Download citation
Download citation
link to html
The crystal structure of poly­[copper(II)-di-μ-hypophosphito-μ-urea], [Cu(H2PO2)2(CH4N2O)]n, has been determined at 293, 100 and 15 K. The geometry of the hypophosphite anion is very close to ideal, with point symmetry mm2. Each Cu atom lies on an inversion centre and is coordinated to six O atoms from four hypophosphite anions and two urea mol­ecules, forming a tetragonal bipyramid. The unique urea molecule lies on a twofold axis. Each hypophosphite anion in the structure is coordinated to two Cu atoms. The hypophosphite anions, urea mol­ecules and CuII cations form polymeric ribbons. The CuII cations in the ribbon are linked together by two hypophos­phite anions and a urea mol­ecule, which is coordinated to Cu via an O atom. The ribbons are linked to each other by N—­H...O hydrogen bonds and form polymeric layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101004711/av1072sup1.cif
Contains datablocks Iat293K, Iat100K, Iat15K, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004711/av1072Iat293Ksup2.hkl
Contains datablock I_at_293K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004711/av1072Iat100Ksup3.hkl
Contains datablock I_at_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004711/av1072Iat15Ksup4.hkl
Contains datablock I_at_15K

CCDC references: 169920; 169921; 169922

Comment top

The present paper reports the results of a multiple-temperature single-crystal structural analysis for a urea complex of copper(II) hypophosphite, (I). No structural data for this compound have been reported previously, despite the great importance of the complex in many technological processes (Lomovsky & Boldyrev, 1994). The synthesis of the urea complex of copper(II) hypophosphite by adding different amounts of urea to copper(II) hypophosphite in solution was described by Yagodin (1985, 1988). Our studies have shown that different starting ratios of the hypophosphite and urea components (from 1:1 to 1:8) always give the same crystals with an equal ratio (1:1) of copper(II) hypophosphite and urea. \sch

The geometry of the hypophosphite anion in the crystal structure of (I) is very close to the ideal, with point symmetry mm2. Each Cu atom is coordinated to six O atoms from four hypophosphite anions and two urea molecules, forming a tetragonal bipyramid. Each hypophosphite anion in the structure is coordinated to two Cu atoms. Two different types of Cu—O bonds are observed. The hypophosphite anions, urea and CuII cations form polymeric ribbons in the [001] direction (Fig. 1). The CuII cations in the ribbon are linked together by two hypophosphite anions and a urea molecule, which is coordinated to Cu via an O atom. The ribbons are linked to each other via N—H3···O1iii hydrogen bonds [symmetry code: (iii) x, 1 + y, z] along the [010] direction and form polymeric layers in the (100) plane (Fig. 1). The urea molecule is rotated in a special way, to form an N—H4···O2i hydrogen bond [symmetry code: (i) x, -y, 1/2 + z] with the nearest hypophosphite anion in the ribbon. The different layers are linked to each other by van der Waals interactions (Fig. 2).

On cooling to 15 K, the structure of (I) contracted anisotropically. The contractions were calculated from the change in the cell parameters between 293 and 100 K, since the same diffractometer was used for data collection. On cooling from 100 to 15 K the character of the contractions was the same. The direction of minimum contraction [-0.297 (2)%; axis 1 of the strain tensor in Fig. 1] coincides with the crystallographic b axis. The direction of this minimum contraction can be correlated with the N—H3···O1iii hydrogen bonds between different ribbons. The direction of medium contraction [-0.321 (4)%; axis 2 of the strain tensor in Fig. 1] is close to the crystallographic c axis. The direction of the medium contraction can be correlated with the contraction of long Cu—O distances on cooling, and both these shorter contractions lie essentially within the layer. The direction of maximum contraction [-1.620 (2)%; axis 3 of the strain tensor in Fig. 1] lies near the crystallographic a axis. This maximum contraction can be correlated with the decrease of the distance between layers in the crystallographic a direction.

Experimental top

Compound (I) was synthesized by adding hypophosphorous acid, H3PO2 (2.3771 g of 50% water solution in 35 ml of water), to basic copper carbonate, CuCO3·Cu(OH)2 (1 g). The reacting mixture was evacuated until carbon dioxide evolution had stopped (about 10 min). Next, a solution of urea (4.3852 g in 20 ml of water) was added to the solution of copper hypophosphite. The molar ratios of the three starting materials were 1:4:16 for copper carbonate, hypophosphorous acid and urea, respectively (QUERY). Crystals of (I) were grown at 288 K from a water solution under a nitrogen atmosphere.

Computing details top

Data collection: SMART (Siemens, 1994) for Iat293K, Iat100K; MAD (Allibon, 1996) for Iat15K. Cell refinement: SAINT (Siemens, 1994) for Iat293K, Iat100K; RAFIN (Filhol et al., 1987) for Iat15K. Data reduction: SAINT for Iat293K, Iat100K; COLL5N (Lehmann et al., 1987) for Iat15K. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The layer formed by the CuII cations, hypophosphite anions and urea in (I) at 293 K projected along [100]. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii. The crystallographic axes and the axes of the strain tensor on cooling (1 = minimum, 2 = medium, 3 = maximum contraction) are shown, and dotted lines indicate the N—H···O hydrogen bonds [symmetry codes: (i) x, -y, 1/2 + z; (ii) -x, y, 1/2 - z].
[Figure 2] Fig. 2. The packing diagram of the structure of (I) projected along [001]. Dotted lines indicate the N—H···O hydrogen bonds.
(Iat293K) poly[copper(II)-di-µ-hypophosphito-µ-urea] top
Crystal data top
[Cu(H2PO2)2(CH4N2O)]F(000) = 508
Mr = 253.57Dx = 2.209 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.5540 (3) ÅCell parameters from 2732 reflections
b = 7.4686 (2) Åθ = 3.2–29.1°
c = 8.2628 (3) ŵ = 3.26 mm1
β = 100.2722 (13)°T = 293 K
V = 762.31 (4) Å3Irregular, blue
Z = 40.54 × 0.30 × 0.22 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1014 independent reflections
Radiation source: fine-focus sealed tube920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.192 pixels mm-1θmax = 29.1°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.221, Tmax = 0.488l = 1011
2894 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1014 reflectionsΔρmax = 0.40 e Å3
70 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (2)
Crystal data top
[Cu(H2PO2)2(CH4N2O)]V = 762.31 (4) Å3
Mr = 253.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.5540 (3) ŵ = 3.26 mm1
b = 7.4686 (2) ÅT = 293 K
c = 8.2628 (3) Å0.54 × 0.30 × 0.22 mm
β = 100.2722 (13)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1014 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
920 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.488Rint = 0.030
2894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.076All H-atom parameters refined
S = 1.12Δρmax = 0.40 e Å3
1014 reflectionsΔρmin = 0.73 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1001/20.01994 (17)
P10.17206 (4)0.12420 (7)0.29901 (6)0.02362 (18)
H10.259 (2)0.227 (4)0.332 (4)0.036 (7)*
H20.204 (2)0.056 (5)0.337 (4)0.044 (8)*
O10.09677 (12)0.17305 (18)0.41699 (17)0.0245 (3)
O20.12775 (12)0.1344 (2)0.11669 (18)0.0278 (3)
O300.1676 (3)1/40.0262 (4)
C100.3358 (4)1/40.0248 (5)
N10.0690 (2)0.4284 (3)0.3625 (3)0.0390 (5)
H30.062 (3)0.529 (5)0.380 (4)0.033 (8)*
H40.099 (4)0.382 (6)0.437 (6)0.069 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0259 (2)0.0190 (2)0.0146 (2)0.00243 (10)0.00285 (13)0.00262 (10)
P10.0253 (3)0.0269 (3)0.0178 (3)0.00247 (18)0.00147 (18)0.00155 (18)
O10.0345 (7)0.0190 (7)0.0208 (6)0.0029 (5)0.0069 (6)0.0027 (5)
O20.0328 (7)0.0322 (8)0.0180 (6)0.0100 (6)0.0032 (6)0.0028 (5)
O30.0422 (11)0.0149 (9)0.0212 (9)00.0051 (8)0
C10.0351 (14)0.0193 (12)0.0231 (12)00.0133 (11)0
N10.0571 (13)0.0207 (10)0.0380 (11)0.0077 (9)0.0050 (10)0.0063 (8)
Geometric parameters (Å, º) top
Cu1—O1i1.9784 (14)P1—H11.32 (3)
Cu1—O11.9784 (14)P1—H21.42 (4)
Cu1—O2ii1.9895 (14)O2—Cu1ii1.9895 (14)
Cu1—O2iii1.9895 (14)O3—C11.256 (3)
Cu1—O32.4153 (10)O3—Cu1ii2.4154 (10)
Cu1—O3i2.4153 (10)C1—N11.344 (3)
Cu1—Cu1ii4.1314 (2)C1—N1ii1.344 (3)
P1—O11.5184 (15)N1—H30.77 (3)
P1—O21.5119 (15)N1—H40.75 (5)
O1i—Cu1—O1180.0O3—Cu1—Cu1ii31.21 (4)
O1i—Cu1—O2ii90.34 (6)O3i—Cu1—Cu1ii148.79 (4)
O1—Cu1—O2ii89.66 (6)O1—P1—O2117.84 (8)
O1i—Cu1—O2iii89.66 (6)O1—P1—H1108.5 (13)
O1—Cu1—O2iii90.34 (6)O2—P1—H1108.5 (14)
O2ii—Cu1—O2iii180.00 (6)O1—P1—H2105.5 (13)
O1i—Cu1—O392.96 (5)O2—P1—H2107.8 (14)
O1—Cu1—O387.04 (5)H1—P1—H2108.3 (17)
O2ii—Cu1—O388.28 (5)P1—O1—Cu1123.82 (8)
O2iii—Cu1—O391.72 (5)P1—O2—Cu1ii125.38 (9)
O1i—Cu1—O3i87.04 (5)C1—O3—Cu1ii121.21 (4)
O1—Cu1—O3i92.96 (5)C1—O3—Cu1121.21 (4)
O2ii—Cu1—O3i91.72 (5)Cu1ii—O3—Cu1117.57 (8)
O2iii—Cu1—O3i88.28 (5)O3—C1—N1120.97 (15)
O3—Cu1—O3i180.0O3—C1—N1ii120.97 (15)
O1i—Cu1—Cu1ii117.14 (4)N1—C1—N1ii118.1 (3)
O1—Cu1—Cu1ii62.86 (4)C1—N1—H3123 (2)
O2ii—Cu1—Cu1ii70.07 (4)C1—N1—H4120 (3)
O2iii—Cu1—Cu1ii109.93 (4)H3—N1—H4111 (4)
N1—C1—O3—Cu147.74 (12)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2iii0.75 (5)2.36 (5)3.037 (3)152 (4)
P1—H2···O31.42 (4)2.66 (3)3.0442 (14)91.2 (13)
P1—H2···O2iii1.42 (4)2.72 (3)3.3840 (16)105.4 (17)
N1—H3···O1iv0.77 (3)2.27 (4)3.021 (3)162 (3)
P1—H1···O1v1.32 (3)2.61 (3)3.7139 (15)139 (2)
Symmetry codes: (iii) x, y, z+1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z+1.
(Iat100K) poly[copper(II)-di-µ-hypophosphito-µ-urea] top
Crystal data top
[Cu(H2PO2)2(CH4N2O)]F(000) = 508
Mr = 253.57Dx = 2.260 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.3589 (3) ÅCell parameters from 2798 reflections
b = 7.4464 (2) Åθ = 3.2–29.1°
c = 8.2199 (2) ŵ = 3.34 mm1
β = 99.8369 (14)°T = 100 K
V = 745.35 (3) Å3Irregular, blue
Z = 40.54 × 0.30 × 0.22 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
996 independent reflections
Radiation source: fine-focus sealed tube935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.192 pixels mm-1θmax = 29.1°, θmin = 3.2°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1010
Tmin = 0.297, Tmax = 0.480l = 1011
2849 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.9238P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
996 reflectionsΔρmax = 0.57 e Å3
70 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (9)
Crystal data top
[Cu(H2PO2)2(CH4N2O)]V = 745.35 (3) Å3
Mr = 253.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.3589 (3) ŵ = 3.34 mm1
b = 7.4464 (2) ÅT = 100 K
c = 8.2199 (2) Å0.54 × 0.30 × 0.22 mm
β = 99.8369 (14)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
996 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
935 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.480Rint = 0.020
2849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.057All H-atom parameters refined
S = 1.12Δρmax = 0.57 e Å3
996 reflectionsΔρmin = 0.39 e Å3
70 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1001/20.00715 (12)
P10.17446 (3)0.12486 (6)0.29780 (5)0.00878 (13)
H10.263 (2)0.227 (4)0.334 (3)0.015 (6)*
H20.2168 (19)0.043 (3)0.338 (3)0.010 (5)*
O10.09674 (10)0.17611 (16)0.41549 (15)0.0098 (2)
O20.13054 (10)0.13429 (16)0.11367 (15)0.0107 (2)
O300.1643 (2)1/40.0102 (3)
C100.3341 (3)1/40.0097 (4)
N10.07099 (13)0.4268 (2)0.3624 (2)0.0138 (3)
H30.069 (2)0.530 (4)0.378 (3)0.016 (6)*
H40.107 (2)0.367 (3)0.441 (3)0.014 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00992 (17)0.00583 (16)0.00567 (16)0.00081 (9)0.00120 (10)0.00116 (9)
P10.0104 (2)0.0090 (2)0.0066 (2)0.00057 (14)0.00073 (14)0.00043 (14)
O10.0140 (5)0.0073 (5)0.0084 (5)0.0006 (4)0.0028 (4)0.0008 (4)
O20.0132 (5)0.0115 (5)0.0072 (5)0.0030 (4)0.0014 (4)0.0008 (4)
O30.0172 (8)0.0050 (7)0.0084 (7)00.0024 (6)0
C10.0132 (10)0.0080 (10)0.0090 (10)00.0054 (8)0
N10.0208 (7)0.0065 (7)0.0134 (7)0.0022 (6)0.0010 (6)0.0018 (5)
Geometric parameters (Å, º) top
Cu1—O11.9788 (12)P1—H11.32 (2)
Cu1—O1i1.9788 (12)P1—H21.38 (3)
Cu1—O2ii1.9901 (12)O2—Cu1ii1.9901 (12)
Cu1—O2iii1.9901 (12)O3—C11.264 (3)
Cu1—O3i2.3917 (8)O3—Cu1ii2.3917 (8)
Cu1—O32.3917 (8)C1—N11.3502 (19)
Cu1—Cu1ii4.1100 (1)C1—N1ii1.3502 (19)
P1—O11.5236 (12)N1—H30.78 (3)
P1—O21.5198 (13)N1—H40.85 (3)
O1—Cu1—O1i180.0O3i—Cu1—Cu1ii149.23 (3)
O1—Cu1—O2ii89.55 (5)O3—Cu1—Cu1ii30.77 (3)
O1i—Cu1—O2ii90.45 (5)O1—P1—O2117.66 (7)
O1—Cu1—O2iii90.45 (5)O1—P1—H1107.5 (11)
O1i—Cu1—O2iii89.55 (5)O2—P1—H1109.7 (11)
O2ii—Cu1—O2iii180.00 (9)O1—P1—H2109.4 (10)
O1—Cu1—O3i92.94 (4)O2—P1—H2109.6 (10)
O1i—Cu1—O3i87.06 (4)H1—P1—H2101.7 (15)
O2ii—Cu1—O3i91.56 (4)P1—O1—Cu1122.76 (7)
O2iii—Cu1—O3i88.44 (4)P1—O2—Cu1ii124.56 (7)
O1—Cu1—O387.06 (4)C1—O3—Cu1ii120.77 (3)
O1i—Cu1—O392.94 (4)C1—O3—Cu1120.77 (3)
O2ii—Cu1—O388.44 (4)Cu1ii—O3—Cu1118.46 (7)
O2iii—Cu1—O391.56 (4)O3—C1—N1120.74 (11)
O3i—Cu1—O3180.0O3—C1—N1ii120.74 (11)
O1—Cu1—Cu1ii62.98 (3)N1—C1—N1ii118.5 (2)
O1i—Cu1—Cu1ii117.02 (3)C1—N1—H3126 (2)
O2ii—Cu1—Cu1ii70.67 (3)C1—N1—H4116.9 (17)
O2iii—Cu1—Cu1ii109.33 (3)H3—N1—H4114 (3)
N1—C1—O3—Cu148.15 (8)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2iii0.85 (3)2.23 (3)3.005 (2)153 (2)
P1—H2···O31.38 (3)2.80 (2)3.0250 (12)85.6 (10)
P1—H2···O2iii1.38 (3)2.75 (2)3.3527 (13)103.6 (12)
N1—H3···O1iv0.78 (3)2.23 (3)2.998 (2)169 (3)
P1—H1···O1v1.32 (2)2.56 (3)3.6701 (13)139.7 (16)
Symmetry codes: (iii) x, y, z+1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z+1.
(Iat15K) poly[copper(II)-di-µ-hypophosphito-µ-urea] top
Crystal data top
[Cu(H2PO2)2(CH4N2O)]F(000) = 508
Mr = 253.57Dx = 2.280 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.297 (3) ÅCell parameters from 24 reflections
b = 7.435 (1) Åθ = 8–12°
c = 8.197 (2) ŵ = 3.37 mm1
β = 99.72 (1)°T = 15 K
V = 738.7 (3) Å3Irregular, blue
Z = 40.27 × 0.21 × 0.15 mm
Data collection top
Fddd (Copley et al., 1997)
diffractometer
980 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.025
Graphite monochromatorθmax = 29.1°, θmin = 3.2°
ω scansh = 1616
Absorption correction: empirical (using intensity measurements)
(XPREP; Siemens, 1995)
k = 110
Tmin = 0.407, Tmax = 0.604l = 211
1355 measured reflections3 standard reflections every 100 reflections
993 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.063All H-atom parameters refined
S = 1.23 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.2895P]
where P = (Fo2 + 2Fc2)/3
993 reflections(Δ/σ)max < 0.001
69 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(H2PO2)2(CH4N2O)]V = 738.7 (3) Å3
Mr = 253.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.297 (3) ŵ = 3.37 mm1
b = 7.435 (1) ÅT = 15 K
c = 8.197 (2) Å0.27 × 0.21 × 0.15 mm
β = 99.72 (1)°
Data collection top
Fddd (Copley et al., 1997)
diffractometer
980 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(XPREP; Siemens, 1995)
Rint = 0.025
Tmin = 0.407, Tmax = 0.6043 standard reflections every 100 reflections
1355 measured reflections intensity decay: none
993 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063All H-atom parameters refined
S = 1.23Δρmax = 0.99 e Å3
993 reflectionsΔρmin = 0.48 e Å3
69 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1001/20.00621 (11)
P10.17508 (3)0.12519 (5)0.29767 (5)0.00739 (12)
H10.261 (2)0.227 (3)0.326 (3)0.010 (5)*
H20.217 (2)0.042 (4)0.340 (3)0.009 (5)*
O10.09670 (10)0.17693 (16)0.41505 (14)0.0085 (2)
O20.13132 (10)0.13403 (16)0.11318 (14)0.0089 (2)
O300.1634 (2)1/40.0090 (3)
C100.3335 (3)1/40.0085 (4)
N10.07136 (12)0.4262 (2)0.36231 (18)0.0106 (3)
H30.067 (2)0.535 (4)0.379 (3)0.010 (6)*
H40.104 (2)0.370 (4)0.435 (3)0.014 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00608 (16)0.00646 (16)0.00596 (16)0.00019 (8)0.00061 (10)0.00079 (8)
P10.0069 (2)0.0087 (2)0.0064 (2)0.00020 (13)0.00053 (14)0.00003 (12)
O10.0091 (5)0.0086 (5)0.0080 (5)0.0009 (4)0.0021 (4)0.0002 (4)
O20.0087 (5)0.0109 (5)0.0067 (5)0.0018 (4)0.0007 (4)0.0012 (4)
O30.0113 (7)0.0069 (7)0.0087 (7)00.0012 (6)0
C10.0084 (9)0.0095 (9)0.0082 (9)00.0035 (7)0
N10.0130 (6)0.0080 (6)0.0100 (6)0.0002 (5)0.0005 (5)0.0003 (5)
Geometric parameters (Å, º) top
Cu1—O11.9771 (12)P1—H11.29 (2)
Cu1—O1i1.9771 (12)P1—H21.37 (3)
Cu1—O2ii1.9889 (12)O2—Cu1iii1.9889 (12)
Cu1—O2iii1.9889 (12)O3—C11.265 (3)
Cu1—O32.3824 (10)O3—Cu1iii2.3824 (10)
Cu1—O3i2.3824 (10)C1—N11.3486 (19)
Cu1—Cu1iii4.0985 (10)C1—N1iii1.3486 (19)
P1—O11.5218 (12)N1—H30.83 (3)
P1—O21.5186 (13)N1—H40.78 (3)
O1—Cu1—O1i180.00 (6)O3—Cu1—Cu1iii30.66 (4)
O1—Cu1—O2ii90.48 (5)O3i—Cu1—Cu1iii149.34 (4)
O1i—Cu1—O2ii89.52 (5)O1—P1—O2117.57 (7)
O1—Cu1—O2iii89.52 (5)O1—P1—H1109.2 (10)
O1i—Cu1—O2iii90.48 (5)O2—P1—H1107.1 (11)
O2ii—Cu1—O2iii180.00 (5)O1—P1—H2108.9 (10)
O1—Cu1—O387.08 (4)O2—P1—H2110.2 (10)
O1i—Cu1—O392.92 (4)H1—P1—H2102.9 (15)
O2ii—Cu1—O391.59 (4)P1—O1—Cu1122.50 (7)
O2iii—Cu1—O388.41 (4)P1—O2—Cu1iii124.48 (7)
O1—Cu1—O3i92.92 (4)C1—O3—Cu1iii120.66 (4)
O1i—Cu1—O3i87.08 (4)C1—O3—Cu1120.66 (4)
O2ii—Cu1—O3i88.41 (4)Cu1iii—O3—Cu1118.67 (7)
O2iii—Cu1—O3i91.59 (4)O3—C1—N1120.70 (11)
O3—Cu1—O3i180.0O3—C1—N1iii120.70 (11)
O1—Cu1—Cu1iii63.02 (3)N1—C1—N1iii118.6 (2)
O1i—Cu1—Cu1iii116.98 (3)C1—N1—H3124.0 (18)
O2ii—Cu1—Cu1iii109.23 (4)C1—N1—H4116 (2)
O2iii—Cu1—Cu1iii70.77 (4)H3—N1—H4116 (3)
N1—C1—O3—Cu148.23 (8)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2ii0.78 (3)2.27 (3)2.9963 (19)155 (3)
P1—H2···O31.37 (3)2.80 (2)3.0180 (13)85.7 (11)
P1—H2···O2ii1.37 (3)2.72 (2)3.3411 (13)104.7 (12)
N1—H3···O1iv0.83 (3)2.18 (3)2.991 (2)166 (2)
P1—H1···O1v1.29 (2)2.61 (2)3.6543 (14)136.2 (15)
Symmetry codes: (ii) x, y, z+1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z+1.

Experimental details

(Iat293K)(Iat100K)(Iat15K)
Crystal data
Chemical formula[Cu(H2PO2)2(CH4N2O)][Cu(H2PO2)2(CH4N2O)][Cu(H2PO2)2(CH4N2O)]
Mr253.57253.57253.57
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)29310015
a, b, c (Å)12.5540 (3), 7.4686 (2), 8.2628 (3)12.3589 (3), 7.4464 (2), 8.2199 (2)12.297 (3), 7.435 (1), 8.197 (2)
β (°) 100.2722 (13) 99.8369 (14) 99.72 (1)
V3)762.31 (4)745.35 (3)738.7 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.263.343.37
Crystal size (mm)0.54 × 0.30 × 0.220.54 × 0.30 × 0.220.27 × 0.21 × 0.15
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Fddd (Copley et al., 1997)
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Empirical (using intensity measurements)
(XPREP; Siemens, 1995)
Tmin, Tmax0.221, 0.4880.297, 0.4800.407, 0.604
No. of measured, independent and
observed [I > 2σ(I)] reflections
2894, 1014, 920 2849, 996, 935 1355, 993, 980
Rint0.0300.0200.025
(sin θ/λ)max1)0.6840.6840.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 1.12 0.022, 0.057, 1.12 0.024, 0.063, 1.23
No. of reflections1014996993
No. of parameters707069
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.730.57, 0.390.99, 0.48

Computer programs: SMART (Siemens, 1994), MAD (Allibon, 1996), SAINT (Siemens, 1994), RAFIN (Filhol et al., 1987), SAINT, COLL5N (Lehmann et al., 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) for (Iat293K) top
Cu1—O11.9784 (14)P1—O21.5119 (15)
Cu1—O2i1.9895 (14)P1—H11.32 (3)
Cu1—O32.4153 (10)P1—H21.42 (4)
Cu1—Cu1ii4.1314 (2)O3—C11.256 (3)
P1—O11.5184 (15)C1—N11.344 (3)
O1—Cu1—O2i90.34 (6)H1—P1—H2108.3 (17)
O1—Cu1—O387.04 (5)P1—O1—Cu1123.82 (8)
O2i—Cu1—O391.72 (5)P1—O2—Cu1ii125.38 (9)
O1—P1—O2117.84 (8)C1—O3—Cu1121.21 (4)
O1—P1—H1108.5 (13)Cu1ii—O3—Cu1117.57 (8)
O2—P1—H1108.5 (14)O3—C1—N1120.97 (15)
O1—P1—H2105.5 (13)N1—C1—N1ii118.1 (3)
O2—P1—H2107.8 (14)
N1—C1—O3—Cu147.74 (12)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (Iat293K) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.75 (5)2.36 (5)3.037 (3)152 (4)
N1—H3···O1iii0.77 (3)2.27 (4)3.021 (3)162 (3)
Symmetry codes: (i) x, y, z+1/2; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (Iat100K) top
Cu1—O11.9788 (12)P1—O21.5198 (13)
Cu1—O2i1.9901 (12)P1—H11.32 (2)
Cu1—O32.3917 (8)P1—H21.38 (3)
Cu1—Cu1ii4.1100 (1)O3—C11.264 (3)
P1—O11.5236 (12)C1—N11.3502 (19)
O1—Cu1—O2i90.45 (5)H1—P1—H2101.7 (15)
O1—Cu1—O387.06 (4)P1—O1—Cu1122.76 (7)
O2i—Cu1—O391.56 (4)P1—O2—Cu1ii124.56 (7)
O1—P1—O2117.66 (7)C1—O3—Cu1120.77 (3)
O1—P1—H1107.5 (11)Cu1ii—O3—Cu1118.46 (7)
O2—P1—H1109.7 (11)O3—C1—N1120.74 (11)
O1—P1—H2109.4 (10)N1—C1—N1ii118.5 (2)
O2—P1—H2109.6 (10)
N1—C1—O3—Cu148.15 (8)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (Iat100K) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.85 (3)2.23 (3)3.005 (2)153 (2)
N1—H3···O1iii0.78 (3)2.23 (3)2.998 (2)169 (3)
Symmetry codes: (i) x, y, z+1/2; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (Iat15K) top
Cu1—O11.9771 (12)P1—O21.5186 (13)
Cu1—O2i1.9889 (12)P1—H11.29 (2)
Cu1—O32.3824 (10)P1—H21.37 (3)
Cu1—Cu1ii4.0985 (10)O3—C11.265 (3)
P1—O11.5218 (12)C1—N11.3486 (19)
O1—Cu1—O2i90.48 (5)O2—P1—H2110.2 (10)
O1—Cu1—O387.08 (4)H1—P1—H2102.9 (15)
O2i—Cu1—O391.59 (4)P1—O1—Cu1122.50 (7)
O2ii—Cu1—O388.41 (4)P1—O2—Cu1ii124.48 (7)
O1—P1—O2117.57 (7)C1—O3—Cu1120.66 (4)
O1—P1—H1109.2 (10)Cu1ii—O3—Cu1118.67 (7)
O2—P1—H1107.1 (11)O3—C1—N1120.70 (11)
O1—P1—H2108.9 (10)N1—C1—N1ii118.6 (2)
N1—C1—O3—Cu148.23 (8)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (Iat15K) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.78 (3)2.27 (3)2.9963 (19)155 (3)
N1—H3···O1iii0.83 (3)2.18 (3)2.991 (2)166 (2)
Symmetry codes: (i) x, y, z+1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds