Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C30H64N12O6P4, consists of a centrosymmetric chair-shaped cyclic tetrameric phosphazene ring with six bulky morpholino and two n-propyl­amino side groups. The two n-propyl­amino side groups are in trans positions. The bulky substituents mainly determine the eight-membered-ring conformation. The endocyclic N—P—N angles around the P atoms having different substituents are not the same as the P—N—P angles of the macrocyclic ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010101441X/av1085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010101441X/av1085Isup2.hkl
Contains datablock I

CCDC reference: 174850

Comment top

Cyclophosphazenes have attracted much interest as a result of their potential use in the sythesis of new small-molecule organocyclophosphazenes (Allcock et al., 1992) and high polymeric phosphazenes with inorganic backbones, which have many different uses (Allcock et al., 1987; Hökelek et al., 1996), and aryloxy side groups, which may be useful as high refractive index glasses (Olshavsky & Allcock, 1995), ferroelectric and non-linear optical polymers (Allcock et al., 1991), liquid crystalline materials (Allcock & Kim, 1991) and biomedical materials (Cohen et al., 1990).

On the other hand, some of the aminophosphazenes are thought to be useful as cancer chemotherapeutic agents (Chernov et al., 1959; van der Huizen, 1984). A relationship has been determined between the structures of the cyclophosphazenes and cytostatic activity (van der Huizen, 1984), and for effective tumuor-growth inhibition, electron-donating groups (e.g. aziridine, pyrrolidine, morpholine, primary and secondary amines) in the P–N ring skeletons seem to be essential.

The crystal structures of some N4P4Cl8 derivatives, such as [N4P4(NMe2)8], (II) (Bullen, 1962), β-trans-N4P4(NHMe)4Ph4, (III) (Bullen & Mallinson, 1972), [N4P4Cl4(NEt2)4], (IV) (Hökelek & Kılıç, 1990), [N4P4Cl7(OC6H2-2,6-tBu2-4-Me)], (V) (Hökelek et al., 1996), [N4P4(NC4H8O)6(NHCH2CH3), (VI) (Hökelek, Kılıç & Kılıç, 1998), and [N4P4(NC5H10)6(NHEt)2], (VII) (Hökelek et al., 1999), have been determined.

A structure analysis of the title compound, (I), was undertaken to determine the influences of the relatively hindered side groups, and also of the steric and electronic factors, on the macrocyclic tetraphosphazene ring. The title compound is illustrated in Fig. 1. The structure consists of a centrosymmetric non-planar cyclic tetrameric phosphazene ring in a chair conformation, with two n-propylamino (in 2,6-trans positions) and six bulky morpholino side groups. The four P atoms are coplanar and the four N atoms are displaced above (+) and below (-) their plane by equal amounts [N1 - 0.513 (4) Å and N6 - 0.317 (4) Å]. The conformation of the macrocyclic phosphazene ring is indicated by the torsion angles of the ring bonds in which the symmetry operation reverses the sign of a torsion angle (Fig. 2).

As can be seen from the distribution of the endocyclic torsion angles, it appears that in the central ring there are two local pseudo-mirrors, one running along the midpoints of the N6—P2' and N6'—P2 bonds, the other along the midpoints of the P1—N1 and P1'—N1' bonds. The P—N—P bond angles are 130.4 (2) and 136.9 (2)° (average 133.7°). The P—N—P bond angles are in the ranges 135.1 (4)–139.2 (4), 133.6 (2)–139.3 (2), 127.3 (2)–134.4 (2) and 130.0 (1)–130.1 (1)° in compounds (IV), (V), (VI) and (VII), respectively. It was reported that such large angles appear to be characteristic of molecules containing chlorine or fluorine (George et al., 1972). Although, the title compound contains neither chlorine nor fluorine, large P—N—P angles appear to be due to the different substituents on the P atoms; the endocyclic N—P—N angles vary in the range 117.5 (2)–122.5 (2)° [average 120.0°].

In trimeric phosphazenes, it has been observed that endocyclic (N—P—N) angles about P decrease, while exocyclic (R—P—R') angles increase (Kılıç et al., 1996; Hökelek et al., 1996, 1998, 1999). The title compound and other tetrameric phosphazenes containing bulky phenoxy groups (Allcock et al., 1995) are different. The exocyclic N2—P2—N3 angle [110.1 (2)°] is highly affected, while the endocyclic N1—P2—N6' angle [122.6 (2)°] is less affected, by the existence of the two repelling morpholino groups bonded to the P2 atom, compared with the parent compound N4P4Cl8 (Cl—P—Cl 103.1° and N—P—N 120.5°; Wagner & Vos, 1968). On the other hand, the exocyclic N4—P1—N5 angle [103.1 (2)°] remains unchanged, while the endocyclic N1—P1—N6 angle [117.5 (2)°] decreases as a result of the morpholino and n-propylamino groups bonded to the P1 atom. These interactions show that steric factors are more dominant than electronic factors, with respect to the ring skeleton. The P1—N1—P2 angle is 136.9 (2)°, but the P1—N6—P2' angle [130.4 (2)°] is narrowed compared with the corresponding angles in N4P4Cl8 (133.6 and 137.6°; Wagner & Vos, 1968).

In tetrameric phosphazenes, the P—N bond lengths have been correlated with the electronegativities of the substituents (Bullen & Tucker, 1972). In the present structure, the bulky morpholino and n-propylamino groups are electron donating. In the chair-shaped cyclic tetrameric phosphazene ring, the P—N bond distances vary from 1.573 (3) to 1.587 (4) Å. The average ring P—N bond length is 1.580 Å. In related compounds, the mean bond lengths are 1.561 Å in (IV), 1.558 Å in (V), 1.583 Å in (VI) and 1.585 Å in (VII). The P—N bond lengths are considerably shorter than the P—N single-bond length of 1.683 (5) Å (Allen et al., 1987). The short bonds in the ring have an appreciable double-bond character; this is generally observed for phosphanitrilic molecules (Wagner & Vos, 1968).

The mean exocyclic bond length (1.668 Å) is nearly the same as that in (II) (1.679 Å). It has been generally observed that the exocyclic P—N bonds are longer than the endocyclic P—N bonds in the ring (Ahmed & Pollard, 1972).

Experimental top

In this study, compound (I) was prepared from the reaction of morpholine (5.23 g, 6.00 mmol) and 2-trans-6-N4P4Cl6(NnPr)2 (2.04 g, 4.00 mmol) in acetonitrile (150 ml). Triethylamine (6.07 g, 6.00 mmol) was added to this mixture at 253 K, which was then worked up according to the literature method of Contractor et al. (1987). The compound was crystallized from acetonitrile [m.p. 483 K (decomposition); yield: 2.37 g (73%)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The shape of the phosphazene ring in (I) with torsion angles (°) given. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
(I) top
Crystal data top
C30H64N12O6P4Z = 1
Mr = 812.81F(000) = 436
Triclinic, P1Dx = 1.361 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.502 (8) ÅCell parameters from 25 reflections
b = 10.939 (14) Åθ = 10–11°
c = 11.814 (7) ŵ = 0.25 mm1
α = 66.39 (9)°T = 293 K
β = 81.63 (7)°Rod, colorless
γ = 81.74 (10)°0.30 × 0.25 × 0.20 mm
V = 991.7 (17) Å3
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
2115 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 26.3°, θmin = 3.7°
non–profiled ω scansh = 010
Absorption correction: part of the refinement model (ΔF)
(SHELX97; Sheldrick, 1998)
k = 1313
Tmin = 0.928, Tmax = 0.952l = 1414
4298 measured reflections3 standard reflections every 120 min
4016 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.1149P)2]
where P = (Fo2 + 2Fc2)/3
3578 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C30H64N12O6P4γ = 81.74 (10)°
Mr = 812.81V = 991.7 (17) Å3
Triclinic, P1Z = 1
a = 8.502 (8) ÅMo Kα radiation
b = 10.939 (14) ŵ = 0.25 mm1
c = 11.814 (7) ÅT = 293 K
α = 66.39 (9)°0.30 × 0.25 × 0.20 mm
β = 81.63 (7)°
Data collection top
Enraf-Nonius TurboCAD-4
diffractometer
2115 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(SHELX97; Sheldrick, 1998)
Rint = 0.053
Tmin = 0.928, Tmax = 0.9523 standard reflections every 120 min
4298 measured reflections intensity decay: 3%
4016 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.43 e Å3
3578 reflectionsΔρmin = 0.33 e Å3
239 parameters
Special details top

Experimental. Sheldrick, G·M. (anon) SHELX97 Release 97–2 (1998) I/sigma threshold for reflections = 5.000 Delta(U)/lambda**2 = 0.000 Highest even order spherical harmonic = 6 Highest odd order spherical harmonic = 3

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.40556 (11)0.44102 (8)0.38496 (7)0.0238 (3)
P20.48323 (12)0.69968 (8)0.37486 (8)0.0256 (3)
N10.3773 (4)0.5904 (3)0.3770 (3)0.0313 (7)
N40.2504 (4)0.4118 (3)0.3301 (3)0.0290 (7)
N50.5560 (4)0.4302 (3)0.2841 (3)0.0321 (7)
N20.6107 (4)0.7407 (3)0.2450 (3)0.0342 (8)
O30.0534 (4)0.4548 (3)0.2349 (3)0.0503 (8)
N30.3489 (4)0.8299 (3)0.3675 (3)0.0333 (7)
O20.1327 (4)1.0603 (3)0.3446 (3)0.0614 (10)
C130.6157 (5)0.3065 (4)0.2668 (3)0.0357 (9)
H13A0.53200.24630.29560.043*
H13B0.70430.26310.31650.043*
C120.2249 (5)0.4983 (4)0.2011 (3)0.0412 (10)
H12A0.32200.49440.14770.049*
H12B0.19870.59040.19350.049*
C90.0971 (5)0.4093 (4)0.4076 (3)0.0366 (9)
H9B0.06520.49770.40870.044*
H9A0.11070.34700.49210.044*
O10.7976 (5)0.8563 (4)0.0142 (3)0.0688 (11)
C100.0309 (5)0.3684 (5)0.3597 (4)0.0441 (10)
H10A0.00270.27740.36450.053*
H10B0.13020.36970.41150.053*
C50.2158 (6)0.8655 (4)0.2944 (4)0.0472 (11)
H5B0.17880.78470.29650.057*
H5A0.25010.91940.20880.057*
C80.4000 (6)0.9488 (4)0.3747 (4)0.0462 (11)
H8B0.44351.00710.29320.055*
H8A0.48290.92210.43060.055*
C110.0899 (6)0.4531 (6)0.1606 (4)0.0583 (13)
H11A0.07410.51130.07530.070*
H11B0.11980.36280.16380.070*
C10.7418 (6)0.8181 (5)0.2315 (4)0.0494 (11)
H1A0.79040.78390.30900.059*
H1B0.70080.91060.21420.059*
C70.2571 (6)1.0239 (4)0.4217 (5)0.0548 (13)
H7A0.21880.96740.50540.066*
H7B0.29051.10380.42430.066*
C60.0792 (6)0.9435 (5)0.3426 (5)0.0585 (13)
H6B0.00700.96940.28960.070*
H6A0.03860.88720.42570.070*
C140.6705 (6)0.3318 (4)0.1323 (4)0.0479 (11)
H14B0.57810.35990.08530.057*
H14A0.73890.40460.09920.057*
C40.5434 (6)0.7826 (5)0.1261 (3)0.0478 (11)
H4B0.49190.87320.10340.057*
H4A0.46340.72390.13420.057*
C20.8684 (7)0.8129 (6)0.1277 (5)0.0671 (15)
H2A0.95070.87010.11830.081*
H2B0.91800.72190.14860.081*
C150.7601 (8)0.2104 (5)0.1146 (5)0.0702 (17)
H15B0.79330.23250.02800.105*
H15C0.69190.13900.14430.105*
H15A0.85240.18250.16030.105*
C30.6730 (8)0.7775 (6)0.0267 (5)0.0719 (16)
H3A0.71680.68520.04620.086*
H3B0.62720.80890.05190.086*
N60.4104 (4)0.3255 (3)0.5177 (2)0.0305 (7)
H50.622 (5)0.496 (4)0.244 (4)0.033 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0310 (5)0.0207 (4)0.0183 (4)0.0031 (3)0.0116 (4)0.0051 (3)
P20.0360 (6)0.0184 (4)0.0195 (4)0.0064 (4)0.0130 (4)0.0039 (3)
N10.0395 (18)0.0265 (15)0.0266 (15)0.0112 (13)0.0190 (13)0.0083 (12)
N40.0366 (18)0.0304 (15)0.0210 (14)0.0062 (13)0.0165 (13)0.0095 (12)
N50.0312 (17)0.0308 (16)0.0357 (17)0.0029 (14)0.0030 (14)0.0146 (14)
N20.051 (2)0.0298 (15)0.0211 (15)0.0004 (14)0.0133 (14)0.0065 (12)
O30.0447 (19)0.0589 (19)0.0458 (17)0.0020 (15)0.0244 (15)0.0130 (15)
N30.0415 (19)0.0197 (14)0.0370 (17)0.0127 (13)0.0196 (15)0.0092 (12)
O20.070 (2)0.0356 (16)0.078 (2)0.0272 (16)0.030 (2)0.0241 (16)
C130.037 (2)0.0310 (19)0.033 (2)0.0019 (16)0.0006 (17)0.0093 (16)
C120.038 (2)0.055 (2)0.0248 (19)0.0040 (19)0.0189 (17)0.0069 (17)
C90.030 (2)0.050 (2)0.0296 (19)0.0021 (18)0.0075 (16)0.0157 (17)
O10.086 (3)0.075 (2)0.0300 (16)0.013 (2)0.0038 (18)0.0052 (16)
C100.038 (2)0.051 (2)0.038 (2)0.0036 (19)0.0082 (19)0.0110 (19)
C50.052 (3)0.035 (2)0.059 (3)0.011 (2)0.027 (2)0.020 (2)
C80.050 (3)0.030 (2)0.061 (3)0.0053 (19)0.018 (2)0.020 (2)
C110.055 (3)0.087 (4)0.039 (2)0.000 (3)0.030 (2)0.025 (2)
C10.059 (3)0.050 (3)0.035 (2)0.010 (2)0.002 (2)0.0111 (19)
C70.064 (3)0.036 (2)0.074 (3)0.015 (2)0.024 (3)0.032 (2)
C60.047 (3)0.043 (2)0.081 (3)0.015 (2)0.021 (3)0.022 (2)
C140.070 (3)0.040 (2)0.032 (2)0.006 (2)0.008 (2)0.0165 (18)
C40.059 (3)0.051 (2)0.0233 (19)0.003 (2)0.013 (2)0.0017 (17)
C20.070 (4)0.072 (3)0.039 (3)0.012 (3)0.014 (3)0.004 (2)
C150.099 (4)0.050 (3)0.053 (3)0.009 (3)0.016 (3)0.024 (2)
C30.101 (5)0.082 (4)0.030 (2)0.013 (4)0.004 (3)0.018 (2)
N60.049 (2)0.0246 (14)0.0154 (14)0.0020 (13)0.0185 (13)0.0016 (11)
Geometric parameters (Å, º) top
P1—N61.573 (3)C10—H10A0.97
P1—N11.584 (4)C10—H10B0.97
P1—N51.642 (4)C5—C61.521 (6)
P1—N41.672 (3)C5—H5B0.97
P2—N6i1.578 (3)C5—H5A0.97
P2—N11.587 (4)C8—C71.531 (6)
P2—N31.675 (4)C8—H8B0.97
P2—N21.684 (4)C8—H8A0.97
N4—C121.466 (4)C11—H11A0.97
N4—C91.477 (5)C11—H11B0.97
N5—C131.458 (5)C1—C21.524 (7)
N5—H50.91 (4)C1—H1A0.97
N2—C11.448 (6)C1—H1B0.97
N2—C41.467 (5)C7—H7A0.97
O3—C111.397 (6)C7—H7B0.97
O3—C101.420 (5)C6—H6B0.97
N3—C51.437 (5)C6—H6A0.97
N3—C81.466 (5)C14—C151.508 (6)
O2—C71.406 (6)C14—H14B0.97
O2—C61.426 (6)C14—H14A0.97
C13—C141.513 (5)C4—C31.502 (7)
C13—H13A0.97C4—H4B0.97
C13—H13B0.97C4—H4A0.97
C12—C111.517 (6)C2—H2A0.97
C12—H12A0.97C2—H2B0.97
C12—H12B0.97C15—H15B0.96
C9—C101.493 (6)C15—H15C0.96
C9—H9B0.97C15—H15A0.96
C9—H9A0.97C3—H3A0.97
O1—C31.416 (7)C3—H3B0.97
O1—C21.425 (6)N6—P2i1.578 (3)
N6—P1—N1117.50 (17)C7—C8—H8B109.8
N6—P1—N5114.88 (19)N3—C8—H8A109.8
N1—P1—N5108.8 (2)C7—C8—H8A109.8
N6—P1—N4103.34 (19)H8B—C8—H8A108.2
N1—P1—N4107.90 (18)O3—C11—C12112.6 (3)
N5—P1—N4103.09 (17)O3—C11—H11A109.1
N6i—P2—N1122.53 (17)C12—C11—H11A109.1
N6i—P2—N3107.50 (17)O3—C11—H11B109.1
N1—P2—N3103.06 (19)C12—C11—H11B109.1
N6i—P2—N2104.83 (18)H11A—C11—H11B107.8
N1—P2—N2108.59 (17)N2—C1—C2112.1 (4)
N3—P2—N2110.07 (18)N2—C1—H1A109.2
P1—N1—P2136.9 (2)C2—C1—H1A109.2
C12—N4—C9108.6 (3)N2—C1—H1B109.2
C12—N4—P1115.8 (3)C2—C1—H1B109.2
C9—N4—P1114.8 (2)H1A—C1—H1B107.9
C13—N5—P1123.6 (3)O2—C7—C8111.1 (4)
C13—N5—H5113 (2)O2—C7—H7A109.4
P1—N5—H5123 (2)C8—C7—H7A109.4
C1—N2—C4110.4 (3)O2—C7—H7B109.4
C1—N2—P2119.8 (3)C8—C7—H7B109.4
C4—N2—P2117.6 (3)H7A—C7—H7B108.0
C11—O3—C10109.1 (3)O2—C6—C5110.3 (4)
C5—N3—C8110.9 (3)O2—C6—H6B109.6
C5—N3—P2122.1 (3)C5—C6—H6B109.6
C8—N3—P2119.5 (3)O2—C6—H6A109.6
C7—O2—C6110.1 (3)C5—C6—H6A109.6
N5—C13—C14111.9 (3)H6B—C6—H6A108.1
N5—C13—H13A109.2C15—C14—C13113.0 (4)
C14—C13—H13A109.2C15—C14—H14B109.0
N5—C13—H13B109.2C13—C14—H14B109.0
C14—C13—H13B109.2C15—C14—H14A109.0
H13A—C13—H13B107.9C13—C14—H14A109.0
N4—C12—C11110.0 (4)H14B—C14—H14A107.8
N4—C12—H12A109.7N2—C4—C3110.1 (4)
C11—C12—H12A109.7N2—C4—H4B109.6
N4—C12—H12B109.7C3—C4—H4B109.6
C11—C12—H12B109.7N2—C4—H4A109.6
H12A—C12—H12B108.2C3—C4—H4A109.6
N4—C9—C10111.4 (3)H4B—C4—H4A108.1
N4—C9—H9B109.3O1—C2—C1110.0 (5)
C10—C9—H9B109.3O1—C2—H2A109.7
N4—C9—H9A109.3C1—C2—H2A109.7
C10—C9—H9A109.3O1—C2—H2B109.7
H9B—C9—H9A108.0C1—C2—H2B109.7
C3—O1—C2110.8 (4)H2A—C2—H2B108.2
O3—C10—C9111.7 (4)C14—C15—H15B109.5
O3—C10—H10A109.3C14—C15—H15C109.5
C9—C10—H10A109.3H15B—C15—H15C109.5
O3—C10—H10B109.3C14—C15—H15A109.5
C9—C10—H10B109.3H15B—C15—H15A109.5
H10A—C10—H10B107.9H15C—C15—H15A109.5
N3—C5—C6111.4 (4)O1—C3—C4112.5 (4)
N3—C5—H5B109.4O1—C3—H3A109.1
C6—C5—H5B109.4C4—C3—H3A109.1
N3—C5—H5A109.4O1—C3—H3B109.1
C6—C5—H5A109.4C4—C3—H3B109.1
H5B—C5—H5A108.0H3A—C3—H3B107.8
N3—C8—C7109.5 (4)P1—N6—P2i130.4 (2)
N3—C8—H8B109.8
N6—P1—N1—P284.7 (3)C9—N4—C12—C1153.9 (4)
N5—P1—N1—P248.0 (3)P1—N4—C12—C11175.2 (3)
N4—P1—N1—P2159.1 (3)C12—N4—C9—C1054.7 (4)
N6i—P2—N1—P158.0 (3)P1—N4—C9—C10173.9 (3)
N3—P2—N1—P1179.0 (3)C11—O3—C10—C958.8 (5)
N2—P2—N1—P164.3 (3)N4—C9—C10—O357.7 (4)
N6—P1—N4—C12174.8 (3)C8—N3—C5—C654.5 (5)
N1—P1—N4—C1260.1 (3)P2—N3—C5—C6156.1 (3)
N5—P1—N4—C1254.8 (3)C5—N3—C8—C754.0 (5)
N6—P1—N4—C957.4 (3)P2—N3—C8—C7155.7 (3)
N1—P1—N4—C967.7 (3)C10—O3—C11—C1259.4 (5)
N5—P1—N4—C9177.3 (3)N4—C12—C11—O358.6 (5)
N6—P1—N5—C1345.6 (4)C4—N2—C1—C254.1 (5)
N1—P1—N5—C13179.6 (3)P2—N2—C1—C2164.3 (3)
N4—P1—N5—C1366.1 (3)C6—O2—C7—C860.7 (5)
N6i—P2—N2—C135.4 (3)N3—C8—C7—O257.6 (5)
N1—P2—N2—C1167.9 (3)C7—O2—C6—C559.6 (5)
N3—P2—N2—C180.0 (3)N3—C5—C6—O256.9 (5)
N6i—P2—N2—C4174.3 (3)N5—C13—C14—C15169.5 (4)
N1—P2—N2—C453.1 (3)C1—N2—C4—C353.3 (5)
N3—P2—N2—C459.0 (3)P2—N2—C4—C3164.1 (3)
N6i—P2—N3—C5169.1 (3)C3—O1—C2—C157.2 (6)
N1—P2—N3—C538.4 (4)N2—C1—C2—O155.9 (5)
N2—P2—N3—C577.3 (4)C2—O1—C3—C459.0 (6)
N6i—P2—N3—C844.1 (3)N2—C4—C3—O156.5 (6)
N1—P2—N3—C8174.7 (3)N1—P1—N6—P2i55.0 (3)
N2—P2—N3—C869.6 (3)N5—P1—N6—P2i74.8 (3)
P1—N5—C13—C14144.0 (3)N4—P1—N6—P2i173.7 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H64N12O6P4
Mr812.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.502 (8), 10.939 (14), 11.814 (7)
α, β, γ (°)66.39 (9), 81.63 (7), 81.74 (10)
V3)991.7 (17)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius TurboCAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SHELX97; Sheldrick, 1998)
Tmin, Tmax0.928, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
4298, 4016, 2115
Rint0.053
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.183, 0.89
No. of reflections3578
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
P1—N61.573 (3)P2—N6i1.578 (3)
P1—N11.584 (4)P2—N11.587 (4)
P1—N51.642 (4)P2—N31.675 (4)
P1—N41.672 (3)P2—N21.684 (4)
N6—P1—N1117.50 (17)N6i—P2—N3107.50 (17)
N6—P1—N5114.88 (19)N1—P2—N3103.06 (19)
N1—P1—N5108.8 (2)N6i—P2—N2104.83 (18)
N6—P1—N4103.34 (19)N1—P2—N2108.59 (17)
N1—P1—N4107.90 (18)N3—P2—N2110.07 (18)
N5—P1—N4103.09 (17)P1—N1—P2136.9 (2)
N6i—P2—N1122.53 (17)P1—N6—P2i130.4 (2)
N6—P1—N1—P284.7 (3)N2—P2—N1—P164.3 (3)
N5—P1—N1—P248.0 (3)N1—P1—N6—P2i55.0 (3)
N4—P1—N1—P2159.1 (3)N5—P1—N6—P2i74.8 (3)
N6i—P2—N1—P158.0 (3)N4—P1—N6—P2i173.7 (2)
N3—P2—N1—P1179.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds