Download citation
Download citation
link to html
The title compounds, (2S)-N-[5-(4-chloro­phenyl)-2,3-di­hydro-6H-1,3,4-thia­diazin-2-yl­idene]-2-[(phenyl­sulfonyl)­amino]­pro­pan­amide, C18H17ClN4O3S2, (I), (2R)-N-[5-(4-fluoro­phenyl)-6H-1,3,4-thia­diazin-2-yl]-2-[(phenyl­sulfonyl)amino]­propan­amide, C18H17FN4O3S2, (II), and (2S)-N-[5-(5-chloro-2-thienyl)-6H-1,3,4-thia­diazin-2-yl]-2-[(phenyl­sulfonyl)­amino]­propan­amide, C16H15ClN4O3S3, (III), are potent inhibitors of matrix metalloproteinases. In all three compounds, the thia­diazine ring adopts a screw-boat conformation. The mol­ecules of compound (I) show a short intramolecular NAla—H...Nexo hydrogen bond [N...N 2.661 (3) Å] and are linked into a chain along the c axis by Nendo—H...Sendo and Nendo—H...OAla hydrogen bonds [N...S 3.236 (3) and N...O 3.375 (3) Å] between neighbouring mol­ecules. In compound (II), the mol­ecules are connected antiparallel into a chain along the a axis by Nexo—H...OAla and NAla—H...Nendo hydrogen bonds [N...O 2.907 (6) and N...N 2.911 (6) Å]. The mol­ecules of compound (III) are dimerized antiparallel through Nexo—H...Nendo hydrogen bonds [N...N 2.956 (7) and 2.983 (7) Å]. The different hydrogen-bonding patterns can be explained by an amido–imino tautomerism (prototropic shift) shown by different bond lengths within the 6H-1,3,4-thia­diazine moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002372/av1070sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002372/av1070Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002372/av1070IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002372/av1070IIIsup4.hkl
Contains datablock III

CCDC references: 164659; 164660; 164661

Comment top

Inhibitors of matrix metalloproteinases (MMPs) can provide useful treatments for diseases associated with excessive degradation of the extracellular matrix, such as osteoarthritis (Cawston, 1996), rheumatoid arthritis (Bläser et al., 1996), periodontal disease (Overall et al., 1987), multiple sclerosis (Yong, 1999), and tumour metastasis (Chambers & Matrisian, 1997). Recent efforts by a number of laboratories working in the area have provided several classes of MMP inhibitors, which have been extensively reviewed by Becket & Whittaker (1998). The value of thiadiazines as MMP inhibitors has, however, not hitherto been recognized. To investigate this heterocyclic system further and to establish the inhibitor structures for ligand-protein docking experiments, single-crystal X-ray diffraction studies were carried out on the three title compounds, (I), (II) and (III). \sch

The title compounds (Figs. 1, 2 and 3) consist of a 6H-1,3,4-thiadiazine system, a p-substituted phenyl ring or 5-chloro-substituted thiophene ring, and an amide-linked N-phenylsulfonyl-substituted D– or L-alanine residue. The three rings do not share a common plane and the thiadiazine ring deviates from planarity. The puckering of this ring system may be described by the amplitude and phase coordinates introduced by Cremer & Pople (1975) and Evans & Boeyens (1989). The puckering parameters for (I), (II) and molecules 1 and 2 of (III) are Q = 0.567 (3), 0.618 (2), 0.634 and 0.665 Å, θ = 70.6 (3), 69.9 (2), 109.5 and 70.5°, and ϕ = 39.9 (3), 33.1 (3), 217.1 and 35.9°, respectively. Thus, the thiadiazine moiety assumes a screw-boat conformation in all compounds (Boeyens, 1978). The large ϕ value for molecule 1 in the unit cell of (III) indicates that the direction of the ring distortion is towards an inverted screw-boat conformation.

In compounds (I) and (II) there are two distinct S1—C8 and S1—C9 bond lengths, which can be attributed to typical S-Csp3 and S-Csp2 bonds [average values 1.819 (19) and 1.751 (17) Å; Allen et al., 1992]. The two molecules of compound (III) show similar S—C bond lengths. This corresponds to the 6H tautomeric form of the thiadiazine ring (Novikova et al., 1991). The endocyclic C9—N2 distance in (II) is shorter than the exocyclic C9—N3 distance and corresponds to an N Csp2 bond. The same applies to the two molecules of compound (III). In contrast with this trend, the endocyclic C9—N2 distance in (I) is slightly longer than the exocyclic C9—N3 distance and corresponds to an N-Csp2 bond. These systematic bond differences resemble the characteristic pattern of bond length changes introduced by an amido-imino tautomerism (prototropic shift) within the 6H-1,3,4-thiadiazine moiety.

As shown in Scheme 2, the geometry of compounds (II) and (III) is consistent with the tautomer on the left-hand side, while the geometry of (I) is closer to that of the tautomer on the right-hand side. Consequently, the endocyclic N atom close to the exocyclic N atom is a hydrogen-bond acceptor in (II) and (III) and a hydrogen-bond donor in (I). The opposite applies to the exocyclic N atom, which is a hydrogen-bond donor in (II) and (III) and a hydrogen-bond acceptor in (I). This contributes to the different hydrogen-bonding patterns in the crystal structures of the three compounds.

Related literature top

For related literature, see: Allen et al. (1992); Becket & Whittaker (1998); Bläser et al. (1996); Boeyens (1978); Cawston (1996); Cremer & Pople (1975); Evans & Boeyens (1989); Novikova et al. (1991); Overall et al. (1987); Yong (1999).

Experimental top

The synthesis and spectroscopic data of the title compounds will be published elsewhere. Crystals of all three compounds suitable for diffraction analysis were obtained by slow crystallization from solution in methanol/acetonitrile (5:1).

Refinement top

H atoms on N in (I) and (II) were refined isotropically. Other H atoms in (I) and (II), and all H atoms in (III), were included in calculated positions using a riding model, with U(H) = 1.2Ueq for CH2 and CH groups, and U(H) = 1.5Ueq for CH3 groups, and C—H in the range 0.95–0.99 Å (Please check - no C—H data in CIF for (III). The torsion angles of the CH3 groups were refined.

Computing details top

For all compounds, data collection: P3/PC (Siemens, 1993); cell refinement: P3/PC; data reduction: SHELXTL-Plus (Sheldrick, 1990a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of (III) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) (2S)-N-[5-(4-chlorophenyl)-2,3-dihydro-6H-1,3,4-thiadiazin-2-ylidene]-2- (phenylsulfonyl)amino]propanamide top
Crystal data top
C18H17ClN4O3S2Dx = 1.538 Mg m3
Mr = 436.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 21 reflections
a = 15.600 (4) Åθ = 2.3–11.3°
b = 20.764 (6) ŵ = 0.45 mm1
c = 5.826 (3) ÅT = 173 K
V = 1887.1 (12) Å3Needle, colourless
Z = 41.00 × 0.30 × 0.15 mm
F(000) = 904
Data collection top
Siemens P21
diffractometer
Rint = 0.031
Radiation source: normal-focus sealed tubeθmax = 30.0°, θmin = 2.0°
Graphite monochromatorh = 2121
Wyckoff scank = 2929
6296 measured reflectionsl = 88
5491 independent reflections3 standard reflections every 100 reflections
4278 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.3217P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.33 e Å3
5491 reflectionsΔρmin = 0.29 e Å3
263 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0119 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (9)
Crystal data top
C18H17ClN4O3S2V = 1887.1 (12) Å3
Mr = 436.93Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 15.600 (4) ŵ = 0.45 mm1
b = 20.764 (6) ÅT = 173 K
c = 5.826 (3) Å1.00 × 0.30 × 0.15 mm
Data collection top
Siemens P21
diffractometer
Rint = 0.031
6296 measured reflections3 standard reflections every 100 reflections
5491 independent reflections intensity decay: none
4278 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.29 e Å3
5491 reflectionsAbsolute structure: Flack (1983)
263 parametersAbsolute structure parameter: 0.09 (9)
0 restraints
Special details top

Experimental. A large crystal was taken to obtain sufficient scattering

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11511 (5)0.02529 (5)0.58490 (19)0.0520 (2)
S10.59765 (4)0.10699 (4)0.01091 (11)0.03229 (18)
S20.88067 (4)0.24019 (3)0.42578 (12)0.02781 (16)
O10.76848 (13)0.11095 (12)0.1246 (3)0.0368 (5)
O20.93380 (13)0.27590 (10)0.2705 (4)0.0366 (5)
O30.89429 (14)0.24560 (11)0.6671 (3)0.0366 (5)
N10.53506 (15)0.08429 (12)0.5034 (4)0.0314 (5)
N20.61864 (16)0.10364 (13)0.4584 (4)0.0330 (5)
H2N0.652 (3)0.1030 (19)0.567 (7)0.055 (12)*
N30.74395 (14)0.10914 (12)0.2667 (4)0.0271 (5)
N40.89356 (15)0.16405 (12)0.3655 (4)0.0286 (5)
H4N0.865 (2)0.1395 (15)0.468 (6)0.028 (8)*
C10.3227 (2)0.08555 (18)0.2499 (7)0.0446 (9)
H10.33500.10330.10330.054*
C20.2383 (2)0.0691 (2)0.3037 (7)0.0500 (10)
H20.19380.07530.19470.060*
C30.22054 (18)0.04408 (14)0.5135 (6)0.0335 (7)
C40.2847 (2)0.03333 (17)0.6697 (6)0.0416 (8)
H40.27190.01500.81510.050*
C50.3687 (2)0.04931 (17)0.6139 (5)0.0380 (7)
H50.41320.04130.72160.046*
C60.38849 (17)0.07664 (12)0.4045 (5)0.0251 (5)
C70.47799 (17)0.09696 (12)0.3512 (4)0.0239 (5)
C80.49870 (19)0.13464 (15)0.1401 (5)0.0335 (7)
H8A0.50410.18080.18000.040*
H8B0.45140.13020.02810.040*
C90.65946 (17)0.10633 (13)0.2565 (5)0.0239 (5)
C100.79127 (17)0.11970 (13)0.0754 (5)0.0262 (5)
C110.88237 (17)0.14299 (14)0.1261 (5)0.0286 (6)
H110.89460.18060.02400.034*
C120.9475 (2)0.08998 (16)0.0706 (7)0.0444 (8)
H12A1.00560.10570.10250.067*
H12B0.94300.07830.09190.067*
H12C0.93580.05210.16560.067*
C130.77307 (18)0.26187 (14)0.3706 (5)0.0289 (6)
C140.7503 (2)0.28643 (17)0.1605 (6)0.0421 (8)
H140.79220.29180.04370.051*
C150.6655 (2)0.30333 (18)0.1204 (7)0.0503 (9)
H150.64940.32050.02440.060*
C160.6049 (2)0.29535 (16)0.2886 (6)0.0429 (8)
H160.54730.30790.26110.052*
C170.6274 (2)0.26935 (17)0.4961 (7)0.0445 (8)
H170.58500.26300.61080.053*
C180.7120 (2)0.25213 (17)0.5398 (5)0.0399 (7)
H180.72770.23400.68350.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0271 (4)0.0570 (5)0.0718 (6)0.0076 (4)0.0075 (4)0.0054 (5)
S10.0246 (3)0.0544 (4)0.0179 (3)0.0047 (3)0.0008 (3)0.0002 (3)
S20.0240 (3)0.0313 (3)0.0281 (3)0.0085 (3)0.0027 (3)0.0017 (3)
O10.0293 (10)0.0547 (14)0.0264 (10)0.0002 (10)0.0004 (8)0.0089 (10)
O20.0315 (11)0.0356 (12)0.0428 (12)0.0092 (9)0.0016 (10)0.0060 (10)
O30.0315 (11)0.0459 (13)0.0324 (10)0.0093 (10)0.0062 (9)0.0051 (10)
N10.0264 (11)0.0440 (14)0.0238 (11)0.0122 (10)0.0007 (10)0.0049 (10)
N20.0275 (11)0.0516 (15)0.0197 (11)0.0161 (11)0.0027 (9)0.0049 (11)
N30.0257 (11)0.0286 (12)0.0270 (11)0.0052 (9)0.0044 (9)0.0039 (10)
N40.0263 (12)0.0305 (12)0.0290 (12)0.0044 (10)0.0047 (10)0.0047 (10)
C10.0259 (15)0.070 (2)0.0378 (17)0.0028 (15)0.0004 (14)0.0202 (17)
C20.0267 (16)0.070 (3)0.053 (2)0.0002 (16)0.0082 (15)0.0186 (19)
C30.0267 (13)0.0262 (13)0.0475 (18)0.0024 (10)0.0081 (13)0.0013 (13)
C40.0358 (16)0.049 (2)0.0401 (18)0.0136 (15)0.0049 (14)0.0092 (16)
C50.0337 (16)0.0485 (18)0.0319 (16)0.0090 (14)0.0051 (13)0.0057 (14)
C60.0266 (13)0.0223 (11)0.0264 (12)0.0001 (10)0.0014 (12)0.0001 (10)
C70.0291 (13)0.0211 (12)0.0213 (11)0.0002 (10)0.0018 (10)0.0011 (10)
C80.0268 (13)0.0389 (16)0.0348 (16)0.0081 (12)0.0064 (12)0.0129 (13)
C90.0273 (12)0.0227 (12)0.0217 (12)0.0024 (10)0.0048 (10)0.0017 (11)
C100.0242 (12)0.0265 (13)0.0279 (12)0.0037 (10)0.0006 (11)0.0008 (12)
C110.0232 (12)0.0337 (14)0.0289 (14)0.0008 (11)0.0007 (11)0.0004 (11)
C120.0281 (15)0.0490 (19)0.056 (2)0.0106 (13)0.0002 (15)0.0101 (18)
C130.0277 (13)0.0245 (13)0.0344 (15)0.0036 (11)0.0032 (11)0.0028 (12)
C140.0400 (17)0.047 (2)0.0390 (17)0.0073 (15)0.0030 (14)0.0105 (16)
C150.0460 (19)0.058 (2)0.047 (2)0.0183 (17)0.0065 (17)0.0144 (18)
C160.0352 (17)0.0372 (17)0.056 (2)0.0038 (14)0.0058 (16)0.0005 (15)
C170.0278 (15)0.053 (2)0.053 (2)0.0055 (14)0.0048 (15)0.0001 (17)
C180.0323 (15)0.0519 (19)0.0354 (17)0.0062 (13)0.0009 (12)0.0065 (16)
Geometric parameters (Å, º) top
Cl1—C31.741 (3)C5—C61.381 (4)
S1—C91.726 (3)C5—H50.9500
S1—C81.811 (3)C6—C71.491 (4)
S2—O31.426 (2)C7—C81.493 (4)
S2—O21.433 (2)C8—H8A0.9900
S2—N41.632 (3)C8—H8B0.9900
S2—C131.767 (3)C10—C111.530 (4)
O1—C101.231 (4)C11—C121.533 (4)
N1—C71.284 (4)C11—H111.0000
N1—N21.389 (3)C12—H12A0.9800
N2—C91.338 (3)C12—H12B0.9800
N2—H2N0.82 (4)C12—H12C0.9800
N3—C91.321 (3)C13—C141.373 (4)
N3—C101.355 (4)C13—C181.385 (4)
N4—C111.472 (4)C14—C151.388 (5)
N4—H4N0.90 (3)C14—H140.9500
C1—C61.378 (4)C15—C161.372 (5)
C1—C21.396 (5)C15—H150.9500
C1—H10.9500C16—C171.370 (5)
C2—C31.356 (5)C16—H160.9500
C2—H20.9500C17—C181.391 (4)
C3—C41.371 (5)C17—H170.9500
C4—C51.390 (4)C18—H180.9500
C4—H40.9500
C9—S1—C897.71 (15)C7—C8—H8B109.4
O3—S2—O2119.69 (14)S1—C8—H8B109.4
O3—S2—N4105.65 (14)H8A—C8—H8B108.0
O2—S2—N4107.11 (14)N3—C9—N2115.9 (2)
O3—S2—C13107.50 (14)N3—C9—S1126.5 (2)
O2—S2—C13107.62 (14)N2—C9—S1117.6 (2)
N4—S2—C13108.94 (13)O1—C10—N3126.7 (3)
C7—N1—N2117.5 (2)O1—C10—C11119.8 (3)
C9—N2—N1128.6 (2)N3—C10—C11113.5 (2)
C9—N2—H2N112 (3)N4—C11—C10112.8 (2)
N1—N2—H2N117 (3)N4—C11—C12109.5 (2)
C9—N3—C10120.9 (2)C10—C11—C12110.4 (2)
C11—N4—S2118.48 (19)N4—C11—H11108.0
C11—N4—H4N114 (2)C10—C11—H11108.0
S2—N4—H4N110 (2)C12—C11—H11108.0
C6—C1—C2121.5 (3)C11—C12—H12A109.5
C6—C1—H1119.2C11—C12—H12B109.5
C2—C1—H1119.2H12A—C12—H12B109.5
C3—C2—C1119.3 (3)C11—C12—H12C109.5
C3—C2—H2120.4H12A—C12—H12C109.5
C1—C2—H2120.4H12B—C12—H12C109.5
C2—C3—C4120.7 (3)C14—C13—C18120.7 (3)
C2—C3—Cl1119.6 (3)C14—C13—S2120.2 (2)
C4—C3—Cl1119.7 (3)C18—C13—S2119.1 (2)
C3—C4—C5119.6 (3)C13—C14—C15119.4 (3)
C3—C4—H4120.2C13—C14—H14120.3
C5—C4—H4120.2C15—C14—H14120.3
C6—C5—C4121.0 (3)C16—C15—C14120.4 (3)
C6—C5—H5119.5C16—C15—H15119.8
C4—C5—H5119.5C14—C15—H15119.8
C1—C6—C5117.8 (3)C17—C16—C15120.1 (3)
C1—C6—C7121.6 (3)C17—C16—H16119.9
C5—C6—C7120.6 (3)C15—C16—H16119.9
N1—C7—C6116.6 (2)C16—C17—C18120.4 (3)
N1—C7—C8121.7 (2)C16—C17—H17119.8
C6—C7—C8121.5 (2)C18—C17—H17119.8
C7—C8—S1111.14 (19)C13—C18—C17119.0 (3)
C7—C8—H8A109.4C13—C18—H18120.5
S1—C8—H8A109.4C17—C18—H18120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.82 (4)2.72 (4)3.236 (3)122 (3)
N2—H2N···O1i0.82 (4)2.56 (4)3.375 (3)173 (4)
N4—H4N···N30.90 (3)2.31 (3)2.661 (3)103 (2)
Symmetry code: (i) x, y, z+1.
(II) (2R)-N-[5-(4-fluoro-phenyl)-6H-1,3,4-thiadiazin-2-yl]-2- [(phenylsulfonyl)amino]propanamide top
Crystal data top
C18H17FN4O3S2Dx = 1.456 Mg m3
Mr = 420.48Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 20 reflections
a = 9.675 (19) Åθ = 2.6–11.5°
b = 12.704 (19) ŵ = 0.32 mm1
c = 15.606 (15) ÅT = 173 K
V = 1918 (5) Å3Needle, colourless
Z = 41.0 × 0.6 × 0.6 mm
F(000) = 872
Data collection top
Siemens P21
diffractometer
Rint = 0.045
Radiation source: normal-focus sealed tubeθmax = 30.1°, θmin = 2.1°
Graphite monochromatorh = 1313
Wyckoff scank = 1717
6306 measured reflectionsl = 2121
5271 independent reflections3 standard reflections every 100 reflections
4615 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.8564P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5271 reflectionsΔρmax = 0.34 e Å3
262 parametersΔρmin = 0.43 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (8)
Crystal data top
C18H17FN4O3S2V = 1918 (5) Å3
Mr = 420.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.675 (19) ŵ = 0.32 mm1
b = 12.704 (19) ÅT = 173 K
c = 15.606 (15) Å1.0 × 0.6 × 0.6 mm
Data collection top
Siemens P21
diffractometer
Rint = 0.045
6306 measured reflections3 standard reflections every 100 reflections
5271 independent reflections intensity decay: none
4615 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128Δρmax = 0.34 e Å3
S = 1.01Δρmin = 0.43 e Å3
5271 reflectionsAbsolute structure: Flack (1983)
262 parametersAbsolute structure parameter: 0.12 (8)
0 restraints
Special details top

Experimental. A large crystal was taken to obtain sufficient scattering

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09325 (6)0.77278 (5)0.31052 (4)0.02420 (14)
S20.17513 (7)0.50883 (5)0.58954 (4)0.02467 (14)
N10.3671 (2)0.8371 (2)0.22849 (14)0.0289 (5)
N20.3699 (2)0.8075 (2)0.31511 (14)0.0285 (5)
N30.2754 (2)0.76999 (19)0.44485 (13)0.0224 (4)
H3N0.363 (4)0.759 (3)0.463 (2)0.037 (9)*
N40.1390 (2)0.62762 (18)0.62024 (13)0.0232 (4)
H4N0.052 (5)0.634 (3)0.637 (3)0.051 (12)*
O10.04966 (18)0.77390 (17)0.48789 (12)0.0279 (4)
O20.3221 (2)0.49252 (17)0.60224 (12)0.0350 (5)
O30.0773 (3)0.44185 (17)0.63244 (13)0.0352 (5)
F10.3034 (3)0.9218 (2)0.16711 (12)0.0593 (7)
C10.2067 (4)0.7757 (2)0.02291 (18)0.0349 (6)
H10.15140.71700.03860.042*
C20.2143 (4)0.8060 (3)0.06292 (19)0.0425 (8)
H20.16490.76880.10590.051*
C30.2953 (4)0.8915 (3)0.08354 (18)0.0375 (7)
C40.3687 (3)0.9493 (3)0.02380 (18)0.0335 (6)
H40.42281.00830.04040.040*
C50.3604 (3)0.9181 (2)0.06178 (17)0.0285 (5)
H50.41000.95620.10420.034*
C60.2797 (3)0.8307 (2)0.08625 (16)0.0238 (5)
C70.2741 (3)0.7991 (2)0.17787 (16)0.0228 (5)
C80.1631 (3)0.7255 (2)0.20965 (16)0.0298 (5)
H8A0.20240.65420.21770.036*
H8B0.08820.72070.16660.036*
C90.2571 (3)0.7875 (2)0.35682 (15)0.0212 (4)
C100.1728 (3)0.75567 (19)0.50393 (15)0.0214 (4)
C110.2220 (3)0.7174 (2)0.59211 (15)0.0236 (5)
H110.32110.69560.58810.028*
C120.2083 (4)0.8058 (3)0.6576 (2)0.0392 (7)
H12A0.11090.82590.66300.059*
H12B0.26240.86680.63870.059*
H12C0.24280.78160.71330.059*
C130.1483 (3)0.4990 (2)0.47732 (15)0.0238 (5)
C140.0141 (3)0.4948 (2)0.44451 (17)0.0278 (5)
H140.06370.50020.48140.033*
C150.0030 (3)0.4825 (2)0.35636 (18)0.0316 (6)
H150.09350.48090.33270.038*
C160.1113 (3)0.4726 (2)0.30260 (17)0.0324 (6)
H160.09830.46270.24280.039*
C170.2444 (4)0.4770 (3)0.33623 (19)0.0391 (7)
H170.32210.47030.29940.047*
C180.2639 (3)0.4913 (3)0.42403 (17)0.0361 (6)
H180.35450.49580.44730.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0176 (2)0.0352 (3)0.0198 (3)0.0027 (2)0.0020 (2)0.0014 (2)
S20.0276 (3)0.0302 (3)0.0162 (2)0.0046 (3)0.0007 (2)0.0030 (2)
N10.0253 (10)0.0446 (13)0.0170 (9)0.0067 (10)0.0006 (8)0.0072 (9)
N20.0205 (9)0.0471 (13)0.0180 (9)0.0046 (9)0.0028 (8)0.0079 (9)
N30.0173 (8)0.0325 (11)0.0173 (9)0.0011 (9)0.0008 (7)0.0037 (8)
N40.0205 (9)0.0310 (10)0.0181 (9)0.0007 (9)0.0041 (8)0.0019 (8)
O10.0172 (7)0.0428 (11)0.0237 (8)0.0023 (8)0.0002 (6)0.0060 (8)
O20.0312 (9)0.0472 (11)0.0266 (9)0.0166 (10)0.0058 (8)0.0006 (9)
O30.0473 (12)0.0334 (10)0.0248 (9)0.0064 (10)0.0043 (9)0.0066 (8)
F10.0914 (18)0.0667 (14)0.0197 (9)0.0189 (14)0.0008 (10)0.0077 (9)
C10.0509 (18)0.0305 (13)0.0233 (12)0.0073 (13)0.0033 (11)0.0011 (11)
C20.067 (2)0.0407 (16)0.0201 (12)0.0077 (16)0.0079 (13)0.0029 (11)
C30.0500 (19)0.0445 (16)0.0179 (12)0.0002 (14)0.0022 (12)0.0061 (11)
C40.0329 (13)0.0420 (15)0.0257 (13)0.0041 (13)0.0043 (11)0.0071 (11)
C50.0239 (12)0.0387 (14)0.0228 (11)0.0048 (11)0.0013 (10)0.0032 (10)
C60.0250 (11)0.0284 (11)0.0181 (10)0.0015 (10)0.0017 (9)0.0012 (9)
C70.0237 (11)0.0262 (11)0.0185 (10)0.0016 (9)0.0001 (8)0.0013 (8)
C80.0371 (14)0.0320 (12)0.0202 (11)0.0104 (12)0.0012 (10)0.0028 (10)
C90.0217 (10)0.0250 (11)0.0169 (10)0.0002 (9)0.0013 (8)0.0026 (8)
C100.0201 (10)0.0278 (11)0.0162 (9)0.0015 (9)0.0001 (8)0.0017 (8)
C110.0205 (10)0.0339 (12)0.0165 (9)0.0041 (10)0.0014 (8)0.0033 (10)
C120.0525 (19)0.0383 (15)0.0267 (13)0.0128 (14)0.0015 (13)0.0076 (12)
C130.0275 (12)0.0265 (11)0.0176 (10)0.0006 (10)0.0011 (8)0.0007 (9)
C140.0271 (12)0.0338 (14)0.0225 (11)0.0012 (11)0.0012 (9)0.0021 (10)
C150.0360 (14)0.0348 (14)0.0241 (12)0.0094 (12)0.0061 (10)0.0011 (11)
C160.0467 (16)0.0328 (13)0.0177 (11)0.0083 (12)0.0003 (11)0.0011 (10)
C170.0418 (16)0.0525 (19)0.0229 (12)0.0022 (15)0.0084 (11)0.0041 (12)
C180.0290 (13)0.0563 (19)0.0230 (13)0.0036 (14)0.0017 (10)0.0010 (13)
Geometric parameters (Å, º) top
S1—C91.752 (4)C5—C61.410 (4)
S1—C81.816 (3)C5—H50.9500
S2—O31.438 (3)C6—C71.486 (4)
S2—O21.451 (3)C7—C81.508 (4)
S2—N41.621 (3)C8—H8A0.9900
S2—C131.775 (3)C8—H8B0.9900
N1—C71.291 (4)C10—C111.535 (4)
N1—N21.404 (3)C11—C121.524 (4)
N2—C91.296 (4)C11—H111.0000
N3—C101.367 (3)C12—H12A0.9800
N3—C91.403 (3)C12—H12B0.9800
N3—H3N0.90 (4)C12—H12C0.9800
N4—C111.463 (4)C13—C141.397 (4)
N4—H4N0.88 (5)C13—C181.397 (4)
O1—C101.239 (4)C14—C151.394 (4)
F1—C31.362 (3)C14—H140.9500
C1—C21.396 (4)C15—C161.394 (5)
C1—C61.401 (4)C15—H150.9500
C1—H10.9500C16—C171.392 (5)
C2—C31.377 (5)C16—H160.9500
C2—H20.9500C17—C181.395 (4)
C3—C41.383 (4)C17—H170.9500
C4—C51.396 (4)C18—H180.9500
C4—H40.9500
C9—S1—C893.21 (15)C7—C8—H8B109.6
O3—S2—O2119.79 (16)S1—C8—H8B109.6
O3—S2—N4105.73 (15)H8A—C8—H8B108.1
O2—S2—N4107.70 (13)N2—C9—N3114.6 (2)
O3—S2—C13108.76 (14)N2—C9—S1125.2 (2)
O2—S2—C13105.54 (12)N3—C9—S1120.08 (18)
N4—S2—C13109.01 (12)O1—C10—N3122.5 (2)
C7—N1—N2120.2 (2)O1—C10—C11122.6 (2)
C9—N2—N1121.3 (2)N3—C10—C11114.9 (2)
C10—N3—C9126.1 (2)N4—C11—C12109.0 (2)
C10—N3—H3N117 (2)N4—C11—C10110.2 (2)
C9—N3—H3N116 (2)C12—C11—C10109.9 (2)
C11—N4—S2121.23 (19)N4—C11—H11109.2
C11—N4—H4N123 (3)C12—C11—H11109.2
S2—N4—H4N112 (3)C10—C11—H11109.2
C2—C1—C6120.9 (3)C11—C12—H12A109.5
C2—C1—H1119.6C11—C12—H12B109.5
C6—C1—H1119.6H12A—C12—H12B109.5
C3—C2—C1118.1 (3)C11—C12—H12C109.5
C3—C2—H2120.9H12A—C12—H12C109.5
C1—C2—H2120.9H12B—C12—H12C109.5
F1—C3—C2118.6 (3)C14—C13—C18121.5 (3)
F1—C3—C4117.8 (3)C14—C13—S2120.01 (19)
C2—C3—C4123.6 (3)C18—C13—S2118.4 (2)
C3—C4—C5117.7 (3)C15—C14—C13118.5 (2)
C3—C4—H4121.2C15—C14—H14120.8
C5—C4—H4121.2C13—C14—H14120.8
C4—C5—C6121.0 (3)C16—C15—C14120.6 (3)
C4—C5—H5119.5C16—C15—H15119.7
C6—C5—H5119.5C14—C15—H15119.7
C1—C6—C5118.7 (2)C17—C16—C15120.2 (3)
C1—C6—C7121.7 (2)C17—C16—H16119.9
C5—C6—C7119.6 (2)C15—C16—H16119.9
N1—C7—C6117.5 (2)C16—C17—C18120.0 (3)
N1—C7—C8121.8 (2)C16—C17—H17120.0
C6—C7—C8120.7 (2)C18—C17—H17120.0
C7—C8—S1110.18 (19)C17—C18—C13119.1 (3)
C7—C8—H8A109.6C17—C18—H18120.5
S1—C8—H8A109.6C13—C18—H18120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.90 (4)2.01 (4)2.907 (6)174 (3)
N4—H4N···N2ii0.88 (5)2.06 (5)2.911 (6)163 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
(III) (2S)-N-[5-(5-chloro-2-thienyl)-6H-1,3,4-thiadiazin-2-yl]-2- [(phenylsulfonyl)amino]propanamide top
Crystal data top
C16H15ClN4O3S3F(000) = 912
Mr = 442.95Dx = 1.547 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.613 (4) ÅCell parameters from 19 reflections
b = 11.193 (4) Åθ = 2.2–12.0°
c = 16.399 (5) ŵ = 0.56 mm1
β = 102.48 (3)°T = 173 K
V = 1902.0 (11) Å3Needle, colourless
Z = 40.40 × 0.15 × 0.15 mm
Data collection top
Siemens P21
diffractometer
Rint = 0.054
Radiation source: normal-focus sealed tubeθmax = 25.1°, θmin = 2.0°
Graphite monochromatorh = 1212
Wyckoff scank = 1313
7536 measured reflectionsl = 1919
6749 independent reflections3 standard reflections every 100 reflections
4676 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.5602P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6749 reflectionsΔρmax = 0.30 e Å3
489 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (11)
Crystal data top
C16H15ClN4O3S3V = 1902.0 (11) Å3
Mr = 442.95Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.613 (4) ŵ = 0.56 mm1
b = 11.193 (4) ÅT = 173 K
c = 16.399 (5) Å0.40 × 0.15 × 0.15 mm
β = 102.48 (3)°
Data collection top
Siemens P21
diffractometer
Rint = 0.054
7536 measured reflections3 standard reflections every 100 reflections
6749 independent reflections intensity decay: none
4676 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.30 e Å3
S = 1.02Δρmin = 0.35 e Å3
6749 reflectionsAbsolute structure: Flack (1983)
489 parametersAbsolute structure parameter: 0.03 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40775 (15)0.81849 (19)0.58846 (10)0.0259 (4)
S20.16364 (15)0.81560 (19)0.26446 (10)0.0235 (4)
S30.28040 (18)0.57269 (18)0.00242 (12)0.0290 (5)
Cl10.3719 (2)0.8724 (3)0.75937 (14)0.0604 (8)
O10.1612 (4)0.8569 (5)0.1016 (3)0.0304 (14)
O20.3633 (5)0.4811 (5)0.0219 (4)0.0458 (17)
O30.1639 (5)0.6035 (5)0.0615 (3)0.0395 (15)
N10.4014 (5)0.7993 (5)0.4035 (3)0.0197 (13)
N20.4201 (5)0.7802 (5)0.3221 (3)0.0174 (13)
N30.3557 (5)0.8041 (5)0.1809 (3)0.0192 (13)
H3N0.43710.79250.17930.023*
N40.3711 (5)0.6881 (5)0.0177 (3)0.0229 (14)
H4N0.45430.67590.02270.028*
C10.3059 (7)0.8449 (7)0.6556 (4)0.0274 (18)
C20.1796 (7)0.8390 (7)0.6185 (5)0.0289 (19)
H2A0.11120.85230.64640.035*
C30.1619 (6)0.8107 (7)0.5332 (4)0.0218 (16)
H3A0.07960.80040.49720.026*
C40.2763 (6)0.7994 (6)0.5075 (4)0.0174 (15)
C50.2920 (6)0.7771 (6)0.4220 (4)0.0168 (16)
C60.1815 (6)0.7287 (7)0.3590 (4)0.0227 (16)
H6A0.10150.73330.38070.027*
H6B0.19750.64390.34740.027*
C70.3258 (6)0.7990 (6)0.2596 (4)0.0160 (15)
C80.2727 (6)0.8251 (7)0.1059 (4)0.0210 (15)
C90.3318 (6)0.8119 (7)0.0290 (4)0.0236 (16)
H9A0.41260.86080.04010.028*
C100.2422 (7)0.8672 (7)0.0479 (4)0.0341 (19)
H10A0.27890.85460.09720.051*
H10B0.23350.95310.03890.051*
H10C0.15710.82920.05670.051*
C110.2328 (7)0.5306 (7)0.0920 (5)0.0242 (17)
C120.3282 (7)0.5117 (8)0.1620 (5)0.038 (2)
H12A0.41650.52350.16110.045*
C130.2908 (9)0.4745 (8)0.2350 (5)0.046 (2)
H13A0.35450.46140.28460.055*
C140.1626 (8)0.4568 (8)0.2353 (5)0.037 (2)
H14A0.13820.43060.28480.044*
C150.0705 (7)0.4767 (7)0.1644 (5)0.035 (2)
H15A0.01790.46590.16560.042*
C160.1036 (7)0.5128 (7)0.0904 (5)0.0288 (19)
H16A0.03970.52460.04070.035*
S40.62260 (17)0.65968 (19)0.08416 (12)0.0313 (5)
S50.87898 (15)0.69831 (18)0.23384 (11)0.0262 (4)
S60.74209 (17)0.95360 (17)0.49967 (11)0.0226 (4)
Cl20.6468 (2)0.6173 (2)0.25930 (12)0.0426 (6)
O40.8880 (4)0.6490 (5)0.3946 (3)0.0303 (13)
O50.8576 (5)0.9368 (5)0.5643 (3)0.0351 (14)
O60.6437 (5)1.0353 (5)0.5131 (4)0.0344 (14)
N50.6363 (5)0.7027 (6)0.0977 (3)0.0211 (14)
N60.6218 (5)0.7269 (5)0.1804 (3)0.0209 (14)
N70.6929 (5)0.7152 (5)0.3229 (3)0.0200 (13)
H7N0.61390.73220.32790.024*
N80.6715 (5)0.8263 (5)0.4790 (3)0.0204 (12)
H8N0.58670.82330.46850.025*
C170.7171 (7)0.6540 (7)0.1580 (5)0.0284 (19)
C180.8396 (7)0.6827 (7)0.1274 (5)0.031 (2)
H18A0.90420.68400.15950.037*
C190.8625 (6)0.7114 (7)0.0409 (5)0.0274 (18)
H19A0.94500.73340.00900.033*
C200.7558 (6)0.7044 (7)0.0085 (4)0.0221 (16)
C210.7438 (6)0.7284 (7)0.0769 (4)0.0206 (17)
C220.8535 (6)0.7838 (8)0.1375 (4)0.031 (2)
H22A0.83310.86790.14820.037*
H22B0.93250.78250.11450.037*
C230.7179 (6)0.7134 (7)0.2428 (4)0.0195 (16)
C240.7823 (6)0.6924 (7)0.3934 (5)0.0220 (17)
C250.7438 (6)0.7162 (6)0.4773 (4)0.0188 (15)
H25A0.82520.72290.52110.023*
C260.6667 (7)0.6109 (6)0.5012 (4)0.0328 (19)
H26A0.65270.62320.55780.049*
H26B0.71490.53660.49950.049*
H26C0.58320.60570.46180.049*
C270.7938 (7)1.0000 (6)0.4091 (4)0.0196 (16)
C280.9248 (7)1.0217 (6)0.4133 (5)0.0272 (18)
H28A0.98561.01420.46490.033*
C290.9648 (8)1.0542 (7)0.3419 (5)0.037 (2)
H29A1.05371.06840.34410.045*
C300.8765 (8)1.0664 (7)0.2669 (5)0.038 (2)
H30A0.90471.09010.21820.046*
C310.7466 (8)1.0441 (8)0.2628 (5)0.037 (2)
H31A0.68621.05160.21100.044*
C320.7048 (7)1.0108 (6)0.3342 (5)0.0274 (19)
H32A0.61590.99560.33160.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (9)0.0408 (12)0.0148 (9)0.0048 (9)0.0044 (7)0.0030 (9)
S20.0132 (8)0.0401 (12)0.0167 (9)0.0008 (9)0.0023 (7)0.0040 (9)
S30.0295 (10)0.0368 (12)0.0221 (10)0.0056 (9)0.0091 (8)0.0076 (9)
Cl10.0623 (14)0.101 (2)0.0210 (12)0.0311 (15)0.0158 (10)0.0204 (13)
O10.020 (3)0.048 (4)0.022 (3)0.011 (3)0.001 (2)0.010 (3)
O20.051 (4)0.042 (4)0.053 (4)0.003 (3)0.031 (3)0.013 (3)
O30.033 (3)0.060 (4)0.020 (3)0.017 (3)0.007 (2)0.002 (3)
N10.021 (3)0.026 (4)0.012 (3)0.001 (3)0.005 (2)0.001 (3)
N20.015 (3)0.023 (3)0.013 (3)0.000 (2)0.001 (2)0.001 (2)
N30.018 (3)0.031 (4)0.010 (3)0.003 (3)0.006 (2)0.001 (3)
N40.017 (3)0.034 (4)0.017 (3)0.001 (3)0.003 (2)0.009 (3)
C10.046 (5)0.025 (5)0.015 (4)0.006 (4)0.014 (3)0.001 (3)
C20.026 (4)0.033 (5)0.033 (5)0.003 (4)0.019 (3)0.001 (4)
C30.017 (3)0.024 (4)0.026 (4)0.001 (3)0.009 (3)0.000 (4)
C40.021 (3)0.016 (4)0.014 (3)0.000 (3)0.001 (3)0.004 (3)
C50.016 (3)0.019 (4)0.015 (4)0.002 (3)0.002 (3)0.004 (3)
C60.021 (3)0.028 (4)0.018 (4)0.010 (3)0.003 (3)0.004 (3)
C70.019 (3)0.014 (4)0.015 (4)0.001 (3)0.004 (3)0.003 (3)
C80.024 (4)0.022 (4)0.016 (4)0.003 (3)0.003 (3)0.005 (3)
C90.018 (3)0.041 (5)0.011 (3)0.004 (4)0.003 (3)0.003 (4)
C100.044 (5)0.039 (5)0.019 (4)0.010 (4)0.007 (3)0.003 (3)
C110.030 (4)0.021 (4)0.022 (4)0.001 (3)0.007 (3)0.008 (3)
C120.024 (4)0.054 (6)0.034 (5)0.002 (4)0.002 (4)0.002 (4)
C130.058 (6)0.051 (7)0.023 (5)0.000 (5)0.003 (4)0.003 (4)
C140.062 (6)0.028 (5)0.026 (5)0.011 (5)0.023 (4)0.000 (4)
C150.033 (4)0.033 (5)0.043 (5)0.004 (4)0.019 (4)0.010 (4)
C160.025 (4)0.032 (5)0.032 (5)0.002 (4)0.011 (3)0.002 (4)
S40.0222 (9)0.0529 (14)0.0189 (10)0.0040 (9)0.0044 (8)0.0066 (9)
S50.0135 (8)0.0452 (13)0.0206 (10)0.0016 (9)0.0053 (7)0.0007 (9)
S60.0259 (10)0.0238 (10)0.0198 (10)0.0071 (8)0.0088 (8)0.0071 (8)
Cl20.0547 (13)0.0571 (15)0.0157 (10)0.0008 (11)0.0069 (9)0.0062 (10)
O40.025 (3)0.041 (3)0.027 (3)0.012 (3)0.010 (2)0.001 (3)
O50.040 (3)0.045 (4)0.020 (3)0.019 (3)0.005 (2)0.002 (3)
O60.048 (3)0.019 (3)0.047 (4)0.002 (3)0.032 (3)0.009 (3)
N50.013 (3)0.034 (4)0.017 (3)0.002 (3)0.004 (2)0.006 (3)
N60.019 (3)0.034 (4)0.011 (3)0.000 (3)0.007 (2)0.006 (3)
N70.013 (3)0.029 (4)0.019 (3)0.003 (3)0.005 (2)0.001 (3)
N80.013 (3)0.020 (3)0.028 (3)0.002 (3)0.006 (2)0.007 (3)
C170.032 (4)0.035 (5)0.021 (4)0.001 (4)0.014 (3)0.002 (4)
C180.034 (4)0.040 (5)0.026 (4)0.001 (4)0.021 (3)0.004 (4)
C190.023 (4)0.036 (5)0.025 (4)0.002 (4)0.009 (3)0.006 (4)
C200.018 (3)0.030 (4)0.020 (4)0.002 (3)0.005 (3)0.002 (4)
C210.015 (3)0.024 (4)0.023 (4)0.005 (3)0.005 (3)0.002 (3)
C220.019 (4)0.057 (6)0.016 (4)0.007 (4)0.003 (3)0.007 (4)
C230.009 (3)0.031 (4)0.019 (4)0.001 (3)0.003 (3)0.004 (3)
C240.018 (4)0.020 (4)0.029 (4)0.003 (3)0.006 (3)0.000 (3)
C250.020 (4)0.018 (4)0.017 (3)0.002 (3)0.000 (3)0.002 (3)
C260.045 (5)0.023 (4)0.038 (5)0.002 (4)0.026 (4)0.006 (4)
C270.027 (4)0.020 (4)0.011 (4)0.002 (3)0.003 (3)0.002 (3)
C280.025 (4)0.021 (4)0.034 (5)0.000 (3)0.005 (3)0.007 (4)
C290.042 (5)0.037 (5)0.041 (5)0.004 (4)0.023 (4)0.002 (4)
C300.060 (6)0.029 (5)0.028 (5)0.000 (4)0.016 (4)0.004 (4)
C310.054 (5)0.027 (5)0.023 (5)0.010 (4)0.005 (4)0.004 (4)
C320.033 (4)0.019 (4)0.029 (5)0.002 (3)0.004 (4)0.005 (4)
Geometric parameters (Å, º) top
S1—C41.718 (7)S4—C171.732 (7)
S1—C11.727 (7)S4—C201.741 (7)
S2—C71.750 (6)S5—C231.755 (6)
S2—C61.805 (7)S5—C221.817 (7)
S3—O21.431 (6)S6—O61.440 (5)
S3—O31.439 (5)S6—O51.449 (5)
S3—N41.602 (6)S6—N81.611 (6)
S3—C111.792 (8)S6—C271.769 (7)
Cl1—C11.722 (8)Cl2—C171.718 (8)
O1—C81.223 (7)O4—C241.218 (8)
N1—C51.286 (8)N5—C211.292 (8)
N1—N21.407 (7)N5—N61.423 (7)
N2—C71.286 (8)N6—C231.288 (8)
N3—C81.369 (8)N7—C241.351 (9)
N3—C71.395 (8)N7—C231.396 (8)
N4—C91.470 (9)N8—C251.456 (8)
C1—C21.349 (10)C17—C181.328 (11)
C2—C31.406 (10)C18—C191.423 (10)
C3—C41.375 (8)C19—C201.354 (9)
C4—C51.469 (9)C20—C211.458 (9)
C5—C61.487 (9)C21—C221.492 (9)
C8—C91.533 (8)C24—C251.540 (9)
C9—C101.536 (9)C25—C261.533 (9)
C11—C121.373 (10)C27—C321.384 (10)
C11—C161.380 (9)C27—C281.399 (9)
C12—C131.404 (11)C28—C291.379 (10)
C13—C141.376 (11)C29—C301.382 (11)
C14—C151.366 (11)C30—C311.388 (11)
C15—C161.395 (10)C31—C321.390 (11)
C4—S1—C189.9 (3)C17—S4—C2090.3 (3)
C7—S2—C693.4 (3)C23—S5—C2293.3 (3)
O2—S3—O3120.1 (4)O6—S6—O5119.8 (3)
O2—S3—N4104.6 (3)O6—S6—N8105.9 (3)
O3—S3—N4109.7 (3)O5—S6—N8108.7 (3)
O2—S3—C11107.8 (4)O6—S6—C27108.0 (3)
O3—S3—C11106.5 (3)O5—S6—C27106.6 (3)
N4—S3—C11107.6 (3)N8—S6—C27107.3 (3)
C5—N1—N2120.9 (5)C21—N5—N6119.5 (5)
C7—N2—N1119.1 (5)C23—N6—N5120.3 (5)
C8—N3—C7127.4 (5)C24—N7—C23124.1 (5)
C9—N4—S3127.7 (4)C25—N8—S6122.0 (4)
C2—C1—Cl1127.4 (6)C18—C17—Cl2127.5 (6)
C2—C1—S1113.7 (6)C18—C17—S4113.3 (6)
Cl1—C1—S1118.9 (4)Cl2—C17—S4119.2 (4)
C1—C2—C3111.5 (6)C17—C18—C19111.9 (6)
C4—C3—C2112.9 (6)C20—C19—C18113.7 (7)
C3—C4—C5126.7 (6)C19—C20—C21128.3 (7)
C3—C4—S1112.1 (5)C19—C20—S4110.8 (6)
C5—C4—S1121.2 (5)C21—C20—S4120.8 (5)
N1—C5—C4119.1 (6)N5—C21—C20118.5 (6)
N1—C5—C6121.5 (6)N5—C21—C22121.6 (6)
C4—C5—C6119.3 (6)C20—C21—C22119.9 (6)
C5—C6—S2108.7 (5)C21—C22—S5107.9 (5)
N2—C7—N3116.8 (5)N6—C23—N7117.8 (5)
N2—C7—S2125.8 (5)N6—C23—S5124.3 (5)
N3—C7—S2117.4 (5)N7—C23—S5117.8 (5)
O1—C8—N3121.9 (6)O4—C24—N7124.3 (7)
O1—C8—C9122.9 (6)O4—C24—C25118.3 (6)
N3—C8—C9115.1 (5)N7—C24—C25117.3 (6)
N4—C9—C8111.8 (6)N8—C25—C26109.4 (5)
N4—C9—C10114.8 (6)N8—C25—C24114.0 (6)
C8—C9—C10110.2 (5)C26—C25—C24110.8 (6)
C12—C11—C16122.9 (8)C32—C27—C28120.7 (7)
C12—C11—S3118.0 (6)C32—C27—S6119.7 (6)
C16—C11—S3119.1 (6)C28—C27—S6119.6 (6)
C11—C12—C13117.8 (8)C29—C28—C27119.2 (8)
C14—C13—C12120.5 (8)C28—C29—C30120.5 (8)
C15—C14—C13120.0 (7)C29—C30—C31120.1 (8)
C14—C15—C16121.3 (7)C30—C31—C32120.1 (8)
C11—C16—C15117.5 (8)C27—C32—C31119.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N60.882.092.956 (7)168
N4—H4N···S40.882.773.456 (5)136
N4—H4N···N50.882.082.842 (7)145
N7—H7N···N20.882.112.983 (7)172
N8—H8N···N10.882.042.882 (7)160

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC18H17ClN4O3S2C18H17FN4O3S2C16H15ClN4O3S3
Mr436.93420.48442.95
Crystal system, space groupOrthorhombic, P21212Orthorhombic, P212121Monoclinic, P21
Temperature (K)173173173
a, b, c (Å)15.600 (4), 20.764 (6), 5.826 (3)9.675 (19), 12.704 (19), 15.606 (15)10.613 (4), 11.193 (4), 16.399 (5)
α, β, γ (°)90, 90, 9090, 90, 9090, 102.48 (3), 90
V3)1887.1 (12)1918 (5)1902.0 (11)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.450.320.56
Crystal size (mm)1.00 × 0.30 × 0.151.0 × 0.6 × 0.60.40 × 0.15 × 0.15
Data collection
DiffractometerSiemens P21
diffractometer
Siemens P21
diffractometer
Siemens P21
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6296, 5491, 4278 6306, 5271, 4615 7536, 6749, 4676
Rint0.0310.0450.054
(sin θ/λ)max1)0.7030.7050.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 1.02 0.049, 0.128, 1.01 0.061, 0.125, 1.02
No. of reflections549152716749
No. of parameters263262489
No. of restraints001
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.290.34, 0.430.30, 0.35
Absolute structureFlack (1983)Flack (1983)Flack (1983)
Absolute structure parameter0.09 (9)0.12 (8)0.03 (11)

Computer programs: P3/PC (Siemens, 1993), P3/PC, SHELXTL-Plus (Sheldrick, 1990a), SHELXS97 (Sheldrick, 1990b), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) for (I) top
S1—C91.726 (3)N2—C91.338 (3)
N1—C71.284 (4)N3—C91.321 (3)
N1—N21.389 (3)
C9—N2—N1128.6 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.82 (4)2.72 (4)3.236 (3)122 (3)
N2—H2N···O1i0.82 (4)2.56 (4)3.375 (3)173 (4)
N4—H4N···N30.90 (3)2.31 (3)2.661 (3)103 (2)
Symmetry code: (i) x, y, z+1.
Selected bond lengths (Å) for (II) top
S1—C91.752 (4)N1—N21.404 (3)
S1—C81.816 (3)N2—C91.296 (4)
N1—C71.291 (4)N3—C91.403 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.90 (4)2.01 (4)2.907 (6)174 (3)
N4—H4N···N2ii0.88 (5)2.06 (5)2.911 (6)163 (4)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
Selected bond lengths (Å) for (III) top
S2—C71.750 (6)S5—C231.755 (6)
S2—C61.805 (7)S5—C221.817 (7)
N1—C51.286 (8)N5—C211.292 (8)
N1—N21.407 (7)N5—N61.423 (7)
N2—C71.286 (8)N6—C231.288 (8)
N3—C71.395 (8)N7—C231.396 (8)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N60.882.092.956 (7)167.7
N4—H4N···S40.882.773.456 (5)136.4
N4—H4N···N50.882.082.842 (7)145.0
N7—H7N···N20.882.112.983 (7)172.0
N8—H8N···N10.882.042.882 (7)159.5
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds