Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mol­ecules, C15H9ClF2N2S and C16H12F2N2S, respectively, display the well known butterfly-like conformation with a flat thia­zolobenz­imidazole system. In both compounds, the mean plane through the tricyclic system is almost perpendicular to the 2,6-di­fluoro­phenyl ring. This arrangement of the aryl group is determined by two intramolecular hydrogen bonds and by an attractive F...S interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101001421/av1059sup1.cif
Contains datablocks global, I, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101001421/av1059Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101001421/av1059IIsup3.hkl
Contains datablock II

CCDC references: 164649; 164650

Comment top

As part of a structure–activity relationship study on a series of thiazolo[3,4-a]benzimidazole derivatives endowed with anti-HIV activity, we have already demonstrated (Chimirri et al., 1997) that the geometric features of 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole (TBZ), the lead compound of the series, determine the biological activity. Moreover, we have observed (Chimirri et al., 1996) that the anti-HIV activity is maintained by introducing a Cl atom at position 7 of the tricyclic system, whereas the presence of a methyl group at position 6 leads to a drop-off in activity. In this context, we report the crystal structures of 7-chloro-1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole, (I), and 1-(2,6-difluorophenyl)-6-methyl-1H,3H-thiazolo[3,4-a]benzimidazole, (II), in order to determine whether the difference in activity could be related to any change in the molecular geometry or to the presence of a substituent on the benzene ring.

Both compounds (I) and (II) are built up by three fused rings to form a flat thiazolobenzimidazole system (the atomic deviations from the weighted least-squares mean plane are within 0.02 Å); the thiazole ring in (I) has a chiral C atom bonding the 2,6-difluorophenyl group. Since both compounds crystallize in centrosymmetric space groups, in the solid state, a racemic mixture is obtained from the synthesis. The molecular structure determinations of (I) and (II) confirm the well known butterfly conformation, already shown to exist in other 1-aryl-1H,3H-thiazolo[3,4-a]benzimidazole derivatives (Bruno et al., 1996, 1997, 1998). Such a disposition is evidenced by considering the dihedral angle between the three fused rings (the thiazolobenzimidazole system) and the 2,6-difluorophenyl substituent at C1, i.e. 100.28 (5) and 87.62 (6)° for (I) and 2, respectively. This arrangement is mainly due either to hindered rotation around the C1—C10 bond axis or to further stabilization through an intramolecular interaction between the H atom of the chiral Csp3 atom and the electron-rich F atoms [F1···C1 = 2.793 (2) Å and C1—H1···F1 = 108.2 (1)°, and F2···C9 = 2.990 (2) Å and F2···H9—C9 108.8 (2)° for (I); F2···C1 = 2.781 (3) Å and C1—H1···F2 = 108.6 (2)°, and F1···C9 = 3.225 (2) Å and F1···H9B—C9 97.6 (2)° for (II)].

However, the puckering analysis (Cremer & People, 1975) shows that the conformations of five-membered thiazolidine ring (S/C9/C8/N2/C1) are essentially different in (I) and (II); the conformation is intermediate between envelope (ϕ = 180°) and twisted (ϕ = 90°) in (I) [ϕ = -145.4 (4)°, Q = 0.221 (2) and Dσ(S) = 0.005 (1)] and a flatter envelope in (II) [ϕ = -170 (1)°, Q = 0.097 (2) and D2(C8) = 0.006 (1)]. Such a difference may arise from the attractive F1···S [3.063 (1) Å] interaction (Bruno, Nicoló et al., 1997) that in (I) pushes the S atom up to -0.398 (1) Å out of the best mean plane through atoms C9/C8/N2/C1 on the opposite side of the F atom. In (II), the larger F···S separation of 3.236 (2) Å leaves the S atom 0.179 (1) Å out of this plane.

Bond distances of the thiazolidine ring are similar to those observed in a series of analogous TBZ compounds. In each compound, the bond distances involving the S atom, S—C1 and S—C9, are not equivalent: 1.838 (2) and 1.825 (2) Å in (I) versus 1.848 (2) and 1.816 (2) Å in (II). The significant difference of 0.032 Å in (II) might be caused by the steric effect of the 2,6-difluorophenyl group linked to the C1 atom. The endocyclic C9—S—C1 bond angles of 95.3 (1) and 95.4 (1)° for (I) and (II), respectively, are in the narrow range of values reported in the Cambridge Structural Database (Allen et al., 1991) for penicillin and other biologically active substituted thiazolidines. The sum of the valence angles around N2 is 360.0 (1)° in (I) and 359.8 (2)° in (II), indicating its sp2 hybridization. The N—C bond distances are also indicative of the π-delocalization over the whole naphthoimidazole fragment.

The molecular packing for both compounds is essentially determined by normal van der Waals interactions and some weak hydrogen bonds involving the F and N atoms as acceptors. However, the H···N intermolecular network in compound (I) causes each centrosymmetric molecular pair to assume a flat head-to-tail disposition. Each couple acts as a step of a staircase constituted by their overlap along the b axis like a pseudo-polymeric column, as shown in Fig. 3.

Related literature top

For related literature, see: Allen et al. (1991); Bruno et al. (1996, 1998); Bruno, Chimirri, Monforte, Nicoló & Scopelliti (1997); Bruno, Nicoló, Chimirri, Grasso, Monforte, Monforte, Zappalá, Rao & Scopelliti (1997); Chimirri et al. (1996, 1997).

Experimental top

The title compounds were obtained as described previously by Chimirri et al. (1996). Suitable single crystals were obtained by recrystallization from ethanol.

Refinement top

H atoms were placed in calculated positions (the idealized geometry depending on the parent atom type) and included in the refinement as riding atoms, with a common fixed isotropic displacement parameter (Uiso = 0.06 Å2). The usual rotational disorder of the terminal methyl group in compound (II) was handled by splitting it into two staggered positions, and fixing their occupancies to the best values (0.6 versus 0.4).

Computing details top

For both compounds, data collection: P3/V (Siemens, 1989); cell refinement: P3/V; data reduction: SHELXTL-Plus (Sheldrick, 1990); program(s) used to solve structure: SIR92 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: locally modified PARST97 (Nardelli, 1995) and SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of (I) showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of (II) showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of compound (I) showing the intermolecular hydrogen-bond interactions as dotted lines. Atom size is arbitrary. Cross-hatched circles indicate N atoms.
(I) 7-chloro-1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole top
Crystal data top
C15H9ClF2N2SF(000) = 656
Mr = 322.75Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.292 (2) ÅCell parameters from 30 reflections
b = 5.741 (1) Åθ = 6.3–14.9°
c = 23.474 (4) ŵ = 0.44 mm1
β = 95.05 (1)°T = 293 K
V = 1381.6 (4) Å3Prism, colourless
Z = 40.34 × 0.23 × 0.17 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 26.1°, θmin = 1.7°
Graphite monochromatorh = 512
ω–2θ scansk = 37
3993 measured reflectionsl = 2929
2720 independent reflections3 standard reflections every 197 reflections
2170 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.3215P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2720 reflectionsΔρmax = 0.20 e Å3
191 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (11)
Crystal data top
C15H9ClF2N2SV = 1381.6 (4) Å3
Mr = 322.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.292 (2) ŵ = 0.44 mm1
b = 5.741 (1) ÅT = 293 K
c = 23.474 (4) Å0.34 × 0.23 × 0.17 mm
β = 95.05 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.013
3993 measured reflections3 standard reflections every 197 reflections
2720 independent reflections intensity decay: none
2170 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2720 reflectionsΔρmin = 0.25 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflection intensities were evaluated by profile fitting of a 96-step peak scan among 2θ shells (Diamond, 1969). Whereas the final difference Fourier maps showed several H-atom positions.

Diamond, R. (1969). Acta Cryst. A25, 43–55.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S0.77120 (4)0.20390 (10)0.36066 (2)0.05641 (18)(I)
C10.59458 (15)0.2581 (3)0.35513 (7)0.0367 (4)(I)
H10.57880.40870.37290.060*(I)
N20.54823 (12)0.0747 (2)0.39076 (5)0.0340 (3)(I)
C80.62711 (16)0.1072 (3)0.40779 (7)0.0381 (4)(I)
C90.76023 (17)0.0928 (4)0.38772 (8)0.0503 (5)(I)
H9A0.77070.20560.35770.060*(I)
H9B0.82650.12070.41900.060*(I)
C20.43027 (14)0.0379 (3)0.41299 (6)0.0321 (3)(I)
C70.44740 (16)0.1742 (3)0.44275 (6)0.0357 (4)(I)
N10.57304 (14)0.2620 (2)0.43858 (6)0.0410 (3)(I)
C30.31737 (15)0.1695 (3)0.41126 (6)0.0367 (4)(I)
H30.30780.30970.39150.060*(I)
C40.21987 (16)0.0767 (3)0.44122 (7)0.0408 (4)(I)
Cl0.07486 (5)0.23378 (11)0.44232 (2)0.06610 (19)(I)
C50.23216 (17)0.1342 (3)0.47046 (7)0.0448 (4)(I)
H50.16250.19000.48910.060*(I)
C60.34588 (18)0.2614 (3)0.47220 (7)0.0430 (4)(I)
H60.35470.40080.49230.060*(I)
C100.52532 (16)0.2557 (3)0.29540 (7)0.0377 (4)(I)
C110.53815 (19)0.0806 (4)0.25598 (7)0.0493 (5)(I)
F10.61742 (13)0.1004 (2)0.27117 (5)0.0717 (4)(I)
C120.4723 (2)0.0788 (4)0.20216 (8)0.0626 (6)(I)
H120.48390.04230.17680.060*(I)
C130.3896 (2)0.2595 (4)0.18694 (8)0.0656 (6)(I)
H130.34490.26130.15070.060*(I)
C140.3716 (2)0.4380 (4)0.22432 (8)0.0620 (6)(I)
H140.31490.56000.21400.060*(I)
C150.43971 (18)0.4317 (3)0.27741 (7)0.0469 (4)(I)
F20.41965 (13)0.6049 (2)0.31481 (5)0.0669 (4)(I)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0339 (2)0.0676 (4)0.0677 (3)0.0055 (2)0.0040 (2)0.0146 (3)
C10.0354 (8)0.0391 (9)0.0358 (8)0.0039 (7)0.0036 (6)0.0025 (7)
N20.0356 (7)0.0363 (7)0.0301 (6)0.0008 (6)0.0026 (5)0.0032 (5)
C80.0408 (8)0.0402 (9)0.0325 (8)0.0035 (7)0.0013 (6)0.0021 (7)
C90.0409 (9)0.0574 (12)0.0524 (10)0.0085 (9)0.0027 (8)0.0041 (9)
C20.0360 (8)0.0373 (8)0.0226 (6)0.0057 (7)0.0003 (6)0.0005 (6)
C70.0447 (9)0.0361 (8)0.0257 (7)0.0034 (7)0.0007 (6)0.0020 (6)
N10.0488 (8)0.0381 (8)0.0354 (7)0.0026 (6)0.0010 (6)0.0015 (6)
C30.0375 (8)0.0432 (9)0.0289 (7)0.0033 (7)0.0007 (6)0.0016 (7)
C40.0354 (8)0.0547 (11)0.0322 (8)0.0023 (8)0.0022 (6)0.0021 (8)
Cl0.0400 (3)0.0878 (4)0.0725 (4)0.0091 (2)0.0157 (2)0.0161 (3)
C50.0471 (10)0.0548 (11)0.0332 (8)0.0138 (9)0.0067 (7)0.0010 (8)
C60.0577 (11)0.0413 (9)0.0300 (8)0.0108 (8)0.0033 (7)0.0040 (7)
C100.0395 (8)0.0434 (9)0.0310 (8)0.0035 (7)0.0076 (6)0.0051 (7)
C110.0536 (10)0.0577 (12)0.0368 (9)0.0067 (9)0.0058 (8)0.0011 (8)
F10.0870 (9)0.0710 (8)0.0557 (7)0.0301 (7)0.0024 (6)0.0134 (6)
C120.0755 (14)0.0783 (15)0.0342 (9)0.0015 (12)0.0056 (9)0.0099 (10)
C130.0741 (14)0.0868 (16)0.0337 (9)0.0020 (13)0.0075 (9)0.0075 (11)
C140.0692 (13)0.0664 (14)0.0477 (10)0.0096 (11)0.0097 (9)0.0130 (10)
C150.0531 (10)0.0477 (11)0.0397 (9)0.0003 (9)0.0025 (8)0.0040 (8)
F20.0817 (8)0.0555 (7)0.0607 (7)0.0221 (6)0.0096 (6)0.0068 (6)
Geometric parameters (Å, º) top
S—C91.825 (2)C3—C41.382 (2)
S—C11.8375 (17)C4—C51.392 (3)
C1—N21.451 (2)C4—Cl1.7459 (18)
C1—C101.516 (2)C5—C61.377 (3)
N2—C81.361 (2)C10—C111.381 (2)
N2—C21.3792 (19)C10—C151.382 (2)
C8—N11.301 (2)C11—F11.349 (2)
C8—C91.490 (2)C11—C121.380 (3)
C2—C31.384 (2)C12—C131.369 (3)
C2—C71.407 (2)C13—C141.372 (3)
C7—C61.396 (2)C14—C151.375 (3)
C7—N11.399 (2)C15—F21.354 (2)
C9—S—C195.25 (8)C4—C3—C2114.84 (15)
N2—C1—C10112.02 (13)C3—C4—C5123.22 (16)
N2—C1—S102.11 (11)C3—C4—Cl117.92 (14)
C10—C1—S116.46 (12)C5—C4—Cl118.86 (13)
C8—N2—C2107.06 (13)C6—C5—C4121.06 (16)
C8—N2—C1120.54 (13)C5—C6—C7117.81 (16)
C2—N2—C1132.39 (14)C11—C10—C15115.06 (16)
N1—C8—N2114.46 (15)C11—C10—C1124.15 (16)
N1—C8—C9131.60 (16)C15—C10—C1120.75 (15)
N2—C8—C9113.94 (15)F1—C11—C12118.24 (18)
C8—C9—S104.41 (12)F1—C11—C10118.35 (15)
N2—C2—C3132.08 (15)C12—C11—C10123.40 (19)
N2—C2—C7104.15 (13)C13—C12—C11118.5 (2)
C3—C2—C7123.73 (14)C12—C13—C14120.97 (18)
C6—C7—N1129.95 (16)C13—C14—C15118.2 (2)
C6—C7—C2119.33 (15)F2—C15—C14118.25 (18)
N1—C7—C2110.69 (14)F2—C15—C10117.91 (15)
C8—N1—C7103.64 (14)C14—C15—C10123.82 (18)
C9—S—C1—N217.12 (12)C7—C2—C3—C40.2 (2)
C9—S—C1—C10105.23 (14)C2—C3—C4—C50.8 (2)
C10—C1—N2—C8111.60 (16)C2—C3—C4—Cl178.97 (11)
S—C1—N2—C813.74 (17)C3—C4—C5—C61.6 (3)
C10—C1—N2—C267.5 (2)Cl—C4—C5—C6178.20 (13)
S—C1—N2—C2167.18 (14)C4—C5—C6—C71.2 (2)
C2—N2—C8—N10.63 (18)N1—C7—C6—C5177.97 (15)
C1—N2—C8—N1178.66 (14)C2—C7—C6—C50.2 (2)
C2—N2—C8—C9179.34 (14)N2—C1—C10—C1167.2 (2)
C1—N2—C8—C91.4 (2)S—C1—C10—C1149.8 (2)
N1—C8—C9—S167.96 (16)N2—C1—C10—C15110.71 (18)
N2—C8—C9—S12.01 (18)S—C1—C10—C15132.29 (15)
C1—S—C9—C816.96 (13)C15—C10—C11—F1178.22 (17)
C8—N2—C2—C3177.12 (16)C1—C10—C11—F10.2 (3)
C1—N2—C2—C33.7 (3)C15—C10—C11—C120.6 (3)
C8—N2—C2—C70.46 (16)C1—C10—C11—C12178.65 (18)
C1—N2—C2—C7178.72 (15)F1—C11—C12—C13178.6 (2)
N2—C2—C7—C6178.32 (14)C10—C11—C12—C130.2 (3)
C3—C2—C7—C60.5 (2)C11—C12—C13—C140.4 (3)
N2—C2—C7—N10.19 (16)C12—C13—C14—C150.5 (3)
C3—C2—C7—N1177.65 (14)C13—C14—C15—F2178.44 (19)
N2—C8—N1—C70.49 (18)C13—C14—C15—C100.0 (3)
C9—C8—N1—C7179.48 (18)C11—C10—C15—F2177.92 (16)
C6—C7—N1—C8177.71 (16)C1—C10—C15—F20.2 (2)
C2—C7—N1—C80.17 (17)C11—C10—C15—C140.5 (3)
N2—C2—C3—C4177.38 (15)C1—C10—C15—C14178.60 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F20.982.332.793 (2)108
C9—H9A···F10.972.532.990 (2)109
C1—H1···N1i0.982.443.399 (2)165
C6—H6···N1ii0.932.593.502 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+1.
(2) 1-(2,6-Difluorophenyl)-6-methyl-1H,3H-thiazolo[3,4-a]benzimidazole top
Crystal data top
C16H12F2N2SZ = 2
Mr = 302.34F(000) = 312
Triclinic, P1Dx = 1.432 Mg m3
a = 7.616 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.202 (3) ÅCell parameters from 40 reflections
c = 10.868 (2) Åθ = 7.2–15.8°
α = 108.86 (2)°µ = 0.25 mm1
β = 106.96 (1)°T = 293 K
γ = 105.46 (2)°Irregular, colourless
V = 701.0 (3) Å30.30 × 0.28 × 0.26 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.011
Radiation source: fine-focus sealed tubeθmax = 24.6°, θmin = 2.2°
Graphite monochromatorh = 48
ω–2θ scansk = 1111
3013 measured reflectionsl = 1212
2342 independent reflections3 standard reflections every 197 reflections
1713 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
2342 reflectionsΔρmax = 0.18 e Å3
192 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C16H12F2N2Sγ = 105.46 (2)°
Mr = 302.34V = 701.0 (3) Å3
Triclinic, P1Z = 2
a = 7.616 (1) ÅMo Kα radiation
b = 10.202 (3) ŵ = 0.25 mm1
c = 10.868 (2) ÅT = 293 K
α = 108.86 (2)°0.30 × 0.28 × 0.26 mm
β = 106.96 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.011
3013 measured reflections3 standard reflections every 197 reflections
2342 independent reflections intensity decay: none
1713 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 0.92Δρmax = 0.18 e Å3
2342 reflectionsΔρmin = 0.15 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S0.31356 (8)0.52479 (6)0.84683 (5)0.05986 (18)(I)
C10.5261 (2)0.58103 (18)0.79877 (16)0.0411 (4)(I)
H10.54880.49120.75260.060*(I)
N20.4518 (2)0.63423 (14)0.69366 (13)0.0398 (3)(I)
C80.2744 (3)0.64877 (19)0.66695 (17)0.0457 (4)(I)
C90.1658 (3)0.6001 (2)0.7481 (2)0.0602 (5)(I)
H9A0.03270.52320.68350.060*(I)
H9B0.15390.68510.81290.060*(I)
C20.5359 (2)0.68733 (16)0.61320 (15)0.0385 (4)(I)
C70.3954 (3)0.73205 (18)0.54034 (17)0.0443 (4)(I)
N10.2310 (2)0.70559 (17)0.57567 (15)0.0540 (4)(I)
C30.7104 (3)0.69867 (18)0.59514 (16)0.0440 (4)(I)
H30.80060.66640.64210.060*(I)
C40.7451 (3)0.76006 (19)0.50412 (17)0.0517 (5)(I)
H40.86190.76950.49030.060*(I)
C50.6111 (3)0.8086 (2)0.43187 (18)0.0534 (5)(I)
C160.6587 (4)0.8741 (3)0.3332 (2)0.0782 (7)(I)
H16A0.57620.92790.31380.060*0.60
H16B0.63310.79390.24520.060*0.60
H16C0.79710.94210.37790.060*0.60
H16D0.76140.84810.31080.060*0.40
H16E0.70450.98210.37940.060*0.40
H16F0.54050.83390.24680.060*0.40
C60.4349 (3)0.7931 (2)0.44925 (18)0.0552 (5)(I)
H60.34370.82330.40030.060*(I)
C100.7174 (2)0.69752 (17)0.92362 (15)0.0374 (4)(I)
C110.7434 (3)0.8425 (2)1.00688 (18)0.0497 (5)(I)
F10.58454 (18)0.88086 (13)0.97266 (12)0.0787 (4)(I)
C120.9178 (3)0.9474 (2)1.12085 (18)0.0599 (5)(I)
H120.92741.04311.17400.060*(I)
C131.0780 (3)0.9086 (2)1.15499 (19)0.0603 (5)(I)
H131.19770.97861.23220.060*(I)
C141.0641 (3)0.7668 (2)1.07622 (18)0.0545 (5)(I)
H141.17300.74021.09850.060*(I)
C150.8848 (3)0.66622 (18)0.96401 (16)0.0418 (4)(I)
F20.86969 (16)0.52610 (11)0.88627 (11)0.0591 (3)(I)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0525 (3)0.0715 (3)0.0656 (3)0.0201 (3)0.0280 (3)0.0419 (3)
C10.0422 (10)0.0406 (9)0.0398 (8)0.0159 (8)0.0148 (8)0.0189 (7)
N20.0374 (8)0.0436 (8)0.0367 (7)0.0160 (7)0.0120 (6)0.0187 (6)
C80.0358 (10)0.0513 (10)0.0446 (9)0.0164 (8)0.0125 (8)0.0193 (8)
C90.0414 (11)0.0764 (13)0.0647 (12)0.0213 (10)0.0225 (10)0.0343 (11)
C20.0394 (10)0.0334 (9)0.0322 (8)0.0108 (8)0.0092 (7)0.0101 (7)
C70.0424 (10)0.0433 (9)0.0395 (9)0.0150 (8)0.0106 (8)0.0165 (8)
N10.0448 (9)0.0654 (10)0.0555 (9)0.0259 (8)0.0153 (8)0.0324 (8)
C30.0419 (10)0.0428 (9)0.0374 (9)0.0136 (8)0.0126 (8)0.0121 (8)
C40.0503 (11)0.0479 (10)0.0418 (9)0.0095 (9)0.0198 (9)0.0098 (8)
C50.0654 (13)0.0440 (10)0.0409 (9)0.0128 (10)0.0203 (9)0.0159 (8)
C160.1003 (18)0.0746 (14)0.0703 (13)0.0293 (13)0.0434 (13)0.0411 (12)
C60.0629 (13)0.0517 (11)0.0461 (10)0.0226 (10)0.0128 (10)0.0248 (9)
C100.0417 (10)0.0385 (9)0.0320 (8)0.0148 (8)0.0145 (7)0.0170 (7)
C110.0574 (12)0.0478 (10)0.0444 (9)0.0267 (10)0.0174 (9)0.0193 (9)
F10.0765 (8)0.0642 (7)0.0786 (8)0.0443 (7)0.0159 (7)0.0129 (6)
C120.0727 (15)0.0419 (11)0.0451 (10)0.0169 (11)0.0136 (11)0.0099 (9)
C130.0558 (13)0.0545 (12)0.0419 (10)0.0066 (10)0.0034 (9)0.0153 (9)
C140.0430 (11)0.0615 (12)0.0508 (10)0.0178 (10)0.0092 (9)0.0262 (10)
C150.0491 (11)0.0397 (10)0.0382 (9)0.0177 (8)0.0177 (8)0.0190 (8)
F20.0581 (7)0.0506 (6)0.0622 (6)0.0293 (5)0.0167 (5)0.0184 (5)
Geometric parameters (Å, º) top
S—C91.8162 (19)C3—C41.380 (2)
S—C11.8475 (18)C4—C51.399 (3)
C1—N21.452 (2)C5—C61.384 (3)
C1—C101.502 (2)C5—C161.513 (3)
N2—C81.355 (2)C10—C151.379 (2)
N2—C21.384 (2)C10—C111.386 (2)
C8—N11.309 (2)C11—F11.356 (2)
C8—C91.482 (2)C11—C121.367 (3)
C2—C31.380 (2)C12—C131.368 (3)
C2—C71.407 (2)C13—C141.379 (3)
C7—C61.389 (3)C14—C151.370 (2)
C7—N11.399 (2)C15—F21.3585 (19)
C9—S—C195.38 (8)C2—C3—C4116.93 (17)
N2—C1—C10112.95 (13)C3—C4—C5122.48 (18)
N2—C1—S102.96 (11)C6—C5—C4119.55 (17)
C10—C1—S113.93 (11)C6—C5—C16120.94 (19)
C8—N2—C2107.32 (13)C4—C5—C16119.49 (19)
C8—N2—C1120.61 (14)C5—C6—C7119.50 (18)
C2—N2—C1131.91 (14)C15—C10—C11114.31 (15)
N1—C8—N2114.16 (16)C15—C10—C1121.23 (15)
N1—C8—C9131.41 (17)C11—C10—C1124.46 (16)
N2—C8—C9114.41 (15)F1—C11—C12118.67 (17)
C8—C9—S105.89 (13)F1—C11—C10117.33 (16)
C3—C2—N2133.57 (15)C12—C11—C10124.00 (18)
C3—C2—C7122.32 (16)C11—C12—C13118.56 (18)
N2—C2—C7104.09 (15)C12—C13—C14120.79 (18)
C6—C7—N1130.20 (17)C15—C14—C13117.88 (18)
C6—C7—C2119.19 (17)F2—C15—C14118.22 (16)
N1—C7—C2110.61 (15)F2—C15—C10117.32 (15)
C8—N1—C7103.81 (14)C14—C15—C10124.46 (16)
C9—S—C1—N27.82 (12)C7—C2—C3—C41.6 (2)
C9—S—C1—C10114.86 (13)C2—C3—C4—C50.3 (2)
C10—C1—N2—C8115.96 (17)C3—C4—C5—C61.1 (3)
S—C1—N2—C87.37 (17)C3—C4—C5—C16179.71 (15)
C10—C1—N2—C258.9 (2)C4—C5—C6—C71.2 (3)
S—C1—N2—C2177.73 (13)C16—C5—C6—C7179.79 (15)
C2—N2—C8—N10.4 (2)N1—C7—C6—C5179.77 (17)
C1—N2—C8—N1176.44 (14)C2—C7—C6—C50.0 (3)
C2—N2—C8—C9178.56 (14)N2—C1—C10—C15125.79 (16)
C1—N2—C8—C92.5 (2)S—C1—C10—C15117.18 (15)
N1—C8—C9—S177.33 (17)N2—C1—C10—C1154.0 (2)
N2—C8—C9—S3.92 (19)S—C1—C10—C1163.06 (19)
C1—S—C9—C86.89 (14)C15—C10—C11—F1179.85 (15)
C8—N2—C2—C3178.92 (17)C1—C10—C11—F10.1 (2)
C1—N2—C2—C35.7 (3)C15—C10—C11—C120.6 (3)
C8—N2—C2—C70.03 (16)C1—C10—C11—C12179.58 (17)
C1—N2—C2—C7175.43 (15)F1—C11—C12—C13179.87 (17)
C3—C2—C7—C61.5 (2)C10—C11—C12—C130.6 (3)
N2—C2—C7—C6179.45 (14)C11—C12—C13—C140.0 (3)
C3—C2—C7—N1178.72 (15)C12—C13—C14—C150.6 (3)
N2—C2—C7—N10.32 (17)C13—C14—C15—F2179.73 (16)
N2—C8—N1—C70.6 (2)C13—C14—C15—C100.6 (3)
C9—C8—N1—C7178.17 (18)C11—C10—C15—F2179.67 (14)
C6—C7—N1—C8179.19 (17)C1—C10—C15—F20.1 (2)
C2—C7—N1—C80.56 (19)C11—C10—C15—C140.0 (2)
N2—C2—C3—C4179.68 (15)C1—C10—C15—C14179.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F20.982.312.782 (2)109
C9—H9B···F10.972.953.225 (3)98

Experimental details

(I)(2)
Crystal data
Chemical formulaC15H9ClF2N2SC16H12F2N2S
Mr322.75302.34
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)10.292 (2), 5.741 (1), 23.474 (4)7.616 (1), 10.202 (3), 10.868 (2)
α, β, γ (°)90, 95.05 (1), 90108.86 (2), 106.96 (1), 105.46 (2)
V3)1381.6 (4)701.0 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.440.25
Crystal size (mm)0.34 × 0.23 × 0.170.30 × 0.28 × 0.26
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3993, 2720, 2170 3013, 2342, 1713
Rint0.0130.011
(sin θ/λ)max1)0.6180.585
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.07 0.030, 0.073, 0.92
No. of reflections27202342
No. of parameters191192
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.250.18, 0.15

Computer programs: P3/V (Siemens, 1989), P3/V, SHELXTL-Plus (Sheldrick, 1990), SIR92 (Altomare, 1994), SHELXL97 (Sheldrick, 1997), XPW (Siemens, 1996), locally modified PARST97 (Nardelli, 1995) and SHELXL97.

Selected geometric parameters (Å, º) for (I) top
S—C91.825 (2)N2—C21.3792 (19)
S—C11.8375 (17)C8—N11.301 (2)
C1—N21.451 (2)C8—C91.490 (2)
N2—C81.361 (2)C7—N11.399 (2)
C9—S—C195.25 (8)N1—C8—N2114.46 (15)
N2—C1—S102.11 (11)N2—C8—C9113.94 (15)
C8—N2—C2107.06 (13)C8—C9—S104.41 (12)
C8—N2—C1120.54 (13)C8—N1—C7103.64 (14)
C2—N2—C1132.39 (14)
S—C1—C10—C1149.8 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F20.982.332.793 (2)108.2
C9—H9A···F10.972.532.990 (2)108.8
C1—H1···N1i0.982.443.399 (2)164.9
C6—H6···N1ii0.932.593.502 (2)166.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z+1.
Selected geometric parameters (Å, º) for (2) top
S—C91.8162 (19)N2—C21.384 (2)
S—C11.8475 (18)C8—N11.309 (2)
C1—N21.452 (2)C8—C91.482 (2)
N2—C81.355 (2)C7—N11.399 (2)
C9—S—C195.38 (8)N1—C8—N2114.16 (16)
N2—C1—S102.96 (11)N2—C8—C9114.41 (15)
C8—N2—C2107.32 (13)C8—C9—S105.89 (13)
C8—N2—C1120.61 (14)C8—N1—C7103.81 (14)
C2—N2—C1131.91 (14)
S—C1—C10—C1163.06 (19)
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F20.982.312.782 (2)108.6
C9—H9B···F10.972.953.225 (3)97.6
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds