Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, (C5H6N)[Ce(NO3)4(C15H11N3)]·C5H5N or (Hpy)­[Ce(NO3)4(terpy)]·py, (I) (py is pyridine, C5H5N, and terpy is ter­pyridine, C15H11N3), and [Ce(NO3)3­(C15H11N3)(CH4O)2] or [Ce(NO3)3(terpy)(OHCH3)2], (II), are 11-coordinate. The coordination polyhedron of the Ce atom in (I) is irregular, while that in (II) can be described as an icosahedron with two vertices replaced by one.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101010678/av1079sup1.cif
Contains datablocks global, (I), (II)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010678/av1079Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010678/av1079IIsup3.hkl
Contains datablock II

CCDC references: 174795; 174796

Comment top

The terpyridine ligands and its derivatives are promising candidates for the liquid-liquid extraction and separation of metal ions, especially in the reprocessing of spent nuclear fuel (Chan et al., 1996; Byers et al., 1996). Structural characterization of these complexes in the solid state is of particular importance for the understanding of extraction processes. As usually happens, the nitrate-containing of these complexes which exhibit higher coordination numbers are rather difficult subjects for the analysis of coordination polyhedra. The highest coordination number of 11 was found in two lanthanide complexes with terpyridine, H2terpy[Sm(NO3)4(terpy)]NO3 (Drew et al., 1998) and [La(NO3)2(terpy)2][La(NO3)4(terpy)] (Fréchette & Bensimon, 1995). However, the coordination polyhedra of the lanthanide atoms were not discussed in these two publications. In work devoted to the systematic analysis of coordination polyhedra, coordination number 11 is also usually omitted from consideration (Bombieri & De Paoli, 1985; Favas & Kepert, 1981; Kepert, 1982). Here, we present two further structures of eleven-coordinate lanthanide complexes with terpyridine, Hpy[Ce(NO3)4(terpy)].py, (I), and [Ce(NO3)3(terpy)(OHCH3)2], (II). \sch

The complex anion [Ce(NO3)4(terpy)]- (Fig. 1) in (I) contains a tridentate terpyridine ligand and four bidentate nitrate groups. The distance from the Ce atom to the least-squares plane of the terpyridine ligand is 0.492 (2) Å. The Ce—N distances are 2.624 (2), 2.706 (2) and 2.625 (2) Å for N1, N12 and N18 respectively. The Ce—O distances to the eight O atoms of the nitrate groups vary from 2.570 (2) to 2.709 (2) Å. One of the two pyridine solvate molecules is protonated, compensating for the charge of the anion, and it forms a hydrogen bond with the other, uncharged, pyridine molecule (N5···N6 2.652 (5) Å). In the framework of the space group P21/c, the proton is disordered between the two N atoms of the pyridine molecules.

The molecular complex (II) (Fig. 2) contains a tridentate terpyridine ligand, three bidentate nitrate groups and two coordinated methanol molecules. The distance from the Ce atom to the least-squares plane of the terpyridine ligand is 0.760 (2) Å. The Ce—N distances are 2.682 (2), 2.685 (2) and 2.705 (2) Å for N1, N12 and N18 respectively. The Ce—O distances to five of the O atoms of the nitrate groups vary from 2.537 (2) to 2.712 (2) Å, whereas the distance for the sixth atom is 2.942 (3) Å. The coordinated MeOH molecules form hydrogen bonds (Table 1) with one coordinated and one noncoordinated O atom of two different nitrate groups of other complexes.

It has recently been found, for complexes containing terpyridine ligands (Drew et al., 1999), that when the average M—N distance to the terpy ligand is longer than 2.58 Å, the central M—N bond is longer than the others. The Ce—N distances in (I) are in a good agreement with this observation, while in (II), all three distances are almost equal. In our opinion, this fact shows the significance of the effect of the different ligand arrangement on bond lengths.

The significant elongation of one Ce—Onitrate bond in (II) is a consequence of the change of the coordination sphere, resulting in the lower stability of the high coordination number: one bidentate nitrate ligand with a small bite angle has been replaced by two monodentate ligands.

The coordination polyhedron of the Ce atom in (I) (Fig. 3) is irregular and difficult to describe, whereas that in (II) can be described as an icosahedron with one missing vertice or, more exactly, with two vertices replaced by one (the only vertex sharing six edges). It is interesting to note that the coordination polyhedron of the Sm atom in H2terpy[Sm(NO3)4(terpy)]NO3 (Drew et al., 1998) (Fig. 3), and that of the eleven-coordinate La atom in [La(NO3)2(terpy)2][La(NO3)4(terpy)] (Fréchette & Bensimon, 1995), can be described in the same way and the positions of the terpyridine ligand and the three nitrate anions are the same as in (II); the fourth nitrate anion occupies the place of two methanol molecules. This fact shows that the origin of the difference between the coordination polyhedra in (I) and (II) does not lie in the charge difference between the complexes.

One further example of coordination number 11 can be found in the CeIV complex with a structural analogue of terpyridine, [Ce(NO3)4L], where L is 2,4,6-tri-tert-butylpyridyl-1,3,5-triazine (Chan et al., 1996). In this case, the coordination polyhedron is also similar to that found in (II) (if we consider two neighbouring triangular faces with a dihedral angle of 1.9° to be two separate faces), but the arrangement of the ligands is different.

In general, the present study has demonstrated a surprising stability of the geometry of the coordination sphere for complexes with coordination number 11.

Experimental top

For the synthesis of (I), acetonitrile (0.5 ml) was added to a mixture of Ce(NO3)3·6H2O (0.2 mM) and terpy (0.2 mM). After 1 d, pyridine (1.5 ml) was added. Crystals of (I) were obtained after slow evaporation of the solution at 293 K. Crystals of (II) were obtained by slow diffusion of solutions of Ce(NO3)3·6H2O and terpy in methanol through pure methanol in a U-shaped glass tube at 293 K.

Refinement top

The H atoms bonded to the C atoms of the terpy ligands and pyridine solvate molecules (including the protonated one) were introduced in calculated positions, with displacement parameters fixed at 1.2 times that of the atom to which they were bonded. The position of the protonated N atom in (I) is disordered between the two pyridine molecules (occupancy 0.50:0.50). The H atoms of the OH groups of the methanol molecules in (II) were located from a difference Fourier map and refined with individual isotropic displacement parameters. The orientation of the CH3 groups of the methanol molecules in (II) was found from a difference Fourier map and refined. The H atoms of the CH3 groups were introduced in calculated positions, with displacement parameters fixed at 1.5 times that of the parent C atom.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL (Otwinowski & Minor, 1997); data reduction: HKL; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii. Only one position of the disordered H atom is shown.
[Figure 2] Fig. 2. The molecular structure of (II) showing 30% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.
[Figure 3] Fig. 3. The coordination polyhedra of the Ln atoms in: (a) (I), (b) (II) and (c) H2terpy[Sm(NO3)4(terpy)]NO3 (Drew et al., 1998). The positions of the terpy and nitrate groups are shown with heavy lines.
(I) Pyridinium tetrakis(nitrato-κ2O,O')(2,2':6',2''-terpyridine-κ3N)cerate(III) pyridine solvate top
Crystal data top
C5H6N·[Ce(NO3)4(C15H11N3)]·C5H5NF(000) = 1556
Mr = 780.64Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.0982 (3) ÅCell parameters from all reflections
b = 12.8311 (3) Åθ = 1.6–27.5°
c = 17.8255 (3) ŵ = 1.60 mm1
β = 91.6958 (12)°T = 293 K
V = 2994.52 (11) Å3Prism, yellow
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
6770 independent reflections
Radiation source: fine-focus sealed tube5416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scans to cover a hemisphere of the reciprocal spaceθmax = 27.5°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
h = 1517
Tmin = 0.673, Tmax = 0.702k = 1516
23126 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.349P]
where P = (Fo2 + 2Fc2)/3
6748 reflections(Δ/σ)max = 0.002
424 parametersΔρmax = 1.23 (1.34Å from Ce) e Å3
0 restraintsΔρmin = 2.87 (0.04Å from Ce) e Å3
Crystal data top
C5H6N·[Ce(NO3)4(C15H11N3)]·C5H5NV = 2994.52 (11) Å3
Mr = 780.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0982 (3) ŵ = 1.60 mm1
b = 12.8311 (3) ÅT = 293 K
c = 17.8255 (3) Å0.2 × 0.2 × 0.2 mm
β = 91.6958 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6770 independent reflections
Absorption correction: empirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
5416 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.702Rint = 0.099
23126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.05Δρmax = 1.23 (1.34Å from Ce) e Å3
6748 reflectionsΔρmin = 2.87 (0.04Å from Ce) e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 22 flagged for potential systematic errors

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce0.733736 (10)0.529139 (11)0.198136 (7)0.03136 (7)
O210.79533 (15)0.61973 (18)0.32866 (12)0.0552 (6)
O220.90608 (17)0.52370 (18)0.27547 (12)0.0524 (6)
O230.92842 (19)0.5651 (2)0.39260 (12)0.0702 (7)
O310.88429 (17)0.44686 (19)0.12580 (12)0.0513 (5)
O320.82375 (16)0.33914 (19)0.20402 (13)0.0596 (6)
O330.96322 (19)0.3020 (2)0.14703 (17)0.0823 (8)
O410.64897 (18)0.71389 (19)0.23144 (14)0.0640 (6)
O420.57421 (17)0.6242 (2)0.14596 (12)0.0657 (7)
O430.5020 (2)0.7622 (3)0.18426 (16)0.0976 (11)
O510.57251 (19)0.5138 (2)0.28102 (16)0.0651 (7)
O520.69700 (17)0.4184 (2)0.31842 (12)0.0585 (6)
O530.5756 (2)0.4536 (3)0.39457 (14)0.0886 (10)
N10.62730 (17)0.39159 (19)0.11991 (12)0.0389 (5)
N20.87807 (18)0.5699 (2)0.33419 (13)0.0463 (6)
N30.89190 (18)0.3614 (2)0.15872 (14)0.0482 (6)
N40.5730 (2)0.7018 (2)0.18760 (15)0.0562 (7)
N50.6133 (2)0.4622 (2)0.33367 (16)0.0523 (7)
N60.1822 (2)0.6004 (3)0.19321 (17)0.0685 (8)
H6A0.19650.58260.23880.082*0.50
N70.2318 (3)0.5417 (3)0.3322 (2)0.0728 (9)
H7A0.21700.56210.28720.087*0.50
N120.71769 (16)0.55058 (19)0.04721 (12)0.0360 (5)
N180.83378 (17)0.6812 (2)0.13462 (13)0.0439 (6)
C20.5932 (2)0.3076 (3)0.15591 (17)0.0489 (7)
H2A0.59910.30670.20800.059*
C30.5500 (2)0.2225 (3)0.12068 (19)0.0542 (8)
H3A0.52750.16570.14800.065*
C40.5413 (2)0.2240 (3)0.04389 (19)0.0583 (9)
H4A0.51400.16710.01800.070*
C50.5734 (2)0.3108 (3)0.00539 (17)0.0503 (7)
H5A0.56630.31340.04660.060*
C60.61629 (18)0.3940 (2)0.04430 (14)0.0380 (6)
C70.6541 (2)0.4875 (2)0.00680 (15)0.0365 (6)
C80.6258 (2)0.5114 (3)0.06755 (17)0.0477 (7)
H8A0.58130.46800.09460.057*
C90.6643 (2)0.5989 (3)0.10007 (16)0.0549 (8)
H9A0.64510.61610.14920.066*
C100.7310 (2)0.6611 (3)0.06027 (16)0.0516 (8)
H10A0.75830.72030.08220.062*
C110.7576 (2)0.6344 (2)0.01430 (15)0.0404 (6)
C130.8298 (2)0.6991 (2)0.05986 (16)0.0424 (6)
C140.8889 (2)0.7747 (3)0.0283 (2)0.0598 (9)
H14A0.88670.78460.02340.072*
C150.9511 (3)0.8356 (3)0.0733 (2)0.0661 (10)
H15A0.99090.88740.05220.079*
C160.9544 (3)0.8200 (3)0.1492 (2)0.0647 (9)
H16A0.99470.86150.18100.078*
C170.8956 (3)0.7403 (3)0.17683 (19)0.0567 (8)
H17A0.89960.72720.22810.068*
C610.1149 (3)0.5449 (4)0.1528 (3)0.0845 (14)
H61A0.08270.48800.17400.101*
C620.0934 (3)0.5721 (5)0.0800 (3)0.0928 (15)
H62A0.04710.53310.05110.111*
C630.1398 (3)0.6560 (5)0.0498 (2)0.0870 (15)
H63A0.12550.67480.00020.104*
C640.2080 (3)0.7133 (4)0.0928 (2)0.0731 (11)
H64A0.23990.77160.07340.088*
C650.2274 (3)0.6822 (3)0.1645 (2)0.0666 (10)
H65A0.27390.71980.19420.080*
C710.3037 (4)0.4719 (4)0.3449 (3)0.0852 (14)
H71A0.33880.44580.30440.102*
C720.3282 (3)0.4372 (5)0.4135 (3)0.1015 (16)
H72A0.37910.38720.42010.122*
C730.2808 (5)0.4734 (5)0.4719 (3)0.1043 (19)
H73A0.29740.44830.51960.125*
C740.2087 (5)0.5463 (5)0.4627 (3)0.1034 (19)
H74A0.17650.57410.50400.124*
C750.1822 (3)0.5802 (4)0.3899 (3)0.0887 (14)
H75A0.13050.62910.38220.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.03550 (10)0.03011 (11)0.02845 (10)0.00116 (6)0.00030 (6)0.00032 (5)
O210.0537 (11)0.0558 (15)0.0559 (13)0.0111 (11)0.0033 (10)0.0151 (11)
O220.0522 (12)0.0623 (17)0.0425 (12)0.0115 (10)0.0048 (10)0.0158 (10)
O230.0834 (16)0.0829 (19)0.0427 (12)0.0120 (15)0.0232 (12)0.0131 (13)
O310.0570 (12)0.0517 (14)0.0455 (12)0.0098 (11)0.0077 (10)0.0015 (11)
O320.0604 (13)0.0483 (14)0.0709 (15)0.0020 (11)0.0132 (11)0.0064 (12)
O330.0699 (15)0.0655 (19)0.112 (2)0.0302 (14)0.0158 (14)0.0055 (16)
O410.0685 (14)0.0459 (15)0.0773 (16)0.0049 (12)0.0015 (12)0.0091 (12)
O420.0674 (14)0.0783 (19)0.0506 (13)0.0343 (13)0.0119 (11)0.0132 (13)
O430.101 (2)0.107 (3)0.0849 (19)0.073 (2)0.0102 (16)0.0056 (18)
O510.0609 (14)0.0646 (18)0.0709 (18)0.0088 (12)0.0208 (13)0.0126 (14)
O520.0629 (13)0.0574 (15)0.0553 (13)0.0024 (12)0.0043 (10)0.0134 (12)
O530.100 (2)0.121 (3)0.0460 (14)0.0388 (19)0.0296 (14)0.0086 (15)
N10.0461 (12)0.0365 (14)0.0338 (11)0.0033 (10)0.0014 (9)0.0000 (10)
N20.0530 (14)0.0456 (16)0.0400 (13)0.0002 (13)0.0063 (11)0.0081 (12)
N30.0498 (14)0.0454 (17)0.0492 (14)0.0056 (13)0.0040 (12)0.0109 (13)
N40.0606 (16)0.0599 (19)0.0485 (15)0.0242 (15)0.0090 (13)0.0100 (14)
N50.0636 (17)0.0521 (19)0.0420 (15)0.0166 (14)0.0144 (13)0.0066 (13)
N60.0679 (18)0.072 (2)0.0648 (18)0.0049 (17)0.0020 (14)0.0004 (17)
N70.076 (2)0.076 (3)0.066 (2)0.0040 (18)0.0017 (18)0.0077 (17)
N120.0382 (11)0.0367 (13)0.0332 (11)0.0038 (10)0.0017 (9)0.0026 (10)
N180.0537 (13)0.0351 (14)0.0431 (13)0.0075 (11)0.0033 (11)0.0015 (11)
C20.0594 (17)0.0450 (19)0.0422 (16)0.0094 (15)0.0002 (13)0.0022 (14)
C30.0568 (17)0.044 (2)0.062 (2)0.0126 (15)0.0017 (15)0.0009 (16)
C40.0586 (18)0.051 (2)0.065 (2)0.0147 (16)0.0043 (16)0.0144 (17)
C50.0490 (16)0.056 (2)0.0453 (16)0.0049 (15)0.0059 (13)0.0097 (15)
C60.0323 (12)0.0455 (18)0.0361 (13)0.0053 (12)0.0004 (10)0.0038 (12)
C70.0372 (13)0.0401 (16)0.0322 (14)0.0044 (12)0.0027 (11)0.0010 (12)
C80.0475 (16)0.061 (2)0.0348 (15)0.0106 (15)0.0036 (12)0.0017 (14)
C90.0627 (18)0.067 (2)0.0347 (15)0.0153 (17)0.0005 (14)0.0117 (16)
C100.0604 (18)0.052 (2)0.0426 (16)0.0051 (16)0.0069 (14)0.0173 (15)
C110.0453 (14)0.0389 (17)0.0372 (14)0.0057 (13)0.0082 (11)0.0046 (12)
C130.0448 (14)0.0343 (16)0.0484 (16)0.0045 (13)0.0088 (12)0.0078 (13)
C140.0652 (19)0.050 (2)0.064 (2)0.0059 (17)0.0092 (16)0.0178 (17)
C150.062 (2)0.049 (2)0.088 (3)0.0153 (17)0.0139 (19)0.014 (2)
C160.0619 (19)0.045 (2)0.087 (3)0.0140 (17)0.0005 (18)0.0040 (19)
C170.0684 (19)0.046 (2)0.0558 (19)0.0151 (17)0.0018 (15)0.0004 (16)
C610.063 (2)0.074 (3)0.117 (4)0.018 (2)0.006 (2)0.004 (3)
C620.068 (2)0.116 (4)0.093 (3)0.001 (3)0.018 (2)0.045 (3)
C630.085 (3)0.121 (5)0.055 (2)0.037 (3)0.001 (2)0.014 (3)
C640.084 (2)0.072 (3)0.064 (2)0.011 (2)0.016 (2)0.004 (2)
C650.065 (2)0.065 (3)0.069 (2)0.0044 (19)0.0019 (17)0.017 (2)
C710.083 (3)0.097 (4)0.076 (3)0.015 (3)0.020 (2)0.005 (2)
C720.075 (3)0.121 (5)0.107 (4)0.009 (3)0.014 (3)0.025 (4)
C730.114 (4)0.129 (6)0.068 (3)0.037 (4)0.018 (3)0.010 (3)
C740.137 (5)0.087 (4)0.089 (4)0.030 (4)0.051 (4)0.029 (3)
C750.066 (2)0.053 (3)0.148 (5)0.007 (2)0.022 (3)0.001 (3)
Geometric parameters (Å, º) top
Ce—O422.570 (2)C4—C51.381 (5)
Ce—O312.611 (2)C4—H4A0.9300
Ce—O222.611 (2)C5—C61.382 (4)
Ce—O512.620 (2)C5—H5A0.9300
Ce—N12.624 (2)C6—C71.467 (4)
Ce—N182.625 (2)C7—C81.399 (4)
Ce—O522.628 (2)C8—C91.367 (5)
Ce—O412.691 (2)C8—H8A0.9300
Ce—O212.703 (2)C9—C101.367 (5)
Ce—N122.706 (2)C9—H9A0.9300
Ce—O322.709 (2)C10—C111.407 (4)
O21—N21.260 (3)C10—H10A0.9300
O22—N21.266 (3)C11—C131.482 (4)
O23—N21.217 (3)C13—C141.373 (4)
O31—N31.247 (3)C14—C151.370 (5)
O32—N31.254 (3)C14—H14A0.9300
O33—N31.228 (3)C15—C161.368 (5)
O41—N41.256 (3)C15—H15A0.9300
O42—N41.242 (4)C16—C171.380 (5)
O43—N41.211 (3)C16—H16A0.9300
O51—N51.256 (4)C17—H17A0.9300
O52—N51.268 (3)C61—C621.366 (7)
O53—N51.211 (3)C61—H61A0.9300
N1—C21.338 (4)C62—C631.356 (7)
N1—C61.352 (3)C62—H62A0.9300
N6—C651.315 (5)C63—C641.373 (6)
N6—C611.329 (5)C63—H63A0.9300
N6—H6A0.8600C64—C651.355 (5)
N7—C711.315 (6)C64—H64A0.9300
N7—C751.328 (6)C65—H65A0.9300
N7—H7A0.8600C71—C721.332 (7)
N12—C111.339 (4)C71—H71A0.9300
N12—C71.353 (4)C72—C731.312 (8)
N18—C171.327 (4)C72—H72A0.9300
N18—C131.352 (3)C73—C741.336 (8)
C2—C31.372 (4)C73—H73A0.9300
C2—H2A0.9300C74—C751.402 (8)
C3—C41.370 (4)C74—H74A0.9300
C3—H3A0.9300C75—H75A0.9300
O42—Ce—O31129.13 (7)C75—N7—H7A120.5
O42—Ce—O22152.24 (8)C11—N12—C7119.3 (2)
O31—Ce—O2266.18 (7)C11—N12—Ce119.82 (18)
O42—Ce—O5165.12 (8)C7—N12—Ce119.79 (17)
O31—Ce—O51151.80 (8)C17—N18—C13117.8 (3)
O22—Ce—O51113.51 (8)C17—N18—Ce118.97 (19)
O42—Ce—N173.34 (8)C13—N18—Ce123.10 (19)
O31—Ce—N182.11 (7)N1—C2—C3124.1 (3)
O22—Ce—N1134.42 (7)N1—C2—H2A118.0
O51—Ce—N179.92 (8)C3—C2—H2A118.0
O42—Ce—N1884.39 (8)C4—C3—C2117.8 (3)
O31—Ce—N1872.16 (7)C4—C3—H3A121.1
O22—Ce—N1879.21 (8)C2—C3—H3A121.1
O51—Ce—N18136.03 (8)C3—C4—C5119.3 (3)
N1—Ce—N18122.32 (7)C3—C4—H4A120.3
O42—Ce—O52112.66 (8)C5—C4—H4A120.3
O31—Ce—O52110.09 (7)C4—C5—C6119.9 (3)
O22—Ce—O5274.40 (7)C4—C5—H5A120.1
O51—Ce—O5247.89 (8)C6—C5—H5A120.1
N1—Ce—O5287.86 (7)N1—C6—C5120.8 (3)
N18—Ce—O52149.23 (7)N1—C6—C7116.4 (2)
O42—Ce—O4147.59 (8)C5—C6—C7122.7 (3)
O31—Ce—O41141.96 (8)N12—C7—C8121.0 (3)
O22—Ce—O41105.25 (7)N12—C7—C6117.2 (2)
O51—Ce—O4166.23 (8)C8—C7—C6121.8 (3)
N1—Ce—O41119.56 (7)C9—C8—C7119.4 (3)
N18—Ce—O4169.82 (7)C9—C8—H8A120.3
O52—Ce—O41102.09 (8)C7—C8—H8A120.3
O42—Ce—O21109.05 (7)C10—C9—C8119.9 (3)
O31—Ce—O21112.86 (7)C10—C9—H9A120.1
O22—Ce—O2147.59 (6)C8—C9—H9A120.1
O51—Ce—O2176.81 (8)C9—C10—C11119.0 (3)
N1—Ce—O21152.49 (7)C9—C10—H10A120.5
N18—Ce—O2184.93 (7)C11—C10—H10A120.5
O52—Ce—O2165.63 (7)N12—C11—C10121.4 (3)
O41—Ce—O2162.99 (7)N12—C11—C13117.4 (2)
O42—Ce—N1263.49 (7)C10—C11—C13121.2 (3)
O31—Ce—N1265.65 (7)N18—C13—C14121.2 (3)
O22—Ce—N12124.62 (7)N18—C13—C11116.8 (2)
O51—Ce—N12121.87 (8)C14—C13—C11122.0 (3)
N1—Ce—N1261.04 (7)C15—C14—C13119.8 (3)
N18—Ce—N1261.37 (7)C15—C14—H14A120.1
O52—Ce—N12148.78 (7)C13—C14—H14A120.1
O41—Ce—N1296.28 (7)C16—C15—C14119.7 (3)
O21—Ce—N12145.54 (7)C16—C15—H15A120.1
O42—Ce—O32142.13 (8)C14—C15—H15A120.1
O31—Ce—O3247.23 (7)C15—C16—C17117.4 (3)
O22—Ce—O3265.60 (7)C15—C16—H16A121.3
O51—Ce—O32105.54 (7)C17—C16—H16A121.3
N1—Ce—O3268.84 (7)N18—C17—C16124.0 (3)
N18—Ce—O32117.60 (7)N18—C17—H17A118.0
O52—Ce—O3264.66 (7)C16—C17—H17A118.0
O41—Ce—O32165.04 (7)N6—C61—C62119.6 (4)
O21—Ce—O32103.61 (7)N6—C61—H61A120.2
N12—Ce—O3298.68 (7)C62—C61—H61A120.2
N2—O21—Ce94.77 (15)C63—C62—C61119.8 (4)
N2—O22—Ce99.02 (16)C63—C62—H62A120.1
N3—O31—Ce100.04 (16)C61—C62—H62A120.1
N3—O32—Ce95.03 (18)C62—C63—C64119.7 (4)
N4—O41—Ce94.48 (18)C62—C63—H63A120.1
N4—O42—Ce100.88 (17)C64—C63—H63A120.1
N5—O51—Ce97.38 (18)C65—C64—C63118.0 (4)
N5—O52—Ce96.65 (18)C65—C64—H64A121.0
C2—N1—C6118.0 (2)C63—C64—H64A121.0
C2—N1—Ce117.82 (18)N6—C65—C64121.9 (4)
C6—N1—Ce123.64 (18)N6—C65—H65A119.1
O23—N2—O21122.4 (3)C64—C65—H65A119.1
O23—N2—O22121.4 (3)N7—C71—C72122.5 (5)
O21—N2—O22116.3 (2)N7—C71—H71A118.7
O33—N3—O31121.1 (3)C72—C71—H71A118.7
O33—N3—O32121.9 (3)C73—C72—C71120.2 (5)
O31—N3—O32117.0 (2)C73—C72—H72A119.9
O43—N4—O42120.5 (3)C71—C72—H72A119.9
O43—N4—O41123.0 (3)C72—C73—C74120.0 (6)
O42—N4—O41116.5 (3)C72—C73—H73A120.0
O53—N5—O51122.8 (3)C74—C73—H73A120.0
O53—N5—O52122.0 (3)C73—C74—C75119.1 (5)
O51—N5—O52115.2 (2)C73—C74—H74A120.5
C65—N6—C61121.0 (4)C75—C74—H74A120.5
C65—N6—H6A119.5N7—C75—C74119.2 (5)
C61—N6—H6A119.5N7—C75—H75A120.4
C71—N7—C75119.0 (4)C74—C75—H75A120.4
C71—N7—H7A120.5
O42—Ce—O21—N2171.08 (17)Ce—O32—N3—O33172.0 (3)
O31—Ce—O21—N220.61 (19)Ce—O32—N3—O318.0 (3)
O22—Ce—O21—N28.80 (16)Ce—O42—N4—O43173.6 (3)
O51—Ce—O21—N2131.47 (18)Ce—O42—N4—O417.4 (3)
N1—Ce—O21—N298.6 (2)Ce—O41—N4—O43174.0 (3)
N18—Ce—O21—N288.81 (17)Ce—O41—N4—O427.0 (3)
O52—Ce—O21—N282.01 (17)Ce—O51—N5—O53163.6 (3)
O41—Ce—O21—N2158.72 (19)Ce—O51—N5—O5217.0 (3)
N12—Ce—O21—N2100.44 (19)Ce—O52—N5—O53163.7 (3)
O32—Ce—O21—N228.39 (18)Ce—O52—N5—O5116.9 (3)
O42—Ce—O22—N247.0 (3)O42—Ce—N12—C1190.5 (2)
O31—Ce—O22—N2176.9 (2)O31—Ce—N12—C1190.22 (19)
O51—Ce—O22—N233.9 (2)O22—Ce—N12—C1158.6 (2)
N1—Ce—O22—N2133.06 (17)O51—Ce—N12—C11120.72 (19)
N18—Ce—O22—N2101.82 (18)N1—Ce—N12—C11175.3 (2)
O52—Ce—O22—N262.19 (18)N18—Ce—N12—C118.04 (18)
O41—Ce—O22—N236.40 (19)O52—Ce—N12—C11179.12 (17)
O21—Ce—O22—N28.83 (16)O41—Ce—N12—C1154.86 (19)
N12—Ce—O22—N2145.41 (17)O21—Ce—N12—C115.2 (2)
O32—Ce—O22—N2131.0 (2)O32—Ce—N12—C11124.83 (19)
O42—Ce—O31—N3134.02 (17)O42—Ce—N12—C777.5 (2)
O22—Ce—O31—N373.38 (18)O31—Ce—N12—C7101.8 (2)
O51—Ce—O31—N322.3 (3)O22—Ce—N12—C7133.51 (18)
N1—Ce—O31—N373.08 (17)O51—Ce—N12—C747.2 (2)
N18—Ce—O31—N3159.21 (19)N1—Ce—N12—C77.35 (18)
O52—Ce—O31—N311.71 (19)N18—Ce—N12—C7176.0 (2)
O41—Ce—O31—N3157.77 (16)O52—Ce—N12—C712.9 (3)
O21—Ce—O31—N382.89 (18)O41—Ce—N12—C7113.07 (19)
N12—Ce—O31—N3134.80 (19)O21—Ce—N12—C7162.75 (17)
O32—Ce—O31—N34.69 (15)O32—Ce—N12—C767.2 (2)
O42—Ce—O32—N3106.78 (18)O42—Ce—N18—C17121.7 (2)
O31—Ce—O32—N34.61 (15)O31—Ce—N18—C17104.1 (2)
O22—Ce—O32—N374.75 (16)O22—Ce—N18—C1735.8 (2)
O51—Ce—O32—N3176.07 (16)O51—Ce—N18—C1777.0 (3)
N1—Ce—O32—N3103.67 (17)N1—Ce—N18—C17172.1 (2)
N18—Ce—O32—N312.72 (19)O52—Ce—N18—C174.6 (3)
O52—Ce—O32—N3158.33 (18)O41—Ce—N18—C1775.0 (2)
O41—Ce—O32—N3129.4 (3)O21—Ce—N18—C1711.9 (2)
O21—Ce—O32—N3104.09 (16)N12—Ce—N18—C17175.5 (3)
N12—Ce—O32—N349.42 (17)O32—Ce—N18—C1790.8 (2)
O42—Ce—O41—N44.07 (16)O42—Ce—N18—C1362.0 (2)
O31—Ce—O41—N4106.75 (19)O31—Ce—N18—C1372.2 (2)
O22—Ce—O41—N4177.42 (17)O22—Ce—N18—C13140.5 (2)
O51—Ce—O41—N473.21 (18)O51—Ce—N18—C13106.7 (2)
N1—Ce—O41—N411.2 (2)N1—Ce—N18—C134.2 (2)
N18—Ce—O41—N4105.29 (18)O52—Ce—N18—C13171.73 (19)
O52—Ce—O41—N4105.68 (18)O41—Ce—N18—C13108.7 (2)
O21—Ce—O41—N4160.0 (2)O21—Ce—N18—C13171.8 (2)
N12—Ce—O41—N448.93 (18)N12—Ce—N18—C130.8 (2)
O32—Ce—O41—N4132.3 (3)O32—Ce—N18—C1385.5 (2)
O31—Ce—O42—N4133.38 (18)C6—N1—C2—C31.7 (4)
O22—Ce—O42—N418.0 (3)Ce—N1—C2—C3170.0 (2)
O51—Ce—O42—N475.6 (2)N1—C2—C3—C40.1 (5)
N1—Ce—O42—N4162.0 (2)C2—C3—C4—C51.6 (5)
N18—Ce—O42—N471.9 (2)C3—C4—C5—C61.6 (5)
O52—Ce—O42—N481.6 (2)C2—N1—C6—C51.6 (4)
O41—Ce—O42—N44.17 (17)Ce—N1—C6—C5169.53 (19)
O21—Ce—O42—N410.8 (2)C2—N1—C6—C7179.7 (2)
N12—Ce—O42—N4132.6 (2)Ce—N1—C6—C79.1 (3)
O32—Ce—O42—N4158.95 (17)C4—C5—C6—N10.0 (4)
O42—Ce—O51—N5177.6 (2)C4—C5—C6—C7178.6 (3)
O31—Ce—O51—N555.0 (3)C11—N12—C7—C83.0 (4)
O22—Ce—O51—N528.1 (2)Ce—N12—C7—C8165.0 (2)
N1—Ce—O51—N5106.2 (2)C11—N12—C7—C6177.1 (2)
N18—Ce—O51—N5127.10 (18)Ce—N12—C7—C614.9 (3)
O52—Ce—O51—N59.89 (17)N1—C6—C7—N1215.7 (3)
O41—Ce—O51—N5125.1 (2)C5—C6—C7—N12163.0 (3)
O21—Ce—O51—N559.05 (19)N1—C6—C7—C8164.2 (3)
N12—Ce—O51—N5152.58 (18)C5—C6—C7—C817.2 (4)
O32—Ce—O51—N541.7 (2)N12—C7—C8—C90.9 (4)
O42—Ce—O52—N517.1 (2)C6—C7—C8—C9179.2 (3)
O31—Ce—O52—N5168.90 (17)C7—C8—C9—C101.1 (5)
O22—Ce—O52—N5134.38 (18)C8—C9—C10—C111.0 (5)
O51—Ce—O52—N59.78 (17)C7—N12—C11—C103.1 (4)
N1—Ce—O52—N588.10 (18)Ce—N12—C11—C10164.9 (2)
N18—Ce—O52—N5102.4 (2)C7—N12—C11—C13177.8 (2)
O41—Ce—O52—N531.70 (18)Ce—N12—C11—C1314.2 (3)
O21—Ce—O52—N584.34 (18)C9—C10—C11—N121.2 (4)
N12—Ce—O52—N593.0 (2)C9—C10—C11—C13179.8 (3)
O32—Ce—O52—N5155.64 (19)C17—N18—C13—C141.0 (4)
O42—Ce—N1—C2119.0 (2)Ce—N18—C13—C14175.3 (2)
O31—Ce—N1—C2106.1 (2)C17—N18—C13—C11178.0 (3)
O22—Ce—N1—C261.1 (2)Ce—N18—C13—C115.6 (3)
O51—Ce—N1—C252.1 (2)N12—C11—C13—N1813.1 (4)
N18—Ce—N1—C2169.1 (2)C10—C11—C13—N18166.0 (3)
O52—Ce—N1—C24.5 (2)N12—C11—C13—C14167.9 (3)
O41—Ce—N1—C2107.2 (2)C10—C11—C13—C1413.1 (4)
O21—Ce—N1—C219.6 (3)N18—C13—C14—C151.9 (5)
N12—Ce—N1—C2172.6 (2)C11—C13—C14—C15177.1 (3)
O32—Ce—N1—C259.1 (2)C13—C14—C15—C160.5 (5)
O42—Ce—N1—C669.9 (2)C14—C15—C16—C171.6 (5)
O31—Ce—N1—C665.1 (2)C13—N18—C17—C161.3 (5)
O22—Ce—N1—C6110.1 (2)Ce—N18—C17—C16177.8 (3)
O51—Ce—N1—C6136.7 (2)C15—C16—C17—N182.6 (5)
N18—Ce—N1—C62.1 (2)C65—N6—C61—C621.1 (6)
O52—Ce—N1—C6175.7 (2)N6—C61—C62—C630.8 (7)
O41—Ce—N1—C681.6 (2)C61—C62—C63—C640.1 (7)
O21—Ce—N1—C6169.25 (17)C62—C63—C64—C650.8 (6)
N12—Ce—N1—C61.40 (18)C61—N6—C65—C640.3 (6)
O32—Ce—N1—C6112.1 (2)C63—C64—C65—N60.6 (6)
Ce—O21—N2—O23164.3 (3)C75—N7—C71—C720.8 (7)
Ce—O21—N2—O2215.0 (3)N7—C71—C72—C730.7 (9)
Ce—O22—N2—O23163.7 (3)C71—C72—C73—C740.9 (9)
Ce—O22—N2—O2115.7 (3)C72—C73—C74—C752.3 (8)
Ce—O31—N3—O33171.6 (2)C71—N7—C75—C740.7 (6)
Ce—O31—N3—O328.4 (3)C73—C74—C75—N72.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N70.861.792.652 (5)177
N7—H7A···N60.861.792.652 (5)178
(II) bis(methanol-κO)tris(nitrato-κ2O,O')(2,2':6',2''-terpyridine-κ3N) cerium(III) top
Crystal data top
[Ce(NO3)3(C15H11N3)(CH4O)2]Z = 2
Mr = 623.50F(000) = 618
Triclinic, P1Dx = 1.834 Mg m3
a = 7.7460 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2280 (3) ÅCell parameters from all reflections
c = 12.3405 (3) Åθ = 1.7–26.3°
α = 91.253 (2)°µ = 2.09 mm1
β = 103.238 (2)°T = 293 K
γ = 96.510 (2)°Plate, yellow
V = 1129.09 (5) Å30.30 × 0.25 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4502 independent reflections
Radiation source: fine-focus sealed tube4278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scans to cover a hemisphere of the reciprocal spaceθmax = 26.3°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
h = 99
Tmin = 0.47, Tmax = 0.78k = 1515
9758 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
4495 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 1.04 (1.04Å from Ce) e Å3
0 restraintsΔρmin = 1.75 (0.86Å from Ce) e Å3
Crystal data top
[Ce(NO3)3(C15H11N3)(CH4O)2]γ = 96.510 (2)°
Mr = 623.50V = 1129.09 (5) Å3
Triclinic, P1Z = 2
a = 7.7460 (2) ÅMo Kα radiation
b = 12.2280 (3) ŵ = 2.09 mm1
c = 12.3405 (3) ÅT = 293 K
α = 91.253 (2)°0.30 × 0.25 × 0.10 mm
β = 103.238 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4502 independent reflections
Absorption correction: empirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
4278 reflections with I > 2σ(I)
Tmin = 0.47, Tmax = 0.78Rint = 0.062
9758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.04 (1.04Å from Ce) e Å3
4495 reflectionsΔρmin = 1.75 (0.86Å from Ce) e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 7 flagged for potential systematic errors

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.377513 (17)0.285737 (10)0.307743 (10)0.02438 (9)
O10.6265 (3)0.16391 (18)0.3317 (2)0.0381 (5)
H10.676 (6)0.172 (3)0.282 (4)0.048 (12)*
O20.6390 (3)0.3643 (2)0.4672 (2)0.0391 (5)
H20.623 (6)0.401 (3)0.525 (4)0.051 (11)*
O210.0379 (3)0.2521 (2)0.2951 (2)0.0474 (6)
O220.0568 (4)0.2427 (2)0.1241 (2)0.0479 (6)
O230.1859 (3)0.1742 (2)0.1674 (2)0.0457 (6)
O310.2403 (4)0.4486 (2)0.1823 (2)0.0474 (6)
O320.3609 (3)0.49318 (18)0.35459 (18)0.0412 (5)
O330.2700 (4)0.6198 (2)0.2415 (3)0.0584 (7)
O410.3506 (4)0.17301 (19)0.47845 (19)0.0453 (6)
O420.2788 (3)0.3359 (2)0.4953 (2)0.0412 (6)
O430.2408 (6)0.2167 (3)0.6176 (3)0.0793 (10)
N10.6090 (3)0.4044 (2)0.2114 (2)0.0338 (5)
N20.0317 (4)0.2235 (2)0.1944 (2)0.0355 (6)
N30.2885 (4)0.5230 (2)0.2576 (2)0.0362 (6)
N40.2886 (4)0.2424 (3)0.5332 (2)0.0423 (7)
N120.4209 (3)0.2121 (2)0.1103 (2)0.0260 (5)
N180.2441 (3)0.0760 (2)0.2355 (2)0.0329 (5)
C20.7083 (5)0.4960 (3)0.2636 (3)0.0415 (7)
H2A0.70300.51330.33640.050*
C30.8174 (5)0.5652 (3)0.2147 (3)0.0461 (8)
H3A0.88350.62820.25330.055*
C40.8265 (5)0.5391 (3)0.1069 (3)0.0501 (9)
H4A0.90040.58360.07190.060*
C50.7258 (5)0.4471 (3)0.0528 (3)0.0431 (8)
H5A0.73110.42810.01970.052*
C60.6147 (4)0.3814 (2)0.1057 (2)0.0296 (6)
C70.5020 (4)0.2810 (2)0.0483 (2)0.0281 (6)
C80.4858 (5)0.2574 (3)0.0650 (3)0.0428 (8)
H8A0.53950.30690.10710.051*
C90.3898 (5)0.1606 (3)0.1138 (3)0.0477 (8)
H9A0.37490.14490.18970.057*
C100.3161 (5)0.0871 (3)0.0496 (3)0.0415 (7)
H10A0.25600.01940.08070.050*
C110.3327 (4)0.1150 (2)0.0625 (2)0.0300 (6)
C130.2533 (4)0.0375 (2)0.1344 (2)0.0306 (6)
C140.1921 (5)0.0714 (3)0.0973 (3)0.0426 (8)
H14A0.20180.09710.02770.051*
C150.1162 (6)0.1411 (3)0.1655 (4)0.0529 (10)
H15A0.07570.21430.14240.063*
C160.1016 (6)0.1014 (3)0.2664 (3)0.0529 (9)
H16A0.04810.14620.31250.063*
C170.1678 (5)0.0066 (3)0.2986 (3)0.0434 (8)
H17A0.15920.03300.36820.052*
C190.6772 (7)0.0760 (4)0.4005 (4)0.0740 (14)
H19A0.64040.08440.46910.111*
H19B0.80460.07690.41610.111*
H19C0.62070.00720.36280.111*
C200.8269 (5)0.3570 (4)0.4986 (4)0.0563 (10)
H20A0.86570.32970.43580.084*
H20B0.85110.30780.55830.084*
H20C0.88990.42880.52290.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.02784 (12)0.02614 (12)0.02082 (12)0.00039 (7)0.01090 (8)0.00071 (7)
O10.0439 (13)0.0420 (12)0.0344 (12)0.0127 (10)0.0173 (11)0.0074 (10)
O20.0337 (12)0.0513 (14)0.0308 (12)0.0032 (10)0.0065 (9)0.0085 (10)
O210.0345 (12)0.0663 (16)0.0394 (13)0.0025 (11)0.0083 (10)0.0152 (11)
O220.0465 (15)0.0512 (15)0.0521 (15)0.0024 (11)0.0260 (12)0.0011 (12)
O230.0278 (11)0.0578 (15)0.0480 (14)0.0050 (10)0.0079 (10)0.0133 (11)
O310.0589 (15)0.0451 (13)0.0351 (12)0.0050 (11)0.0055 (11)0.0017 (11)
O320.0608 (15)0.0374 (12)0.0272 (11)0.0104 (10)0.0117 (10)0.0003 (9)
O330.079 (2)0.0350 (13)0.0692 (19)0.0142 (13)0.0283 (15)0.0182 (12)
O410.0677 (16)0.0389 (12)0.0347 (12)0.0044 (11)0.0240 (12)0.0030 (10)
O420.0483 (14)0.0432 (13)0.0350 (13)0.0032 (11)0.0168 (11)0.0011 (10)
O430.122 (3)0.086 (2)0.0495 (18)0.012 (2)0.058 (2)0.0217 (16)
N10.0331 (13)0.0340 (13)0.0358 (14)0.0029 (10)0.0140 (11)0.0017 (11)
N20.0318 (14)0.0350 (13)0.0416 (15)0.0027 (10)0.0138 (12)0.0062 (11)
N30.0402 (15)0.0352 (14)0.0373 (15)0.0048 (11)0.0168 (12)0.0100 (11)
N40.0496 (17)0.0494 (17)0.0301 (15)0.0052 (13)0.0191 (13)0.0034 (13)
N120.0265 (12)0.0307 (12)0.0223 (12)0.0027 (9)0.0091 (9)0.0028 (9)
N180.0350 (14)0.0311 (13)0.0320 (13)0.0031 (10)0.0102 (11)0.0029 (10)
C20.0455 (19)0.0392 (17)0.0398 (18)0.0047 (14)0.0149 (15)0.0026 (14)
C30.0431 (19)0.0396 (17)0.052 (2)0.0114 (14)0.0119 (16)0.0014 (15)
C40.049 (2)0.047 (2)0.057 (2)0.0109 (15)0.0250 (17)0.0145 (17)
C50.051 (2)0.0462 (18)0.0382 (18)0.0025 (15)0.0251 (15)0.0099 (15)
C60.0268 (14)0.0335 (14)0.0318 (15)0.0042 (11)0.0131 (12)0.0072 (12)
C70.0277 (14)0.0351 (15)0.0246 (14)0.0049 (11)0.0114 (11)0.0062 (12)
C80.049 (2)0.052 (2)0.0299 (17)0.0009 (15)0.0157 (14)0.0073 (15)
C90.062 (2)0.060 (2)0.0237 (16)0.0043 (18)0.0175 (15)0.0026 (15)
C100.049 (2)0.0410 (17)0.0337 (18)0.0023 (14)0.0126 (14)0.0070 (14)
C110.0290 (14)0.0320 (14)0.0296 (15)0.0049 (11)0.0075 (12)0.0016 (11)
C130.0272 (14)0.0311 (15)0.0327 (16)0.0014 (11)0.0065 (12)0.0017 (12)
C140.051 (2)0.0298 (15)0.0451 (19)0.0046 (13)0.0143 (15)0.0079 (13)
C150.065 (3)0.0278 (17)0.061 (3)0.0089 (16)0.012 (2)0.0034 (16)
C160.064 (2)0.0371 (18)0.055 (2)0.0120 (16)0.0185 (19)0.0107 (16)
C170.056 (2)0.0414 (18)0.0318 (17)0.0090 (15)0.0145 (15)0.0031 (14)
C190.084 (3)0.081 (3)0.072 (3)0.041 (3)0.031 (3)0.035 (3)
C200.0349 (19)0.073 (3)0.057 (2)0.0039 (17)0.0049 (17)0.010 (2)
Geometric parameters (Å, º) top
Ce—O12.537 (2)C2—H2A0.9300
Ce—O22.559 (2)C3—C41.380 (6)
Ce—O412.578 (2)C3—H3A0.9300
Ce—O212.584 (2)C4—C51.360 (5)
Ce—O322.613 (2)C4—H4A0.9300
Ce—O422.678 (2)C5—C61.392 (4)
Ce—N12.682 (2)C5—H5A0.9300
Ce—N122.685 (2)C6—C71.486 (4)
Ce—N182.705 (2)C7—C81.396 (5)
Ce—O312.712 (2)C8—C91.371 (5)
Ce—O222.942 (3)C8—H8A0.9300
O1—C191.419 (4)C9—C101.372 (5)
O1—H10.80 (4)C9—H9A0.9300
O2—C201.432 (4)C10—C111.392 (4)
O2—H20.88 (5)C10—H10A0.9300
O21—N21.260 (4)C11—C131.489 (4)
O22—N21.235 (4)C13—C141.392 (4)
O23—N21.243 (4)C14—C151.387 (5)
O31—N31.248 (4)C14—H14A0.9300
O32—N31.280 (3)C15—C161.359 (6)
O33—N31.223 (4)C15—H15A0.9300
O41—N41.274 (4)C16—C171.377 (5)
O42—N41.248 (4)C16—H16A0.9300
O43—N41.220 (4)C17—H17A0.9300
N1—C61.339 (4)C19—H19A0.9600
N1—C21.345 (4)C19—H19B0.9600
N12—C71.349 (4)C19—H19C0.9600
N12—C111.351 (4)C20—H20A0.9600
N18—C171.342 (4)C20—H20B0.9600
N18—C131.345 (4)C20—H20C0.9600
C2—C31.375 (5)
O1—Ce—O269.82 (8)O22—N2—O21119.0 (3)
O1—Ce—O4174.91 (8)O23—N2—O21120.1 (3)
O2—Ce—O4173.53 (8)O33—N3—O31122.9 (3)
O1—Ce—O21134.78 (8)O33—N3—O32120.7 (3)
O2—Ce—O21131.37 (8)O31—N3—O32116.4 (2)
O41—Ce—O2175.75 (9)O43—N4—O42122.8 (3)
O1—Ce—O32134.86 (8)O43—N4—O41120.6 (3)
O2—Ce—O3268.83 (8)O42—N4—O41116.6 (3)
O41—Ce—O32109.26 (7)C7—N12—C11118.6 (3)
O21—Ce—O3287.33 (8)C7—N12—Ce119.6 (2)
O1—Ce—O42114.95 (8)C11—N12—Ce120.49 (18)
O2—Ce—O4266.49 (8)C17—N18—C13117.6 (3)
O41—Ce—O4248.15 (7)C17—N18—Ce121.8 (2)
O21—Ce—O4264.90 (8)C13—N18—Ce120.60 (18)
O32—Ce—O4262.30 (7)N1—C2—C3123.2 (3)
O1—Ce—N179.10 (8)N1—C2—H2A118.4
O2—Ce—N174.25 (8)C3—C2—H2A118.4
O41—Ce—N1143.92 (8)C2—C3—C4118.4 (3)
O21—Ce—N1139.47 (8)C2—C3—H3A120.8
O32—Ce—N173.07 (8)C4—C3—H3A120.8
O42—Ce—N1128.27 (8)C5—C4—C3119.0 (3)
O1—Ce—N1268.45 (8)C5—C4—H4A120.5
O2—Ce—N12122.99 (8)C3—C4—H4A120.5
O41—Ce—N12127.79 (8)C4—C5—C6120.0 (3)
O21—Ce—N12105.61 (7)C4—C5—H5A120.0
O32—Ce—N12122.95 (7)C6—C5—H5A120.0
O42—Ce—N12169.79 (8)N1—C6—C5121.4 (3)
N1—Ce—N1261.22 (8)N1—C6—C7117.4 (2)
O1—Ce—N1869.52 (8)C5—C6—C7121.2 (3)
O2—Ce—N18131.67 (8)N12—C7—C8121.4 (3)
O41—Ce—N1871.62 (8)N12—C7—C6117.6 (3)
O21—Ce—N1868.97 (8)C8—C7—C6121.0 (3)
O32—Ce—N18155.56 (8)C9—C8—C7119.4 (3)
O42—Ce—N18109.86 (8)C9—C8—H8A120.3
N1—Ce—N18121.36 (8)C7—C8—H8A120.3
N12—Ce—N1861.52 (7)C8—C9—C10119.5 (3)
O1—Ce—O31141.68 (8)C8—C9—H9A120.3
O2—Ce—O31110.96 (8)C10—C9—H9A120.3
O41—Ce—O31143.29 (8)C9—C10—C11119.1 (3)
O21—Ce—O3175.23 (8)C9—C10—H10A120.4
O32—Ce—O3147.54 (7)C11—C10—H10A120.4
O42—Ce—O3198.64 (8)N12—C11—C10121.8 (3)
N1—Ce—O3165.29 (8)N12—C11—C13117.6 (3)
N12—Ce—O3181.80 (7)C10—C11—C13120.5 (3)
N18—Ce—O31117.06 (8)N18—C13—C14121.6 (3)
O1—Ce—O22121.35 (8)N18—C13—C11117.9 (2)
O2—Ce—O22167.98 (8)C14—C13—C11120.5 (3)
O41—Ce—O22112.37 (8)C15—C14—C13119.1 (3)
O21—Ce—O2245.22 (7)C15—C14—H14A120.4
O32—Ce—O2299.16 (7)C13—C14—H14A120.4
O42—Ce—O22109.00 (8)C16—C15—C14119.4 (3)
N1—Ce—O22102.39 (7)C16—C15—H15A120.3
N12—Ce—O2262.53 (7)C14—C15—H15A120.3
N18—Ce—O2260.07 (7)C15—C16—C17118.4 (3)
O31—Ce—O2257.84 (7)C15—C16—H16A120.8
C19—O1—Ce135.0 (2)C17—C16—H16A120.8
C19—O1—H1115 (3)N18—C17—C16123.8 (3)
Ce—O1—H1109 (3)N18—C17—H17A118.1
C20—O2—Ce136.3 (2)C16—C17—H17A118.1
C20—O2—H2101 (3)O1—C19—H19A109.5
Ce—O2—H2122 (3)O1—C19—H19B109.5
N2—O21—Ce105.08 (18)H19A—C19—H19B109.5
N2—O22—Ce88.2 (2)O1—C19—H19C109.5
N3—O31—Ce95.94 (17)H19A—C19—H19C109.5
N3—O32—Ce99.84 (17)H19B—C19—H19C109.5
N4—O41—Ce99.53 (17)O2—C20—H20A109.5
N4—O42—Ce95.35 (19)O2—C20—H20B109.5
C6—N1—C2117.9 (3)H20A—C20—H20B109.5
C6—N1—Ce121.07 (19)O2—C20—H20C109.5
C2—N1—Ce120.6 (2)H20A—C20—H20C109.5
O22—N2—O23120.8 (3)H20B—C20—H20C109.5
O2—Ce—O1—C1985.0 (4)O31—Ce—N1—C289.2 (2)
O41—Ce—O1—C197.4 (4)O22—Ce—N1—C2134.7 (2)
O21—Ce—O1—C1943.8 (4)Ce—O22—N2—O23163.6 (3)
O32—Ce—O1—C19109.7 (4)Ce—O22—N2—O2114.6 (3)
O42—Ce—O1—C1934.8 (4)Ce—O21—N2—O2217.3 (3)
N1—Ce—O1—C19162.1 (4)Ce—O21—N2—O23161.0 (2)
N12—Ce—O1—C19134.7 (4)Ce—O31—N3—O33174.3 (3)
N18—Ce—O1—C1968.3 (4)Ce—O31—N3—O325.3 (3)
O31—Ce—O1—C19176.4 (4)Ce—O32—N3—O33174.0 (3)
O22—Ce—O1—C1999.9 (4)Ce—O32—N3—O315.6 (3)
O1—Ce—O2—C2023.7 (3)Ce—O42—N4—O43173.6 (4)
O41—Ce—O2—C20103.3 (4)Ce—O42—N4—O415.8 (3)
O21—Ce—O2—C20156.2 (3)Ce—O41—N4—O43173.4 (3)
O32—Ce—O2—C20137.8 (4)Ce—O41—N4—O426.1 (3)
O42—Ce—O2—C20154.2 (4)O1—Ce—N12—C7104.7 (2)
N1—Ce—O2—C2060.3 (3)O2—Ce—N12—C759.1 (2)
N12—Ce—O2—C2021.5 (4)O41—Ce—N12—C7153.40 (19)
N18—Ce—O2—C2058.0 (4)O21—Ce—N12—C7122.7 (2)
O31—Ce—O2—C20115.3 (3)O32—Ce—N12—C725.6 (2)
O22—Ce—O2—C20135.6 (4)O42—Ce—N12—C7143.8 (3)
O1—Ce—O21—N283.9 (2)N1—Ce—N12—C715.6 (2)
O2—Ce—O21—N2173.02 (17)N18—Ce—N12—C7177.6 (2)
O41—Ce—O21—N2134.8 (2)O31—Ce—N12—C750.7 (2)
O32—Ce—O21—N2114.5 (2)O22—Ce—N12—C7108.6 (2)
O42—Ce—O21—N2175.1 (2)O1—Ce—N12—C1188.4 (2)
N1—Ce—O21—N254.8 (2)O2—Ce—N12—C11134.1 (2)
N12—Ce—O21—N29.0 (2)O41—Ce—N12—C1139.8 (2)
N18—Ce—O21—N259.35 (19)O21—Ce—N12—C1144.1 (2)
O31—Ce—O21—N267.9 (2)O32—Ce—N12—C11141.2 (2)
O22—Ce—O21—N28.83 (17)O42—Ce—N12—C1123.0 (5)
O1—Ce—O22—N2115.18 (17)N1—Ce—N12—C11177.6 (2)
O2—Ce—O22—N287.8 (4)N18—Ce—N12—C1110.8 (2)
O41—Ce—O22—N229.70 (19)O31—Ce—N12—C11116.2 (2)
O21—Ce—O22—N28.71 (16)O22—Ce—N12—C1158.3 (2)
O32—Ce—O22—N285.62 (18)O1—Ce—N18—C1799.8 (3)
O42—Ce—O22—N221.88 (19)O2—Ce—N18—C1765.4 (3)
N1—Ce—O22—N2160.15 (17)O41—Ce—N18—C1719.5 (2)
N12—Ce—O22—N2151.9 (2)O21—Ce—N18—C1761.9 (3)
N18—Ce—O22—N280.61 (18)O32—Ce—N18—C1776.8 (3)
O31—Ce—O22—N2110.23 (19)O42—Ce—N18—C1710.3 (3)
O1—Ce—O31—N3109.43 (19)N1—Ce—N18—C17162.1 (2)
O2—Ce—O31—N325.8 (2)N12—Ce—N18—C17175.7 (3)
O41—Ce—O31—N364.5 (2)O31—Ce—N18—C17121.7 (2)
O21—Ce—O31—N3103.30 (19)O22—Ce—N18—C17111.4 (3)
O32—Ce—O31—N33.17 (16)O1—Ce—N18—C1379.8 (2)
O42—Ce—O31—N342.23 (19)O2—Ce—N18—C13114.2 (2)
N1—Ce—O31—N386.07 (19)O41—Ce—N18—C13160.1 (2)
N12—Ce—O31—N3148.09 (19)O21—Ce—N18—C13118.5 (2)
N18—Ce—O31—N3159.84 (17)O32—Ce—N18—C13103.7 (3)
O22—Ce—O31—N3149.3 (2)O42—Ce—N18—C13170.1 (2)
O1—Ce—O32—N3123.01 (17)N1—Ce—N18—C1317.5 (3)
O2—Ce—O32—N3147.85 (19)N12—Ce—N18—C133.9 (2)
O41—Ce—O32—N3149.36 (17)O31—Ce—N18—C1358.7 (2)
O21—Ce—O32—N375.47 (18)O22—Ce—N18—C1369.0 (2)
O42—Ce—O32—N3138.4 (2)C6—N1—C2—C31.4 (5)
N1—Ce—O32—N368.59 (18)Ce—N1—C2—C3174.1 (3)
N12—Ce—O32—N331.4 (2)N1—C2—C3—C40.5 (6)
N18—Ce—O32—N361.6 (3)C2—C3—C4—C51.0 (6)
O31—Ce—O32—N33.12 (16)C3—C4—C5—C60.5 (6)
O22—Ce—O32—N331.67 (18)C2—N1—C6—C52.9 (5)
O1—Ce—O41—N4149.3 (2)Ce—N1—C6—C5175.6 (2)
O2—Ce—O41—N476.3 (2)C2—N1—C6—C7179.0 (3)
O21—Ce—O41—N465.5 (2)Ce—N1—C6—C76.4 (3)
O32—Ce—O41—N416.5 (2)C4—C5—C6—N12.5 (5)
O42—Ce—O41—N43.39 (18)C4—C5—C6—C7179.5 (3)
N1—Ce—O41—N4103.9 (2)C11—N12—C7—C84.6 (4)
N12—Ce—O41—N4164.39 (18)Ce—N12—C7—C8162.5 (2)
N18—Ce—O41—N4137.7 (2)C11—N12—C7—C6173.4 (3)
O31—Ce—O41—N426.8 (3)Ce—N12—C7—C619.5 (3)
O22—Ce—O41—N492.6 (2)N1—C6—C7—N128.7 (4)
O1—Ce—O42—N440.1 (2)C5—C6—C7—N12169.3 (3)
O2—Ce—O42—N492.0 (2)N1—C6—C7—C8173.3 (3)
O41—Ce—O42—N43.43 (18)C5—C6—C7—C88.7 (5)
O21—Ce—O42—N489.7 (2)N12—C7—C8—C92.0 (5)
O32—Ce—O42—N4169.5 (2)C6—C7—C8—C9175.9 (3)
N1—Ce—O42—N4135.90 (19)C7—C8—C9—C102.0 (6)
N12—Ce—O42—N467.2 (4)C8—C9—C10—C113.3 (6)
N18—Ce—O42—N435.9 (2)C7—N12—C11—C103.2 (4)
O31—Ce—O42—N4158.9 (2)Ce—N12—C11—C10163.8 (2)
O22—Ce—O42—N4100.0 (2)C7—N12—C11—C13176.5 (2)
O1—Ce—N1—C682.2 (2)Ce—N12—C11—C1316.6 (3)
O2—Ce—N1—C6154.1 (2)C9—C10—C11—N120.7 (5)
O41—Ce—N1—C6126.7 (2)C9—C10—C11—C13179.6 (3)
O21—Ce—N1—C669.2 (3)C17—N18—C13—C142.2 (5)
O32—Ce—N1—C6133.7 (2)Ce—N18—C13—C14177.4 (2)
O42—Ce—N1—C6164.5 (2)C17—N18—C13—C11178.1 (3)
N12—Ce—N1—C611.0 (2)Ce—N18—C13—C112.3 (3)
N18—Ce—N1—C624.6 (3)N12—C11—C13—N1812.4 (4)
O31—Ce—N1—C683.2 (2)C10—C11—C13—N18167.9 (3)
O22—Ce—N1—C637.8 (2)N12—C11—C13—C14167.3 (3)
O1—Ce—N1—C2105.3 (2)C10—C11—C13—C1412.4 (4)
O2—Ce—N1—C233.4 (2)N18—C13—C14—C151.4 (5)
O41—Ce—N1—C260.9 (3)C11—C13—C14—C15179.0 (3)
O21—Ce—N1—C2103.2 (3)C13—C14—C15—C160.7 (6)
O32—Ce—N1—C238.8 (2)C14—C15—C16—C171.8 (6)
O42—Ce—N1—C28.0 (3)C13—N18—C17—C161.0 (5)
N12—Ce—N1—C2176.6 (3)Ce—N18—C17—C16178.6 (3)
N18—Ce—N1—C2163.0 (2)C15—C16—C17—N181.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O23i0.80 (4)1.96 (5)2.750 (3)172 (4)
O2—H2···O32ii0.88 (5)1.92 (5)2.775 (3)165 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H6N·[Ce(NO3)4(C15H11N3)]·C5H5N[Ce(NO3)3(C15H11N3)(CH4O)2]
Mr780.64623.50
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)13.0982 (3), 12.8311 (3), 17.8255 (3)7.7460 (2), 12.2280 (3), 12.3405 (3)
α, β, γ (°)90, 91.6958 (12), 9091.253 (2), 103.238 (2), 96.510 (2)
V3)2994.52 (11)1129.09 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.602.09
Crystal size (mm)0.2 × 0.2 × 0.20.30 × 0.25 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
Empirical (using intensity measurements)
MULABS in PLATON (Spek, 1998)
Tmin, Tmax0.673, 0.7020.47, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
23126, 6770, 5416 9758, 4502, 4278
Rint0.0990.062
(sin θ/λ)max1)0.6500.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.082, 1.05 0.033, 0.087, 1.02
No. of reflections67484495
No. of parameters424326
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23 (1.34Å from Ce), 2.87 (0.04Å from Ce)1.04 (1.04Å from Ce), 1.75 (0.86Å from Ce)

Computer programs: COLLECT (Nonius, 1998), HKL (Otwinowski & Minor, 1997), HKL, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SHELXTL (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O23i0.80 (4)1.96 (5)2.750 (3)172 (4)
O2—H2···O32ii0.88 (5)1.92 (5)2.775 (3)165 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds