Download citation
Download citation
link to html
The two title 16,17-secoestrone derivatives, 3-methoxy-17-oxo-17-phenyl-16,17-secoestra-1,3,5(10)-triene-16-nitrile, C25H27NO2, (I) (17-oxo substituent), and 17-hydroxy-3-methoxy-17-phenyl-16,17-secoestra-1,3,5(10)-triene-16-nitrile, C25H29NO2, (II) (17-hydroxy substituent), have quite different conformations in the solid state. These conformational differences can be minimized by molecular mechanics calculations. Thus, the remarkable difference in the biological activity of the two compounds, e.g. the strong oestrogenic characteristics of (I) and the moderate antioestrogenic action of (II), must be caused by the difference in substitution at C17. In (II), the mol­ecules are linked by O—H...N hydrogen bonds, forming spirals along the b direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101018182/av1086sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018182/av1086Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101018182/av1086IIsup3.hkl
Contains datablock II

CCDC references: 182012; 182013

Comment top

Within the framework of a broader project aimed at obtaining potential antioestrogens, a series of new 16,17-secoestrone derivatives has been reported by Petrović et al. (1990). While studying the structure-activity relationships of these derivatives (Stanković et al., 1992, 1993, 1994), we observed that the substituent at C17 has a remarkable influence on the biological properties of the synthesized compounds. Thus, to a great extent, 3-methoxy-17-hydroxy-17-methyl-16,17-secoestra-1,3,5(10)-trien-16-nitrile retained oestrogenic characteristics, while the corresponding 17-benzyl derivative showed a complete loss of oestrogenic activity, exhibiting a moderate antioestrogenic action (Medić-Mijačević, 1992).

With the aim of further investigations into the influence of C17 substituents on biological activity, the two new title 16,17-secoestrone derivatives, (I) and (II), were prepared. Since the starting materials were synthesized from the natural oestrone, the absolute stereochemistry of which is known (Fieser & Fieser, 1967), the X-ray structures of (I) and (II) are described for the appropriate enantiomer. \sch

Perspective views of the molecules of (I) and (II) are shown in Figs. 1 and 2. During the anisotropic refinement, it became evident from the displacement parameters of compound (I) that the phenyl ring is disordered; the phenyl ring atoms exibit large thermal displacements which are almost parallel with the plane containing them. The model that describes this disorder has at least two phenyl rings, denoted A and B. Since the phenyl ring plane practically coincides with the plane containing the C13—C17 and C17—C20 bonds, as seen from the C13—C17—C20(A,B)—C25(A,B) torsion angles (Table 1), these thermal displacements cause deformation of the C13—C17—C20(A,B) angles (Table 1), which is significant for conformer (A).

Molecular mechanics calculations (MMC) using PCMODEL (Serena Software, 1989) Query were also performed to define the conformation of the molecules in terms of energy minima. It was found that the molecule of (I) with an unsplit phenyl ring has an energy minimum conformation with respect to the molecule with disordered phenyl rings, so this model was used for MMC in the ring-conformation and molecular-energy analysis.

Ring puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Duax et al., 1976) define the ring conformations for both (I) and (II). Steroid ring B exhibits a 7α,8β-half chair conformation (3H4) in both molecules, which is slightly distorted towards a 7α-envelope (3E) after MMC. Steroid ring C has an almost ideal 8β,12α-chair conformation in (I), but it is significantly distorted in (II). After MMC, the conformation of ring C in (I) also became significantly distorted and similar to (II). The orientation of the phenyl ring, defined by the C14—C13—C17—C20 and C13—C17—C20—C25 torsion angles, was changed, too, by about 26 and -75°, respectively. Rotation of the phenyl ring about the C17—C20 bond in the rigid-rotor approximation confirmed that, in the crystalline state, molecule (I) is in a shallow minimum, significantly removed from the absolute minimum. The orientation of atom O2 was also changed by about 10°, going from synperiplanar to synclinal in relation to atom C14. Since the conformations of the molecules became similar after MMC (Fig. 3), the difference in biological activity could be interpreted as being due to the different substituents at C17, as well as the fact that, in (II), a new chiral centre has been introduced.

In compound (II), there appears to be a short intramolecular contact of 1.96 Å between H17 and H151, which is much shorter than the relevant van der Waals sum of 2.4 Å. However, the corresponding value of 2.04 Å in the energy-minimized structure suggests that this shortness is simply a consequence of the minimum energy conformation of the molecule.

Also in compound (II), there is an O—H···N hydrogen bond (Table 3). In (I), there are only van der Waals separations between molecules. The non-bonded intramolecular O1···O2 distances (Tables 1 and 2), which could be responsible for biological activity, are shorter than the corresponding distance of 10.9 Å found in oestradiol (Fullerton, 1977; Duax et al., 1977).

Experimental top

The starting material was 3-methoxy-1,3,5(10)-triene-16,17-dione-16-oxime, (1), which was prepared from oestrone using the procedure of Miljković & Petrović (1977). Addition of phenyllithium to the C17 carbonyl function of (1) led to the formation of 3-methoxy-17α-phenyl-17β-hydroxyestra-1,3,5(10)-trien-16-one oxime, (2), in a 69.64% yield. The action of p-toluene sulfonyl chloride on (2) in dry pyridine resulted in a Beckmann fragmentation reaction and the formation of the 16,17-seco derivative, (I), in a high yield. Finally, sodium borohydride reduction of (I) afforded (II) as the sole product.

Refinement top

The crystals of (I) were very thin and their diffraction power very low, so the data collection was stopped at θ = 59.93°. For this reason, the calculated sin(θmax)/wavelength (0.5613) is less than the required value of 0.575, and the required ratio of reflections to parameters of 8 has not been satisfied either (6.1094). The H atoms were generated and refined as riding, with isotropic displacement parameters fixed to 1.2Ueq or 1.3Ueq of the parent atoms, or 1.5Ueq for the methyl-H atoms. Refinement of the Flack (1983) parameter was not successful for either compound.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CSU (Vicković, 1988).

Figures top
[Figure 1] Fig. 1. A perspective view of (I) with the atomic labelling scheme. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as spheres of arbitrary radii. The disordered phenyl ring is represented by two subgroups, C20A—C25A and C20B—C25B. The site occupancy factor of the subgroup A is 0.287 (6) and that of the subgroup B 0.713 (6).
[Figure 2] Fig. 2. A perspective view of (II) with the atomic labelling scheme. Displacement ellipsoids are shown at the 30% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 3] Fig. 3. The superimposed fit for the energy minimized molecular structures of (I) (solid lines) and (II) (dashed lines).
(I) 3-methoxy-17-oxo-17-phenyl-16,17-secoestra-1,3,5(10)-triene-16-carbonitrile top
Crystal data top
C25H27NO2F(000) = 400
Mr = 373.48Dx = 1.207 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.154 (1) ÅCell parameters from 25 reflections
b = 8.602 (3) Åθ = 10–20°
c = 15.005 (4) ŵ = 0.59 mm1
β = 102.47 (2)°T = 293 K
V = 1027.6 (5) Å3Prism, colourless
Z = 20.45 × 0.08 × 0.03 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 59.9°, θmin = 3.0°
Graphite monochromatorh = 98
ω/θ scansk = 09
1616 measured reflectionsl = 016
1616 independent reflections3 standard reflections every 180 min
978 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3945P]
where P = (Fo2 + 2Fc2)/3
1616 reflections(Δ/σ)max = 0.007
251 parametersΔρmax = 0.11 e Å3
9 restraintsΔρmin = 0.14 e Å3
Crystal data top
C25H27NO2V = 1027.6 (5) Å3
Mr = 373.48Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.154 (1) ŵ = 0.59 mm1
b = 8.602 (3) ÅT = 293 K
c = 15.005 (4) Å0.45 × 0.08 × 0.03 mm
β = 102.47 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
1616 measured reflectionsθmax = 59.9°
1616 independent reflections3 standard reflections every 180 min
978 reflections with I > 2σ(I) intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0619 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.18Δρmax = 0.11 e Å3
1616 reflectionsΔρmin = 0.14 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0235 (7)0.6513 (7)0.6124 (3)0.0923 (15)
O20.8038 (9)0.6621 (10)0.1508 (5)0.133 (2)
N0.4593 (11)0.9987 (10)0.0726 (5)0.127 (3)
C10.3824 (9)0.5628 (8)0.5183 (4)0.079 (2)
H10.48180.50720.53620.094*
C20.2731 (10)0.5700 (8)0.5752 (5)0.079 (2)
H20.29870.51980.63140.095*
C30.1244 (10)0.6515 (9)0.5498 (5)0.080 (2)
C40.0880 (9)0.7269 (8)0.4671 (5)0.078 (2)
H40.01160.78280.45030.094*
C50.1982 (10)0.7206 (8)0.4083 (4)0.0708 (18)
C60.1493 (9)0.8020 (9)0.3185 (4)0.090 (2)
H610.10590.90420.32820.117*
H620.05970.74410.27940.117*
C70.2962 (9)0.8206 (8)0.2692 (4)0.081 (2)
H710.25310.85140.20630.105*
H720.37210.90110.29880.105*
C80.3902 (9)0.6680 (8)0.2719 (4)0.0732 (18)
H80.30740.58650.24970.088*
C90.4739 (8)0.6290 (8)0.3710 (4)0.0712 (18)
H90.55830.70980.39180.085*
C100.3479 (9)0.6381 (8)0.4327 (4)0.0708 (18)
C110.5671 (10)0.4761 (9)0.3765 (5)0.091 (2)
H1110.48740.39250.35730.118*
H1120.62380.45660.43930.118*
C120.6958 (10)0.4777 (11)0.3162 (4)0.102 (3)
H1210.75190.37770.32050.133*
H1220.78000.55630.33850.133*
C130.6137 (10)0.5118 (9)0.2143 (5)0.084 (2)
C140.5191 (8)0.6671 (8)0.2107 (4)0.0711 (18)
H140.60260.74740.23410.085*
C150.4382 (10)0.7101 (8)0.1105 (4)0.082 (2)
H1510.49160.64900.07040.106*
H1520.32050.68140.09830.106*
C160.4507 (11)0.8713 (10)0.0888 (5)0.087 (2)
C170.7606 (12)0.5317 (13)0.1674 (5)0.107 (3)
C180.4992 (12)0.3829 (9)0.1703 (6)0.114 (3)
H1810.51730.36340.11020.172*
H1820.38450.41280.16630.172*
H1830.52300.29030.20650.172*
C190.1237 (11)0.7452 (12)0.5936 (6)0.118 (3)
H1910.17910.73900.64390.177*
H1920.19810.70870.53910.177*
H1930.09330.85110.58530.177*
C20A0.889 (5)0.431 (6)0.139 (3)0.106 (6)0.287 (6)
C21A0.995 (7)0.478 (6)0.083 (4)0.137 (7)0.287 (6)
H21A0.98950.57900.06080.164*0.287 (6)
C22A1.110 (7)0.374 (7)0.061 (4)0.168 (10)0.287 (6)
H22A1.18160.40510.02350.202*0.287 (6)
C23A1.119 (6)0.222 (7)0.094 (5)0.170 (12)0.287 (6)
H23A1.19580.15280.07920.204*0.287 (6)
C24A1.012 (9)0.175 (7)0.150 (6)0.186 (14)0.287 (6)
H24A1.01790.07430.17230.223*0.287 (6)
C25A0.897 (8)0.280 (7)0.172 (4)0.161 (9)0.287 (6)
H25A0.82580.24820.20960.194*0.287 (6)
C20B0.8545 (16)0.387 (2)0.1475 (9)0.106 (6)0.71
C21B0.969 (2)0.419 (2)0.0936 (14)0.137 (7)0.71
H21B0.98070.52070.07400.164*0.713 (6)
C22B1.066 (2)0.301 (3)0.0688 (15)0.168 (10)0.71
H22B1.14250.32270.03270.202*0.713 (6)
C23B1.048 (2)0.150 (2)0.0980 (16)0.170 (12)0.71
H23B1.11340.07020.08140.204*0.713 (6)
C24B0.934 (3)0.117 (2)0.1519 (19)0.186 (14)0.71
H24B0.92230.01580.17140.223*0.713 (6)
C25B0.837 (3)0.236 (2)0.1767 (16)0.161 (9)0.71
H25B0.76040.21380.21280.194*0.713 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.112 (4)0.089 (3)0.087 (3)0.002 (4)0.048 (3)0.005 (3)
O20.138 (5)0.149 (6)0.129 (5)0.005 (5)0.066 (4)0.021 (5)
N0.195 (8)0.097 (6)0.099 (5)0.020 (6)0.052 (5)0.025 (5)
C10.099 (6)0.070 (4)0.073 (5)0.005 (4)0.030 (4)0.004 (4)
C20.106 (6)0.063 (4)0.072 (4)0.007 (5)0.028 (4)0.008 (4)
C30.111 (6)0.062 (4)0.073 (5)0.007 (5)0.036 (5)0.008 (4)
C40.094 (5)0.064 (4)0.078 (5)0.013 (4)0.025 (4)0.003 (4)
C50.091 (5)0.060 (4)0.061 (4)0.013 (4)0.015 (4)0.002 (3)
C60.109 (6)0.085 (5)0.079 (5)0.033 (5)0.030 (4)0.012 (4)
C70.115 (6)0.063 (4)0.066 (4)0.030 (4)0.025 (4)0.012 (3)
C80.100 (5)0.062 (4)0.060 (4)0.006 (4)0.020 (4)0.000 (3)
C90.089 (5)0.059 (4)0.069 (4)0.011 (4)0.024 (4)0.006 (3)
C100.098 (5)0.054 (4)0.061 (4)0.006 (4)0.018 (4)0.003 (3)
C110.118 (6)0.080 (5)0.082 (5)0.034 (5)0.039 (4)0.016 (4)
C120.123 (7)0.114 (7)0.082 (5)0.038 (6)0.050 (5)0.019 (5)
C130.115 (6)0.063 (5)0.084 (5)0.009 (5)0.042 (5)0.000 (4)
C140.094 (5)0.062 (4)0.058 (4)0.006 (4)0.019 (4)0.001 (4)
C150.124 (6)0.068 (5)0.058 (4)0.010 (4)0.029 (4)0.002 (3)
C160.130 (7)0.075 (6)0.061 (4)0.018 (5)0.032 (4)0.005 (4)
C170.121 (8)0.121 (8)0.084 (6)0.030 (7)0.033 (5)0.011 (6)
C180.171 (9)0.068 (5)0.119 (6)0.004 (6)0.065 (6)0.010 (5)
C190.115 (7)0.130 (8)0.124 (7)0.006 (7)0.060 (6)0.004 (6)
C20A0.106 (9)0.155 (16)0.061 (5)0.045 (9)0.031 (6)0.024 (8)
C21A0.085 (9)0.22 (2)0.111 (9)0.010 (12)0.041 (7)0.020 (13)
C22A0.079 (14)0.27 (3)0.166 (11)0.017 (16)0.053 (10)0.037 (18)
C23A0.15 (2)0.24 (3)0.113 (9)0.10 (2)0.019 (13)0.009 (17)
C24A0.23 (3)0.22 (2)0.115 (9)0.14 (2)0.054 (18)0.023 (16)
C25A0.23 (2)0.162 (18)0.113 (8)0.127 (16)0.086 (12)0.048 (10)
C20B0.106 (9)0.155 (16)0.061 (5)0.045 (9)0.031 (6)0.024 (8)
C21B0.085 (9)0.22 (2)0.111 (9)0.010 (12)0.041 (7)0.020 (13)
C22B0.079 (14)0.27 (3)0.166 (11)0.017 (16)0.053 (10)0.037 (18)
C23B0.15 (2)0.24 (3)0.113 (9)0.10 (2)0.019 (13)0.009 (17)
C24B0.23 (3)0.22 (2)0.115 (9)0.14 (2)0.054 (18)0.023 (16)
C25B0.23 (2)0.162 (18)0.113 (8)0.127 (16)0.086 (12)0.048 (10)
Geometric parameters (Å, º) top
O1—O210.368 (1)C14—C151.550 (8)
O1—C31.375 (8)C14—H140.9800
O1—C191.424 (9)C15—C161.433 (11)
O2—C171.218 (11)C15—H1510.9700
N—C161.128 (9)C15—H1520.9700
C1—C21.363 (9)C17—C20A1.49 (5)
C1—C101.410 (9)C17—C20B1.53 (2)
C1—H10.9300C18—H1810.9600
C2—C31.380 (9)C18—H1820.9600
C2—H20.9300C18—H1830.9600
C3—C41.375 (9)C19—H1910.9600
C4—C51.390 (8)C19—H1920.9600
C4—H40.9300C19—H1930.9600
C5—C101.391 (8)C20A—C21A1.3900
C5—C61.495 (9)C20A—C25A1.3900
C6—C71.546 (9)C21A—C22A1.3900
C6—H610.9700C21A—H21A0.9300
C6—H620.9700C22A—C23A1.3900
C7—C81.516 (9)C22A—H22A0.9300
C7—H710.9700C23A—C24A1.3900
C7—H720.9700C23A—H23A0.9300
C8—C91.534 (8)C24A—C25A1.3900
C8—C141.537 (8)C24A—H24A0.9300
C8—H80.9800C25A—H25A0.9300
C9—C111.512 (9)C20B—C21B1.3900
C9—C101.527 (9)C20B—C25B1.3900
C9—H90.9800C21B—C22B1.3900
C11—C121.527 (8)C21B—H21B0.9300
C11—H1110.9700C22B—C23B1.3900
C11—H1120.9700C22B—H22B0.9300
C12—C131.560 (10)C23B—C24B1.3900
C12—H1210.9700C23B—H23B0.9300
C12—H1220.9700C24B—C25B1.3900
C13—C181.506 (11)C24B—H24B0.9300
C13—C171.524 (11)C25B—H25B0.9300
C13—C141.538 (9)
C3—O1—C19117.9 (6)C13—C14—H14107.2
C2—C1—C10121.4 (7)C8—C14—H14107.2
C2—C1—H1119.3C15—C14—H14107.2
C10—C1—H1119.3C16—C15—C14114.6 (6)
C1—C2—C3120.3 (7)C16—C15—H151108.6
C1—C2—H2119.9C14—C15—H151108.6
C3—C2—H2119.9C16—C15—H152108.6
O1—C3—C4124.9 (8)C14—C15—H152108.6
O1—C3—C2115.5 (7)H151—C15—H152107.6
C4—C3—C2119.6 (7)N—C16—C15179.0 (9)
C3—C4—C5120.7 (7)O2—C17—C20A103 (2)
C3—C4—H4119.6O2—C17—C13119.3 (9)
C5—C4—H4119.6C20A—C17—C13137 (2)
C10—C5—C4120.2 (6)O2—C17—C20B122.2 (10)
C10—C5—C6121.7 (6)C20A—C17—C20B19 (2)
C4—C5—C6118.1 (7)C13—C17—C20B118.4 (10)
C5—C6—C7113.3 (6)C13—C18—H181109.5
C5—C6—H61108.9C13—C18—H182109.5
C7—C6—H61108.9H181—C18—H182109.5
C5—C6—H62108.9C13—C18—H183109.5
C7—C6—H62108.9H181—C18—H183109.5
H61—C6—H62107.7H182—C18—H183109.5
C8—C7—C6109.7 (6)O1—C19—H191109.5
C8—C7—H71109.7O1—C19—H192109.5
C6—C7—H71109.7H191—C19—H192109.5
C8—C7—H72109.7O1—C19—H193109.5
C6—C7—H72109.7H191—C19—H193109.5
H71—C7—H72108.2H192—C19—H193109.5
C7—C8—C9109.4 (5)C21A—C20A—C25A120.0
C7—C8—C14113.3 (6)C21A—C20A—C17125 (3)
C9—C8—C14111.0 (5)C25A—C20A—C17115 (3)
C7—C8—H8107.6C20A—C21A—C22A120.0
C9—C8—H8107.6C20A—C21A—H21A120.0
C14—C8—H8107.6C22A—C21A—H21A120.0
C11—C9—C10114.0 (6)C21A—C22A—C23A120.0
C11—C9—C8110.9 (5)C21A—C22A—H22A120.0
C10—C9—C8111.1 (5)C23A—C22A—H22A120.0
C11—C9—H9106.8C24A—C23A—C22A120.0
C10—C9—H9106.8C24A—C23A—H23A120.0
C8—C9—H9106.8C22A—C23A—H23A120.0
C5—C10—C1117.7 (6)C23A—C24A—C25A120.0
C5—C10—C9122.2 (6)C23A—C24A—H24A120.0
C1—C10—C9120.1 (7)C25A—C24A—H24A120.0
C9—C11—C12111.2 (6)C24A—C25A—C20A120.0
C9—C11—H111109.4C24A—C25A—H25A120.0
C12—C11—H111109.4C20A—C25A—H25A120.0
C9—C11—H112109.4C21B—C20B—C25B120.0
C12—C11—H112109.4C21B—C20B—C17112.2 (10)
H111—C11—H112108.0C25B—C20B—C17127.8 (10)
C11—C12—C13112.2 (6)C22B—C21B—C20B120.0
C11—C12—H121109.2C22B—C21B—H21B120.0
C13—C12—H121109.2C20B—C21B—H21B120.0
C11—C12—H122109.2C21B—C22B—C23B120.0
C13—C12—H122109.2C21B—C22B—H22B120.0
H121—C12—H122107.9C23B—C22B—H22B120.0
C18—C13—C17110.8 (7)C22B—C23B—C24B120.0
C18—C13—C14111.5 (6)C22B—C23B—H23B120.0
C17—C13—C14109.0 (7)C24B—C23B—H23B120.0
C18—C13—C12112.6 (7)C25B—C24B—C23B120.0
C17—C13—C12105.0 (6)C25B—C24B—H24B120.0
C14—C13—C12107.7 (6)C23B—C24B—H24B120.0
C13—C14—C8112.7 (5)C24B—C25B—C20B120.0
C13—C14—C15110.2 (5)C24B—C25B—H25B120.0
C8—C14—C15112.1 (6)C20B—C25B—H25B120.0
C10—C1—C2—C30.3 (11)C7—C8—C14—C1555.1 (8)
C19—O1—C3—C44.9 (10)C9—C8—C14—C15178.6 (6)
C19—O1—C3—C2174.3 (7)C13—C14—C15—C16139.1 (7)
C1—C2—C3—O1179.9 (7)C8—C14—C15—C1694.5 (8)
C1—C2—C3—C40.7 (11)C14—C15—C16—N58 (68)
O1—C3—C4—C5179.9 (7)C18—C13—C17—O2136.8 (9)
C2—C3—C4—C50.7 (10)C14—C13—C17—O213.8 (11)
C3—C4—C5—C100.3 (10)C12—C13—C17—O2101.3 (10)
C3—C4—C5—C6178.6 (6)C18—C13—C17—C20A49.6 (19)
C10—C5—C6—C714.7 (10)C14—C13—C17—C20A172.6 (16)
C4—C5—C6—C7166.3 (6)C12—C13—C17—C20A72.3 (18)
C5—C6—C7—C846.2 (8)C18—C13—C17—C20B46.4 (10)
C6—C7—C8—C965.4 (7)C14—C13—C17—C20B169.4 (7)
C6—C7—C8—C14170.1 (5)C12—C13—C17—C20B75.5 (9)
C7—C8—C9—C11179.2 (6)O2—C17—C20A—C21A16 (3)
C14—C8—C9—C1155.1 (7)C13—C17—C20A—C21A169 (3)
C7—C8—C9—C1051.3 (8)C20B—C17—C20A—C21A161 (6)
C14—C8—C9—C10177.1 (6)O2—C17—C20A—C25A164 (3)
C4—C5—C10—C10.1 (9)C13—C17—C20A—C25A11 (3)
C6—C5—C10—C1179.0 (7)C20B—C17—C20A—C25A19 (6)
C4—C5—C10—C9179.3 (7)C25A—C20A—C21A—C22A0.0
C6—C5—C10—C91.8 (10)C17—C20A—C21A—C22A180.0 (9)
C2—C1—C10—C50.1 (10)C20A—C21A—C22A—C23A0.0
C2—C1—C10—C9179.4 (7)C21A—C22A—C23A—C24A0.0
C11—C9—C10—C5146.3 (7)C22A—C23A—C24A—C25A0.0
C8—C9—C10—C520.1 (9)C23A—C24A—C25A—C20A0.0
C11—C9—C10—C134.5 (9)C21A—C20A—C25A—C24A0.0
C8—C9—C10—C1160.7 (6)C17—C20A—C25A—C24A180.0 (8)
C10—C9—C11—C12177.6 (6)O2—C17—C20B—C21B11.8 (15)
C8—C9—C11—C1256.1 (8)C20A—C17—C20B—C21B15 (4)
C9—C11—C12—C1357.9 (9)C13—C17—C20B—C21B171.5 (10)
C11—C12—C13—C1867.1 (9)O2—C17—C20B—C25B168.1 (14)
C11—C12—C13—C17172.2 (7)C20A—C17—C20B—C25B165 (5)
C11—C12—C13—C1456.2 (9)C13—C17—C20B—C25B8.6 (13)
C18—C13—C14—C868.5 (8)C25B—C20B—C21B—C22B0.0
C17—C13—C14—C8168.9 (6)C17—C20B—C21B—C22B179.9 (6)
C12—C13—C14—C855.5 (8)C20B—C21B—C22B—C23B0.0
C18—C13—C14—C1557.6 (8)C21B—C22B—C23B—C24B0.0
C17—C13—C14—C1565.0 (8)C22B—C23B—C24B—C25B0.0
C12—C13—C14—C15178.5 (6)C23B—C24B—C25B—C20B0.0
C7—C8—C14—C13179.9 (6)C21B—C20B—C25B—C24B0.0
C9—C8—C14—C1356.4 (8)C17—C20B—C25B—C24B179.9 (7)
(II) 17-hydroxy-3-methoxy-17-phenyl-16,17-secoestra-1,3,5(10)-triene-16-carbonitrile top
Crystal data top
C25H29NO2F(000) = 404
Mr = 375.49Dx = 1.196 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 9.8063 (5) ÅCell parameters from 25 reflections
b = 6.697 (1) Åθ = 22.0–30.5°
c = 16.201 (1) ŵ = 0.58 mm1
β = 101.455 (5)°T = 293 K
V = 1042.8 (2) Å3Prism, colourless
Z = 20.38 × 0.18 × 0.15 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 74.0°, θmin = 2.8°
Graphite monochromatorh = 1211
ω/θ scansk = 08
2305 measured reflectionsl = 020
2305 independent reflections3 standard reflections every 120 min
2134 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.052P)2 + 0.2489P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C25H29NO2V = 1042.8 (2) Å3
Mr = 375.49Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.8063 (5) ŵ = 0.58 mm1
b = 6.697 (1) ÅT = 293 K
c = 16.201 (1) Å0.38 × 0.18 × 0.15 mm
β = 101.455 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
2305 measured reflections3 standard reflections every 120 min
2305 independent reflections intensity decay: none
2134 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.100H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
2305 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 50 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1651 (3)0.2509 (5)0.51905 (15)0.0636 (7)
H10.10810.13970.51940.076*
C20.2664 (3)0.2896 (5)0.44843 (16)0.0685 (8)
H20.27700.20430.40230.082*
C30.3516 (2)0.4532 (5)0.44593 (14)0.0582 (7)
C40.3357 (3)0.5779 (5)0.51486 (14)0.0583 (6)
H40.39360.68840.51380.070*
C50.2332 (3)0.5394 (4)0.58647 (14)0.0557 (6)
C60.2231 (3)0.6806 (6)0.66030 (17)0.0749 (9)
H610.31620.71780.66640.097*
H620.17530.80120.64880.097*
C70.1460 (3)0.5896 (5)0.74251 (15)0.0626 (7)
H710.20380.48850.76130.081*
H720.12710.69240.78540.081*
C80.0093 (2)0.4958 (4)0.73078 (13)0.0450 (5)
H80.04100.59720.70510.054*
C90.0399 (2)0.3217 (4)0.66851 (14)0.0484 (5)
H90.08160.21570.69710.058*
C100.1461 (2)0.3746 (4)0.58975 (14)0.0506 (6)
C110.0963 (2)0.2384 (5)0.65113 (14)0.0564 (6)
H1110.14360.34060.62490.073*
H1120.07700.12670.61250.073*
C120.1902 (2)0.1695 (4)0.73294 (14)0.0507 (5)
H1210.27680.12030.72020.066*
H1220.14550.05890.75570.066*
C130.2240 (2)0.3329 (3)0.80088 (12)0.0394 (4)
C140.0858 (2)0.4313 (3)0.81380 (13)0.0395 (4)
H140.03520.33200.84040.047*
C150.1166 (2)0.6125 (4)0.87453 (14)0.0450 (5)
H1510.20850.59580.90940.059*
H1520.11820.73280.84140.059*
C160.0167 (2)0.6392 (4)0.92895 (13)0.0462 (5)
C170.2993 (2)0.2347 (3)0.88560 (13)0.0448 (5)
H170.30290.33410.93040.067*
C180.3203 (2)0.4899 (4)0.77390 (15)0.0502 (5)
H1810.39530.42420.75460.075*
H1820.35740.57400.82100.075*
H1830.26860.56970.72920.075*
C190.5366 (3)0.6472 (6)0.36771 (17)0.0779 (9)
H1910.59330.63820.40950.117*
H1920.59520.65310.31270.117*
H1930.48040.76560.37720.117*
C200.4465 (2)0.1687 (3)0.88570 (13)0.0436 (5)
C210.5583 (3)0.2929 (4)0.91538 (15)0.0579 (6)
H210.54280.41740.93720.070*
C220.6928 (3)0.2345 (5)0.91305 (18)0.0691 (8)
H220.76630.32150.93200.083*
C230.7190 (3)0.0499 (6)0.88322 (17)0.0683 (8)
H230.80950.01140.88170.082*
C240.6096 (3)0.0778 (5)0.85558 (18)0.0656 (7)
H240.62630.20430.83610.079*
C250.4743 (3)0.0184 (4)0.85671 (16)0.0557 (6)
H250.40110.10580.83770.067*
N0.0595 (2)0.6586 (4)0.97240 (13)0.0650 (6)
O10.44920 (19)0.4769 (4)0.37312 (10)0.0712 (6)
O20.2201 (2)0.0691 (3)0.90528 (12)0.0638 (5)
H1O20.18060.09990.94360.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0653 (14)0.077 (2)0.0491 (12)0.0078 (15)0.0117 (11)0.0219 (14)
C20.0705 (15)0.090 (2)0.0452 (12)0.0045 (17)0.0122 (11)0.0229 (15)
C30.0518 (12)0.0831 (19)0.0411 (11)0.0064 (14)0.0122 (9)0.0075 (13)
C40.0572 (13)0.0707 (17)0.0466 (12)0.0063 (14)0.0095 (10)0.0074 (13)
C50.0581 (13)0.0643 (17)0.0444 (11)0.0057 (13)0.0097 (10)0.0130 (12)
C60.0799 (17)0.080 (2)0.0576 (14)0.0309 (18)0.0037 (13)0.0240 (16)
C70.0593 (13)0.0772 (19)0.0499 (12)0.0211 (14)0.0076 (10)0.0220 (13)
C80.0514 (11)0.0428 (12)0.0428 (10)0.0037 (10)0.0142 (9)0.0092 (10)
C90.0529 (11)0.0507 (14)0.0435 (11)0.0020 (11)0.0140 (9)0.0143 (10)
C100.0504 (11)0.0586 (15)0.0443 (11)0.0011 (12)0.0129 (9)0.0129 (12)
C110.0586 (13)0.0658 (16)0.0456 (11)0.0123 (13)0.0126 (10)0.0192 (12)
C120.0584 (12)0.0455 (13)0.0498 (11)0.0090 (11)0.0145 (10)0.0128 (11)
C130.0483 (10)0.0358 (10)0.0371 (9)0.0005 (9)0.0159 (8)0.0003 (9)
C140.0456 (10)0.0350 (10)0.0412 (10)0.0021 (9)0.0164 (8)0.0074 (9)
C150.0495 (11)0.0413 (12)0.0467 (11)0.0021 (10)0.0155 (9)0.0113 (10)
C160.0524 (11)0.0445 (12)0.0419 (10)0.0055 (10)0.0098 (9)0.0073 (9)
C170.0617 (12)0.0356 (11)0.0411 (10)0.0019 (10)0.0194 (9)0.0006 (9)
C180.0524 (11)0.0500 (13)0.0531 (11)0.0003 (11)0.0222 (10)0.0108 (11)
C190.0698 (16)0.106 (3)0.0551 (14)0.008 (2)0.0069 (12)0.0041 (18)
C200.0562 (12)0.0371 (11)0.0369 (9)0.0030 (10)0.0075 (9)0.0018 (9)
C210.0684 (15)0.0468 (13)0.0516 (12)0.0003 (12)0.0050 (11)0.0059 (11)
C220.0524 (14)0.072 (2)0.0735 (17)0.0015 (14)0.0111 (12)0.0004 (16)
C230.0567 (14)0.080 (2)0.0645 (15)0.0119 (15)0.0037 (12)0.0020 (16)
C240.0667 (15)0.0576 (17)0.0711 (16)0.0150 (14)0.0099 (13)0.0091 (14)
C250.0606 (13)0.0414 (13)0.0653 (14)0.0014 (12)0.0127 (11)0.0093 (12)
N0.0706 (13)0.0733 (16)0.0566 (12)0.0075 (13)0.0264 (10)0.0106 (12)
O10.0641 (10)0.1052 (17)0.0415 (8)0.0040 (12)0.0040 (7)0.0068 (11)
O20.0857 (12)0.0448 (9)0.0729 (11)0.0028 (10)0.0447 (10)0.0111 (9)
Geometric parameters (Å, º) top
O1—O210.119 (2)C13—C141.558 (3)
C1—C21.383 (4)C13—C171.568 (3)
C1—C101.396 (3)C14—C151.553 (3)
C1—H10.9300C14—H140.9800
C2—C31.373 (4)C15—C161.454 (3)
C2—H20.9300C15—H1510.9700
C3—O11.373 (3)C15—H1520.9700
C3—C41.378 (4)C16—N1.131 (3)
C4—C51.400 (3)C17—O21.426 (3)
C4—H40.9300C17—C201.509 (3)
C5—C101.390 (4)C17—H170.9800
C5—C61.513 (4)C18—H1810.9600
C6—C71.522 (4)C18—H1820.9600
C6—H610.9700C18—H1830.9600
C6—H620.9700C19—O11.419 (4)
C7—C81.526 (3)C19—H1910.9600
C7—H710.9700C19—H1920.9600
C7—H720.9700C19—H1930.9600
C8—C91.532 (3)C20—C251.384 (3)
C8—C141.539 (3)C20—C211.384 (3)
C8—H80.9800C21—C221.384 (4)
C9—C101.520 (3)C21—H210.9300
C9—C111.525 (3)C22—C231.370 (5)
C9—H90.9800C22—H220.9300
C11—C121.527 (3)C23—C241.375 (4)
C11—H1110.9700C23—H230.9300
C11—H1120.9700C24—C251.389 (4)
C12—C131.541 (3)C24—H240.9300
C12—H1210.9700C25—H250.9300
C12—H1220.9700O2—H1O20.8200
C13—C181.534 (3)
C2—C1—C10121.6 (3)C12—C13—C14109.09 (17)
C2—C1—H1119.2C18—C13—C17109.12 (18)
C10—C1—H1119.2C12—C13—C17108.93 (18)
C3—C2—C1120.5 (2)C14—C13—C17109.31 (16)
C3—C2—H2119.8C8—C14—C15110.03 (18)
C1—C2—H2119.8C8—C14—C13113.19 (16)
O1—C3—C2115.7 (2)C15—C14—C13110.53 (17)
O1—C3—C4125.0 (3)C8—C14—H14107.6
C2—C3—C4119.3 (2)C15—C14—H14107.6
C3—C4—C5120.4 (3)C13—C14—H14107.6
C3—C4—H4119.8C16—C15—C14114.25 (19)
C5—C4—H4119.8C16—C15—H151108.7
C10—C5—C4120.9 (2)C14—C15—H151108.7
C10—C5—C6121.5 (2)C16—C15—H152108.7
C4—C5—C6117.6 (2)C14—C15—H152108.7
C5—C6—C7112.6 (3)H151—C15—H152107.6
C5—C6—H61109.1N—C16—C15178.8 (3)
C7—C6—H61109.1O2—C17—C20109.55 (17)
C5—C6—H62109.1O2—C17—C13109.85 (19)
C7—C6—H62109.1C20—C17—C13114.06 (17)
H61—C6—H62107.8O2—C17—H17107.7
C6—C7—C8110.6 (2)C20—C17—H17107.7
C6—C7—H71109.5C13—C17—H17107.7
C8—C7—H71109.5C13—C18—H181109.5
C6—C7—H72109.5C13—C18—H182109.5
C8—C7—H72109.5H181—C18—H182109.5
H71—C7—H72108.1C13—C18—H183109.5
C7—C8—C9109.46 (19)H181—C18—H183109.5
C7—C8—C14113.69 (17)H182—C18—H183109.5
C9—C8—C14111.58 (18)O1—C19—H191109.5
C7—C8—H8107.3O1—C19—H192109.5
C9—C8—H8107.3H191—C19—H192109.5
C14—C8—H8107.3O1—C19—H193109.5
C10—C9—C11114.18 (18)H191—C19—H193109.5
C10—C9—C8112.8 (2)H192—C19—H193109.5
C11—C9—C8109.60 (18)C25—C20—C21117.8 (2)
C10—C9—H9106.6C25—C20—C17121.2 (2)
C11—C9—H9106.6C21—C20—C17121.0 (2)
C8—C9—H9106.6C22—C21—C20120.9 (3)
C5—C10—C1117.3 (2)C22—C21—H21119.5
C5—C10—C9122.0 (2)C20—C21—H21119.5
C1—C10—C9120.5 (2)C23—C22—C21120.7 (3)
C9—C11—C12110.47 (18)C23—C22—H22119.6
C9—C11—H111109.6C21—C22—H22119.6
C12—C11—H111109.6C22—C23—C24119.2 (3)
C9—C11—H112109.6C22—C23—H23120.4
C12—C11—H112109.6C24—C23—H23120.4
H111—C11—H112108.1C23—C24—C25120.2 (3)
C11—C12—C13114.4 (2)C23—C24—H24119.9
C11—C12—H121108.7C25—C24—H24119.9
C13—C12—H121108.7C20—C25—C24121.1 (2)
C11—C12—H122108.7C20—C25—H25119.4
C13—C12—H122108.7C24—C25—H25119.4
H121—C12—H122107.6C3—O1—C19117.1 (2)
C18—C13—C12109.90 (18)C17—O2—H1O2109.5
C18—C13—C14110.47 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···Ni0.822.012.829 (3)171
Symmetry code: (i) x, y1/2, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H27NO2C25H29NO2
Mr373.48375.49
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)293293
a, b, c (Å)8.154 (1), 8.602 (3), 15.005 (4)9.8063 (5), 6.697 (1), 16.201 (1)
β (°) 102.47 (2) 101.455 (5)
V3)1027.6 (5)1042.8 (2)
Z22
Radiation typeCu KαCu Kα
µ (mm1)0.590.58
Crystal size (mm)0.45 × 0.08 × 0.030.38 × 0.18 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1616, 1616, 978 2305, 2305, 2134
Rint0.0000.000
θmax (°)59.974.0
(sin θ/λ)max1)0.5610.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.150, 1.18 0.039, 0.100, 0.96
No. of reflections16162305
No. of parameters251257
No. of restraints91
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.140.12, 0.19

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CSU (Vicković, 1988).

Selected geometric parameters (Å, º) for (I) top
O1—O210.368 (1)
C20A—C17—C13137 (2)C13—C17—C20B118.4 (10)
C13—C17—C20A—C25A11 (3)C13—C17—C20B—C25B8.6 (13)
Selected bond lengths (Å) for (II) top
O1—O210.119 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···Ni0.8202.0122.829 (3)171
Symmetry code: (i) x, y1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds