.3 (3)
N2—Ni—N6—C848.6 (19)Ni—N6—C10—C936.6 (4)
N1—Ni—N6—C1150.3 (2)C8—N6—C11—C1257.7 (4)
N5—Ni—N6—C11131.7 (2)C10—N6—C11—C1267.8 (4)
N3—Ni—N6—C1143.7 (2)Ni—N6—C11—C12174.8 (3)
N7—Ni—N6—C11136.8 (2)N6—C11—C12—N8175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N8i0.87 (4)2.52 (4)3.358 (4)161 (3)
N1—H2N···S3i0.83 (4)2.75 (4)3.565 (3)171 (3)
N3—H3N···S3i0.89 (4)2.87 (4)3.747 (3)169 (3)
N3—H4N···S2ii0.83 (4)2.97 (4)3.669 (3)144 (3)
N3—H4N···S3ii0.83 (4)3.00 (4)3.667 (3)139 (3)
N5—H7N···S2iii0.90 (4)2.82 (4)3.640 (3)152 (3)
N5—H8N···S3ii0.86 (4)2.73 (4)3.562 (3)162 (3)
N7—H9N···S1iv0.86 (4)2.75 (4)3.561 (3)158 (3)
N7—H10N···S4iii0.80 (4)2.76 (4)3.528 (3)162 (3)
N8—H12N···S1v0.81 (4)2.92 (5)3.528 (3)133 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C6H18N4)2]Cl2[Ni(C6H18N4)2]WS4
Mr422.10663.29
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)9.0336 (18), 10.630 (2), 10.717 (2)10.147 (2), 11.852 (2), 19.122 (4)
β (°) 108.78 (3) 104.44 (3)
V3)974.3 (3)2227.1 (8)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.286.40
Crystal size (mm)0.5 × 0.1 × 0.10.2 × 0.08 × 0.04
Data collection
DiffractometerSTOE AED-II four-circle
diffractometer
Philips PW 1100 4-circle-
diffractometer
Absorption correctionψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
ψ scan
X-SHAPE (Stoe & Cie, 1998) and X-RED (Stoe & Cie, 1998)
Tmin, Tmax0.810, 0.8400.358, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
2042, 1715, 1131 6750, 5386, 4522
Rint0.0340.019
(sin θ/λ)max1)0.5950.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.01 0.021, 0.053, 1.03
No. of reflections17155386
No. of parameters160343
H-atom treatmentOnly H-atom coordinates refinedOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.28, 0.270.84, 0.65

Computer programs: DIF4 (Stoe & Cie, 1992), DIF4, REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Crystal Impact, 1999), CIFTAB in SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Ni—N12.152 (3)Ni—N32.105 (3)
Ni—N22.176 (3)
N1—Ni—N280.56 (11)N3—Ni—N192.29 (11)
N1i—Ni—N299.44 (11)N3—Ni—N282.72 (10)
N3i—Ni—N187.71 (11)N3—Ni—N2i97.28 (10)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Clii0.91 (3)2.60 (3)3.475 (3)162 (3)
N1—H2N···Cliii0.84 (4)2.61 (4)3.402 (3)159 (3)
N3—H3N···Cliii0.89 (4)2.40 (4)3.284 (3)172 (3)
N3—H4N···N4iv0.86 (3)2.28 (3)3.087 (4)156 (3)
N4—H5N···Clv0.87 (4)2.57 (4)3.432 (3)172 (4)
N4—H6N···Cl0.90 (4)2.51 (4)3.406 (3)172 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+1, y, z+1.
Selected geometric parameters (Å, º) for (II) top
W—S12.1580 (10)Ni—N22.146 (2)
W—S22.1860 (9)Ni—N32.138 (3)
W—S32.2122 (9)Ni—N52.136 (3)
W—S42.1929 (9)Ni—N62.152 (2)
Ni—N12.130 (3)Ni—N72.143 (3)
S1—W—S2108.39 (4)N3—Ni—N280.95 (10)
S1—W—S3110.78 (4)N5—Ni—N295.56 (10)
S1—W—S4108.75 (5)N2—Ni—N6177.05 (9)
S2—W—S3109.68 (4)N7—Ni—N2100.13 (10)
S2—W—S4109.24 (4)N5—Ni—N388.79 (11)
S4—W—S3109.97 (4)N3—Ni—N696.42 (10)
N1—Ni—N282.75 (10)N3—Ni—N7178.78 (10)
N1—Ni—N392.96 (11)N5—Ni—N683.01 (9)
N1—Ni—N5177.34 (11)N5—Ni—N790.54 (11)
N1—Ni—N698.77 (10)N7—Ni—N682.49 (10)
N1—Ni—N787.74 (11)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N8i0.87 (4)2.52 (4)3.358 (4)161 (3)
N1—H2N···S3i0.83 (4)2.75 (4)3.565 (3)171 (3)
N3—H3N···S3i0.89 (4)2.87 (4)3.747 (3)169 (3)
N5—H7N···S2ii0.90 (4)2.82 (4)3.640 (3)152 (3)
N5—H8N···S3iii0.86 (4)2.73 (4)3.562 (3)162 (3)
N7—H9N···S1iv0.86 (4)2.75 (4)3.561 (3)158 (3)
N7—H10N···S4ii0.80 (4)2.76 (4)3.528 (3)162 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds