Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, [TeCl4(C5H10N2S)2] or C10H20Cl4N4S2Te, has been solved in order to study the stereochemical activity of the lone pair of electrons on TeIV. The two crystallographically independent mol­ecules in the asymmetric unit both show a distorted octahedral coordination of the Te atom. The two Te-S bonds are trans to each other in both mol­ecules and are greatly asymmetric, with bond lengths of 2.5686 (7) versus 2.8557 (8) Å and 2.5859 (7) versus 2.8165 (9) Å. The Te-Cl bond lengths lie in the range 2.5236 (7)-2.5589 (8) Å. The asymmetric Te-S bonds and a large S-Te-Cl angle of ca 97° involving the long Te-S bonds indicate stereochemical activity of the lone pair of electrons on Te.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009392/av1048sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009392/av1048Isup2.hkl
Contains datablock I

CCDC reference: 152617

Comment top

The reaction of TeO2 dissolved in HCl with thioureas typically results in TeII complexes. This is caused by disproportionation reactions where TeIV is reduced to TeII, whereas two thioureas are oxidized to the corresponding disulfide (Husebye, 1983). The only exceptions to this rule are represented by tetramethylthiourea (tmtu; Husebye & George, 1969; Esperås et al., 1975) and benzimidazolethione (bit), a cyclic thiourea (Von Deuten et al., 1979a). The ligand benzothiazolethione (btt), related to benzimidazolethione by replacing an NH group with S, also stabilizes the resulting TeIV complex (Von Deuten et al., 1979b). The TeIV complexes above are octahedral with TeX4S2 (X is a halogen) coordination spheres. The bit complex has a cis configuration and the others are trans complexes. Of these complexes, the monoclinic trans-[TeCl4(tmtu)2] is the most interesting. It is greatly distorted from octahedral symmetry in a way that indicates the stereochemical activity of the lone pair of electrons on Te (Esperås et al., 1975). The other complexes are either centrosymmetric {orthorhombic trans-[TeX4(tmtu)2], X = Br or Cl, and trans-[TeCl4(btt)2]} or have a twofold rotation axis through the Te atom {cis-[TeCl4(bit)2]}. The lone pair of electrons in these four compounds is stereochemically inert in the sense that it seems not to occupy a site in the coordination sphere of Te. The average Te—S bond length in the three centrosymmetric thiourea compounds is 2.703 Å. To explore the lone pair activity in TeIV complexes further, it was decided to synthesize another tetraalkylthiourea complex of TeIV, the title complex, (I), and investigate its structure. \sch

The structure of (I), trans-[TeCl4(dit)2] (dit = N,N'-dimethyl-2-imidazolidinethione), is a racemic twin and has two crystallographically independent molecules in the asymmetric unit, as illustrated in Fig. 1. The two molecules are octahedral trans complexes and both show considerable distortions from ideal symmetry (Table 1). The equatorial TeCl4 groups are planar to within 0.175 Å for molecule 1 and 0.190 Å for molecule 2. In molecule 1, the interplanar angles between TeCl4 and the rings connected to S11 and S12 are 10.88 (15) and 17.71 (12)°, respectively. The corresponding angles in molecule 2 are 12.69 (14) and 18.77 (12)°, respectively. Superpositioning of molecules 1 and 2 reveals a difference in the orientation of the rings bonded to the S atoms. Whereas one pair of rings in molecules 1 and 2, bonded to S12 and S22, roughly coincide, the other two are related by an approximate mirror plane through S11, Te11, Cl11, Cl14 and S12. Thus, the structure of molecule 2 is related to that of molecule 1 by a rotation of approximately 170° around the Te11—S11 bond of molecule 1. The Cl14—Te11—S11—C11 and Cl24—Te21—S21—C21 torsion angles are −96.26 (10) and 97.48 (10)°, respectively. The torsion angles C11—S11—S12—C16 [78.35 (14)°] and C21—S21—S22—C26 [−79.57 (15)°] indicate that the rings in molecules 1 and 2 are in a syn-clinal relation to each other.

There is a great asymmetry of the nearly linear S—Te—S sequences, where the long Te—S bonds are close to 2.84 Å and the short bonds are close to 2.58 Å. In addition, the Cln1-Ten1-Sn1 angles (n = 1 or 2 for molecules 1 and 2, respectively) involving the longer Te—S bonds in both complexes are ca 97°, whereas `trans' to these there are Cl—Te—S angles of about 78°. The three fac-positioned ligand donor atoms, Cln1, Cln3 and Sn1, form weaker bonds to the central Te atom than the other ligand atoms, although the differences in the Te—Cl bond lengths are small (average = 0.025 Å). This may indicate some stereochemical activity by the lone pair of electrons on Te. Such activity was indicated in the related monoclinic tetramethylthiourea complex (Esperås et al., 1975). In the latter the asymmetry in the nearly linear S—Te—S sequence is less pronounced, with the long and short Te—S bonds being 2.726 (1) and 2.649 (1) Å, respectively. However, the greater asymmetry in the Te—Cl bonds and the bond angles around TeIV in the latter complex indicate that the lone pair of electrons moves towards an equatorial position in a Ψ-pentagonal bipyramidal structure.

The bonding in octahedral Te complexes may be described by three mutually perpendicular three-centre four-electron systems, L1—Te—L2 (Husebye, 1983). These systems are based on the overlap of suitable ligand orbitals with the three 5p-orbitals of Te. The role of the lone pair of electrons can be seen in different ways. In the case of an `inert' pair, it does not occupy a position in the coordination polyhedron but the Te-ligand bond lengths are greater than expected and the lone pair plays an antibonding role, occupying an a1 g* antibonding orbital (Urch, 1964). Another possibility is, of course, for the lone pair to occupy a position in the coordination polyhedron fully. This is not quite the case here, but the three long fac bonds from Ten1 to Sn1, Cln1 and Cln3 may indicate a lone pair beginning to make its presence felt in a monocapped octahedral position between the three latter atoms; the asymmetry in the Te—Cl bonds is, however, small. For an octahedral molecule with seven electron pairs in the valency shell of the central atom, there is a triply degenerate stretching vibration of t1u symmetry that could lead to a short bond with a long bond trans to it, in one of the linear three-centre systems (Burdett, 1980). This is likely to be the case here, with the stronger Ten1-Sn2 bonds on average being 0.26 Å shorter than Ten1-Sn1.

The asymmetry in Te—S bonding in molecules 1 and 2 is reflected in the SC bonds of the ligand, which in turn influences the CN bond lengths. For the long Te—S bonds, the average SC and CN bond lengths are 1.724 and 1.337 Å, respectively. For the short Te—S bonds, the corresponding lengths are 1.749 and 1.328 Å, respectively. Although they are statistically less significant for the CN bonds, these values agree well with those found for the [TeCl4(tmtu)2] complex (Esperås et al., 1975; Husebye & George, 1969). In free thioureas, CS = 1.681 (20) Å and CN = 1.346 (23) Å (Allen et al., 1987). In the uncomplexed dit ligand, these bond lengths are 1.673 (4) and 1.338 Å (averaged), respectively (Chieh & Cheung, 1983). The lengthening of the CS bonds and shorthening of the NC bonds upon complex formation illustrates the partial π-bonding and the delocalization of charge from the N atoms toward the S atoms upon formation of the Te—S bonds.

The angles and planarity of the ligands illustrate the sp2 character of the C(S) and N atoms. The ligand rings connected to S11 and S21 are planar to within 0.095 Å, those connected to S12 and S22 to within 0.015 Å. This also reflects a stronger mesomeric shift of electron density from the N atoms towards S in the more planar rings, corresponding to stronger Te—S bonds from S12 and S22 as compared with S11 and S21. The interplanar ring angles are 26.06 (16)° for molecule 1 and 28.71 (16)° for molecule 2.

Experimental top

Tellurium dioxide (0.798 g, 5 mmol) was dissolved in hot concentrated HCl (7 ml). To this solution was added MeOH (10 ml). The ligand N,N'-dimethylimidazole-2-thione was prepared according to the literature procedures of Maier (1970) and Chieh & Cheung (1983). This ligand (2.604 g, 20 mmol) was dissolved in hot concentrated HCl (vol?) and MeOH (10 ml) was added. The two solutions were mixed while warm and a red-brown solid was formed. The product, (I), was separated by filtration and washed with MeOH and ether [yield 2.45 g, 92%; m.p. 477–479 K (decomposition)]. Recrystallization from dimethylformamide gave crystals suitable for X-ray analysis.

Refinement top

H atoms? The number of Friedel pairs measured was 6090.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the two molecules in (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
trans-Tetrachlorobis(N,N'-dimethylimidazolidine-2-thione)tellurium(IV) top
Crystal data top
[TeCl4(C5H10N2S)2]? # Insert any comments here.
Mr = 529.82Dx = 1.858 Mg m3
Orthorhombic, Pna21Melting point = 477–479 K
Hall symbol: P 2c -2nMo Kα radiation, λ = 0.71073 Å
a = 14.2386 (9) ÅCell parameters from 8192 reflections
b = 9.4823 (7) Åθ = 2.3–32.4°
c = 28.063 (2) ŵ = 2.35 mm1
V = 3788.8 (5) Å3T = 100 K
Z = 8Plate, red-brown
F(000) = 20800.35 × 0.17 × 0.08 mm
Data collection top
Bruker SMART 2K CCD
diffractometer
12745 independent reflections
Radiation source: normal-focus sealed tube12135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 32.4°, θmin = 2.3°
Absorption correction: numerical
(SHELXTL; Sheldrick 1997)
h = 2020
Tmin = 0.493, Tmax = 0.843k = 1414
62390 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0114P)2 + 3.9629P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.002
12745 reflectionsΔρmax = 1.24 e Å3
388 parametersΔρmin = 0.70 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.296 (10)
Crystal data top
[TeCl4(C5H10N2S)2]V = 3788.8 (5) Å3
Mr = 529.82Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 14.2386 (9) ŵ = 2.35 mm1
b = 9.4823 (7) ÅT = 100 K
c = 28.063 (2) Å0.35 × 0.17 × 0.08 mm
Data collection top
Bruker SMART 2K CCD
diffractometer
12745 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick 1997)
12135 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.843Rint = 0.033
62390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.052Δρmax = 1.24 e Å3
S = 1.18Δρmin = 0.70 e Å3
12745 reflectionsAbsolute structure: Flack (1983)
388 parametersAbsolute structure parameter: 0.296 (10)
1 restraint
Special details top

Experimental. ? #Insert any special details here.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Dihedral angles and Mean-plane data from final SHELXL refinement run:

## DIHEDRAL ANGLES RELATING THE RINGS IN THE TWO DIFFERENT MOLECULES

78.35 (0.14) C11 - S11 - S12 - C16 − 79.57 (0.15) C21 - S21 - S22 - C26

## TWO L.-S·Q. PLANES RELATING THE SECOND RINGS IN THE TWO DIFFERENT MOLECULES ## TWO THE FIRST.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 11.9113 (0.0026) x + 4.8519 (0.0029) y + 5.4969 (0.0103) z = 0.5167 (0.0024)

* −0.7628 (0.0014) S11 * 0.2862 (0.0008) S12 * −0.1672 (0.0004) Te11 * −0.1044 (0.0007) Cl11 * −0.0732 (0.0007) Cl14 * 0.8214 (0.0014) C11 0.5417 (0.0031) C16 2.3031 (0.0009) Cl12 − 2.7092 (0.0008) Cl13

Rms deviation of fitted atoms = 0.4801

- 12.0365 (0.0026) x + 4.8132 (0.0029) y − 4.6737 (0.0102) z = 1.1054 (0.0021)

* −0.7643 (0.0014) S21 * 0.2864 (0.0008) S22 * −0.1640 (0.0004) Te21 * −0.1063 (0.0007) Cl21 * −0.0709 (0.0007) Cl24 * 0.8191 (0.0014) C21 0.4802 (0.0033) C26 2.3047 (0.0009) Cl22 − 2.7121 (0.0008) Cl23

Rms deviation of fitted atoms = 0.4796

## INTERPLANAR ANGLE BETWEEN RING PLANES IN MOLECULE 1.

0.8786 (0.0224) x − 7.1515 (0.0097) y + 18.3458 (0.0333) z = 7.1122 (0.0121)

* −0.0217 (0.0018) C11 * 0.0831 (0.0020) C12 * −0.0942 (0.0019) C13 * −0.0448 (0.0019) N11 * 0.0776 (0.0018) N12 − 0.0326 (0.0056) C14 − 0.0819 (0.0053) C15 − 0.1032 (0.0046) S11

Rms deviation of fitted atoms = 0.0697

1.8077 (0.0222) x − 3.7013 (0.0131) y + 25.5895 (0.0170) z = 3.6170 (0.0098)

Angle to previous plane (with approximate e.s.d.) = 26.06 (0.16)

* 0.0136 (0.0017) C16 * 0.0095 (0.0019) C17 * −0.0025 (0.0019) C18 * −0.0144 (0.0018) N13 * −0.0061 (0.0019) N14 − 0.1768 (0.0052) C19 0.1037 (0.0053) C20 0.0637 (0.0045) S12

Rms deviation of fitted atoms = 0.0103

## INTERPLANAR ANGLE BETWEEN RING PLANES IN MOLECULE 2.

− 0.7949 (0.0218) x + 7.1544 (0.0096) y + 18.3505 (0.0328) z = 1.2794 (0.0082)

* 0.0220 (0.0017) C21 * 0.0842 (0.0019) C22 * −0.0727 (0.0019) C23 * −0.0713 (0.0018) N21 * 0.0380 (0.0019) N22 0.0675 (0.0054) C24 0.0202 (0.0053) C25 0.0960 (0.0045) S21

Rms deviation of fitted atoms = 0.0623

− 1.5364 (0.0230) x + 3.2911 (0.0140) y + 26.1433 (0.0155) z = 4.6028 (0.0141)

Angle to previous plane (with approximate e.s.d.) = 28.71 (0.16)

* −0.0139 (0.0018) C26 * −0.0029 (0.0020) C27 * −0.0042 (0.0019) C28 * 0.0101 (0.0019) N23 * 0.0110 (0.0019) N24 − 0.0258 (0.0053) C29 0.0684 (0.0051) C30 − 0.0388 (0.0047) S22

Rms deviation of fitted atoms = 0.0094

## EQUATORIAL TECL4 PLANE IN MOLECULE 1.

− 0.1629 (0.0028) x − 5.9715 (0.0016) y + 21.7965 (0.0039) z = 4.9218 (0.0011)

* −0.1701 (0.0004) Cl11 * 0.1749 (0.0004) Cl12 * 0.1668 (0.0003) Cl13 * −0.1716 (0.0004) Cl14 0.0468 (0.0004) Te11

Rms deviation of fitted atoms = 0.1708

## EQUATORIAL TeCl4 PLANE IN MOLECULE 2.

0.4537 (0.0028) x + 5.7606 (0.0016) y + 22.2725 (0.0038) z = 3.6539 (0.0010)

* 0.1841 (0.0004) Cl21 * −0.1896 (0.0004) Cl22 * −0.1807 (0.0003) Cl23 * 0.1862 (0.0004) Cl24 − 0.0311 (0.0004) Te21

Rms deviation of fitted atoms = 0.1852

## PLANE IN FIRST RING OF MOLECULE 1.

0.8786 (0.0224) x − 7.1515 (0.0097) y + 18.3458 (0.0333) z = 7.1122 (0.0121)

* −0.0217 (0.0018) C11 * 0.0831 (0.0020) C12 * −0.0942 (0.0019) C13 * −0.0448 (0.0019) N11 * 0.0776 (0.0018) N12

Rms deviation of fitted atoms = 0.0697

## EQUATORIAL TeCl4 PLANE VERSUS PLANE IN FIRST RING OF MOLECULE 1.

− 0.1629 (0.0028) x − 5.9715 (0.0016) y + 21.7965 (0.0039) z = 4.9218 (0.0011)

Angle to previous plane (with approximate e.s.d.) = 10.88 (0.15)

* −0.1701 (0.0004) Cl11 * 0.1749 (0.0004) Cl12 * 0.1668 (0.0003) Cl13 * −0.1716 (0.0004) Cl14 0.0468 (0.0004) Te11

Rms deviation of fitted atoms = 0.1708

## PLANE IN SECOND RING OF MOLECULE 1 VERSUS EQUATORIAL TeCl4 PLANE.

1.8077 (0.0222) x − 3.7013 (0.0131) y + 25.5895 (0.0170) z = 3.6170 (0.0098)

Angle to previous plane (with approximate e.s.d.) = 17.71 (0.12)

* 0.0136 (0.0017) C16 * 0.0095 (0.0019) C17 * −0.0025 (0.0019) C18 * −0.0144 (0.0018) N13 * −0.0061 (0.0019) N14

Rms deviation of fitted atoms = 0.0103

## PLANE IN FIRST RING OF MOLECULE 2.

− 0.7949 (0.0218) x + 7.1544 (0.0096) y + 18.3505 (0.0328) z = 1.2794 (0.0082)

* 0.0220 (0.0017) C21 * 0.0842 (0.0019) C22 * −0.0727 (0.0019) C23 * −0.0713 (0.0018) N21 * 0.0380 (0.0019) N22

Rms deviation of fitted atoms = 0.0623

## EQUATORIAL TeCl4 PLANE VERSUS PLANE IN FIRST RING OF MOLECULE 2.

0.4537 (0.0028) x + 5.7606 (0.0016) y + 22.2725 (0.0038) z = 3.6539 (0.0010)

Angle to previous plane (with approximate e.s.d.) = 12.69 (0.14)

* 0.1841 (0.0004) Cl21 * −0.1896 (0.0004) Cl22 * −0.1807 (0.0003) Cl23 * 0.1862 (0.0004) Cl24 − 0.0311 (0.0004) Te21

Rms deviation of fitted atoms = 0.1852

## PLANE IN SECOND RING OF MOLECULE 2 VERSUS EQUATORIAL TeCl4 PLANE.

− 1.5364 (0.0230) x + 3.2911 (0.0140) y + 26.1433 (0.0155) z = 4.6028 (0.0141)

Angle to previous plane (with approximate e.s.d.) = 18.77 (0.12)

* −0.0139 (0.0018) C26 * −0.0029 (0.0020) C27 * −0.0042 (0.0019) C28 * 0.0101 (0.0019) N23 * 0.0110 (0.0019) N24

Rms deviation of fitted atoms = 0.0094

Refinement. Refinement of F2 against ALL reflections, except for 0 0 2, which was systematically in error. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te110.102760 (11)0.049734 (16)0.242349 (5)0.01306 (3)
Cl110.19498 (5)0.24040 (7)0.28532 (2)0.01974 (12)
Cl120.04698 (5)0.15363 (7)0.27557 (2)0.01874 (12)
Cl130.25382 (5)0.07279 (7)0.21541 (3)0.02271 (13)
Cl140.00609 (5)0.10731 (7)0.18858 (3)0.02074 (13)
S110.10660 (5)0.14988 (8)0.31852 (3)0.02094 (14)
S120.09042 (5)0.19911 (7)0.16625 (3)0.01681 (13)
C110.0148 (2)0.0866 (3)0.35202 (10)0.0167 (5)
N110.02363 (17)0.0077 (3)0.38712 (9)0.0189 (5)
N120.07546 (18)0.1241 (3)0.34715 (9)0.0215 (5)
C120.0668 (2)0.0367 (4)0.40969 (12)0.0264 (6)
H12A0.07830.13940.41210.040*
H12B0.06990.00540.44190.040*
N130.09355 (17)0.4661 (3)0.20159 (10)0.0186 (5)
C130.1368 (2)0.0331 (4)0.37618 (13)0.0261 (7)
H13A0.18370.08930.39400.039*
H13B0.16970.03750.35630.039*
N140.23302 (18)0.3861 (3)0.18049 (9)0.0187 (5)
C140.1109 (2)0.0654 (4)0.40609 (13)0.0261 (7)
H14A0.13400.00450.43180.039*
H14B0.09950.16030.41860.039*
H14C0.15800.07010.38060.039*
C150.1152 (3)0.2067 (4)0.30815 (13)0.0322 (8)
H15A0.13450.14330.28240.048*
H15B0.16980.25940.31970.048*
H15C0.06780.27280.29620.048*
C160.1419 (2)0.3583 (3)0.18368 (9)0.0153 (5)
C170.1573 (2)0.5826 (3)0.21488 (11)0.0212 (6)
H17A0.15520.60080.24960.032*
H17B0.14100.67030.19760.032*
C180.2539 (2)0.5272 (3)0.19957 (14)0.0288 (7)
H18A0.28210.58840.17480.043*
H18B0.29730.52140.22710.043*
C190.0080 (2)0.4812 (3)0.20461 (11)0.0219 (6)
H19A0.03720.43620.17690.033*
H19B0.02440.58160.20510.033*
H19C0.03070.43610.23380.033*
C200.3079 (2)0.2915 (4)0.16581 (12)0.0259 (6)
H20A0.28280.19600.16200.039*
H20B0.35730.29090.19010.039*
H20C0.33420.32390.13540.039*
Te210.138523 (11)0.557250 (16)0.015710 (5)0.01283 (3)
Cl210.22824 (5)0.75222 (7)0.02688 (2)0.01925 (12)
Cl220.01340 (5)0.66041 (7)0.01499 (2)0.01786 (12)
Cl230.29155 (5)0.43233 (7)0.03818 (3)0.02160 (13)
Cl240.04532 (5)0.39547 (7)0.06921 (3)0.02001 (13)
S210.13812 (5)0.35895 (8)0.05901 (3)0.01981 (14)
S220.12815 (5)0.70077 (7)0.09389 (3)0.01634 (12)
C210.0453 (2)0.4235 (3)0.09225 (9)0.0169 (5)
N210.04472 (18)0.3872 (3)0.08706 (9)0.0213 (5)
N220.05509 (17)0.5172 (3)0.12749 (9)0.0190 (5)
C220.1059 (2)0.4772 (4)0.11634 (12)0.0237 (6)
H22A0.13970.54730.09660.036*
H22B0.15210.42040.13440.036*
N230.27336 (17)0.8832 (3)0.08132 (9)0.0197 (5)
C230.0352 (2)0.5490 (4)0.14982 (12)0.0260 (6)
H23A0.03870.50910.18240.039*
H23B0.04610.65200.15140.039*
N240.13501 (17)0.9715 (3)0.06211 (10)0.0200 (5)
C240.0842 (3)0.3035 (4)0.04857 (13)0.0328 (8)
H24A0.03360.25340.03200.049*
H24B0.12880.23500.06170.049*
H24C0.11680.36560.02610.049*
C250.1425 (2)0.5731 (3)0.14643 (12)0.0232 (6)
H25A0.19540.51870.13370.035*
H25B0.14910.67220.13710.035*
H25C0.14200.56600.18130.035*
C260.1819 (2)0.8599 (3)0.07796 (10)0.0164 (5)
C270.2963 (2)1.0257 (3)0.06424 (15)0.0304 (7)
H27A0.33851.02180.03620.046*
H27B0.32661.08220.08960.046*
C280.2006 (2)1.0870 (3)0.05085 (11)0.0232 (6)
H28A0.18631.17220.06990.035*
H28B0.19811.11150.01660.035*
C290.3464 (2)0.7863 (3)0.09644 (12)0.0252 (6)
H29A0.36260.80510.12980.038*
H29B0.40210.79920.07640.038*
H29C0.32370.68920.09330.038*
C300.0339 (2)0.9864 (3)0.05649 (11)0.0204 (6)
H30A0.01901.00130.02280.031*
H30B0.01201.06740.07510.031*
H30C0.00270.90060.06780.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te110.01380 (7)0.01233 (6)0.01304 (7)0.00043 (5)0.00038 (6)0.00010 (7)
Cl110.0202 (3)0.0208 (3)0.0182 (3)0.0011 (2)0.0039 (2)0.0011 (2)
Cl120.0185 (3)0.0176 (3)0.0200 (3)0.0027 (2)0.0018 (2)0.0010 (2)
Cl130.0175 (3)0.0197 (3)0.0310 (4)0.0022 (2)0.0033 (3)0.0016 (3)
Cl140.0218 (3)0.0175 (3)0.0229 (3)0.0002 (2)0.0023 (2)0.0040 (2)
S110.0261 (4)0.0187 (3)0.0180 (3)0.0050 (3)0.0049 (3)0.0018 (3)
S120.0207 (3)0.0155 (3)0.0142 (3)0.0017 (2)0.0028 (2)0.0001 (2)
C110.0139 (13)0.0172 (12)0.0189 (13)0.0008 (9)0.0007 (10)0.0023 (10)
N110.0126 (11)0.0255 (12)0.0186 (11)0.0009 (9)0.0003 (8)0.0039 (9)
N120.0208 (13)0.0217 (12)0.0219 (12)0.0037 (9)0.0027 (9)0.0040 (9)
C120.0182 (14)0.0362 (17)0.0249 (15)0.0033 (12)0.0048 (11)0.0010 (13)
N130.0169 (12)0.0151 (11)0.0239 (13)0.0003 (8)0.0050 (9)0.0011 (9)
C130.0161 (16)0.0320 (16)0.0302 (17)0.0005 (11)0.0009 (11)0.0101 (13)
N140.0175 (12)0.0184 (11)0.0202 (12)0.0001 (9)0.0007 (9)0.0010 (9)
C140.0197 (16)0.0304 (16)0.0282 (17)0.0004 (11)0.0038 (11)0.0074 (13)
C150.0377 (19)0.0295 (16)0.0295 (17)0.0119 (14)0.0168 (15)0.0061 (13)
C160.0184 (13)0.0163 (11)0.0110 (10)0.0020 (10)0.0021 (9)0.0039 (9)
C170.0235 (14)0.0170 (12)0.0232 (13)0.0046 (10)0.0018 (11)0.0004 (10)
C180.0220 (15)0.0214 (15)0.0432 (19)0.0041 (11)0.0074 (13)0.0037 (13)
C190.0184 (13)0.0201 (13)0.0272 (15)0.0008 (10)0.0008 (11)0.0008 (11)
C200.0184 (15)0.0331 (16)0.0263 (15)0.0039 (12)0.0004 (11)0.0009 (12)
Te210.01326 (7)0.01263 (6)0.01262 (6)0.00061 (5)0.00023 (6)0.00041 (7)
Cl210.0195 (3)0.0205 (3)0.0178 (3)0.0021 (2)0.0029 (2)0.0020 (2)
Cl220.0163 (3)0.0176 (3)0.0197 (3)0.0023 (2)0.0026 (2)0.0008 (2)
Cl230.0177 (3)0.0199 (3)0.0273 (3)0.0028 (2)0.0025 (2)0.0027 (3)
Cl240.0207 (3)0.0171 (3)0.0223 (3)0.0004 (2)0.0015 (2)0.0050 (2)
S210.0235 (4)0.0199 (3)0.0160 (3)0.0040 (2)0.0038 (2)0.0017 (3)
S220.0191 (3)0.0170 (3)0.0129 (3)0.0017 (2)0.0018 (2)0.0005 (2)
C210.0222 (14)0.0159 (12)0.0125 (11)0.0016 (9)0.0016 (9)0.0045 (9)
N210.0168 (13)0.0252 (12)0.0218 (12)0.0037 (9)0.0040 (9)0.0048 (10)
N220.0161 (12)0.0249 (12)0.0158 (11)0.0004 (9)0.0001 (9)0.0033 (9)
C220.0152 (15)0.0284 (15)0.0275 (16)0.0000 (10)0.0008 (11)0.0074 (13)
N230.0160 (12)0.0235 (12)0.0197 (11)0.0026 (9)0.0000 (9)0.0031 (9)
C230.0183 (14)0.0367 (17)0.0229 (14)0.0048 (12)0.0039 (11)0.0017 (13)
N240.0196 (13)0.0158 (10)0.0247 (13)0.0004 (8)0.0050 (9)0.0011 (9)
C240.038 (2)0.0327 (17)0.0279 (17)0.0161 (15)0.0113 (14)0.0043 (13)
C250.0189 (16)0.0273 (15)0.0234 (15)0.0012 (11)0.0035 (11)0.0049 (12)
C260.0165 (13)0.0193 (12)0.0136 (12)0.0033 (10)0.0041 (10)0.0042 (9)
C270.0216 (16)0.0170 (13)0.053 (2)0.0043 (11)0.0110 (14)0.0051 (13)
C280.0272 (16)0.0165 (12)0.0258 (14)0.0067 (11)0.0062 (12)0.0000 (10)
C290.0184 (14)0.0285 (15)0.0288 (15)0.0004 (11)0.0005 (12)0.0034 (12)
C300.0219 (15)0.0184 (13)0.0209 (14)0.0045 (10)0.0006 (11)0.0007 (10)
Geometric parameters (Å, º) top
Te11—Cl112.5392 (7)Te21—Cl212.5453 (7)
Te11—Cl122.5270 (7)Te21—Cl222.5256 (7)
Te11—Cl132.5589 (7)Te21—Cl232.5589 (7)
Te11—Cl142.5276 (7)Te21—Cl242.5236 (7)
Te11—S112.8557 (8)Te21—S212.8165 (8)
Te11—S122.5686 (7)Te21—S222.5859 (7)
S11—C111.718 (3)S21—C211.730 (3)
S12—C161.747 (3)S22—C261.750 (3)
C11—N111.337 (4)C21—N211.335 (4)
C11—N121.341 (4)C21—N221.337 (4)
N11—C141.459 (4)N21—C241.453 (4)
N11—C121.460 (4)N21—C221.471 (4)
N12—C151.460 (4)N22—C251.453 (4)
N12—C131.473 (4)N22—C231.461 (4)
C12—C131.522 (5)C22—C231.536 (5)
N13—C161.331 (4)N23—C261.325 (4)
N13—C191.455 (4)N23—C291.451 (4)
N13—C171.477 (4)N23—C271.470 (4)
N14—C161.328 (4)N24—C261.328 (4)
N14—C201.453 (4)N24—C301.455 (4)
N14—C181.472 (4)N24—C281.474 (4)
C17—C181.535 (5)C27—C281.529 (5)
Cl11—Te11—Cl1391.66 (2)Cl21—Te21—Cl2391.41 (2)
Cl12—Te11—Cl1189.06 (2)Cl22—Te21—Cl2189.33 (2)
Cl12—Te11—Cl13174.40 (2)Cl22—Te21—Cl23173.05 (2)
Cl12—Te11—Cl1489.45 (2)Cl24—Te21—Cl2289.31 (2)
Cl14—Te11—Cl11169.94 (2)Cl24—Te21—Cl21170.01 (2)
Cl14—Te11—Cl1390.80 (2)Cl24—Te21—Cl2391.13 (2)
Cl11—Te11—S1196.12 (2)Cl21—Te21—S2197.84 (2)
Cl12—Te11—S1189.91 (2)Cl22—Te21—S2190.16 (2)
Cl13—Te11—S1184.49 (2)Cl23—Te21—S2182.89 (2)
Cl14—Te11—S1193.83 (2)Cl24—Te21—S2192.06 (2)
Cl11—Te11—S1292.15 (2)Cl21—Te21—S2292.57 (2)
Cl12—Te11—S1291.95 (2)Cl22—Te21—S2292.10 (2)
Cl13—Te11—S1293.57 (2)Cl23—Te21—S2294.77 (2)
Cl14—Te11—S1277.96 (2)Cl24—Te21—S2277.59 (2)
S12—Te11—S11171.55 (2)S22—Te21—S21169.38 (2)
C11—S11—Te1199.41 (10)C21—S21—Te2199.59 (9)
C16—S12—Te11102.41 (9)C26—S22—Te21102.25 (9)
N11—C11—S11124.5 (2)N21—C21—S21125.7 (2)
N11—C11—N12110.0 (3)N21—C21—N22110.6 (2)
N12—C11—S11125.5 (2)N22—C21—S21123.7 (2)
C11—N11—C14126.9 (3)C21—N21—C24126.4 (3)
C11—N11—C12111.3 (2)C21—N21—C22110.9 (3)
C14—N11—C12121.5 (3)C24—N21—C22120.2 (3)
C11—N12—C15126.1 (3)C21—N22—C25127.0 (3)
C11—N12—C13110.9 (3)C21—N22—C23111.3 (2)
C15—N12—C13119.9 (3)C25—N22—C23121.4 (3)
N11—C12—C13103.2 (3)N21—C22—C23102.2 (2)
C16—N13—C19127.7 (2)C26—N23—C29128.3 (3)
C16—N13—C17110.6 (2)C26—N23—C27110.4 (3)
C19—N13—C17121.4 (2)C29—N23—C27121.2 (2)
N12—C13—C12102.0 (2)N22—C23—C22102.9 (2)
C16—N14—C20127.9 (3)C26—N24—C30127.7 (3)
C16—N14—C18110.7 (2)C26—N24—C28110.2 (2)
C20—N14—C18121.0 (3)C30—N24—C28122.1 (3)
N13—C16—S12123.6 (2)N23—C26—S22123.8 (2)
N14—C16—S12124.2 (2)N24—C26—S22123.6 (2)
N14—C16—N13112.2 (2)N23—C26—N24112.6 (3)
N13—C17—C18102.9 (2)N23—C27—C28103.4 (2)
N14—C18—C17103.4 (2)N24—C28—C27103.3 (2)
Cl12—Te11—S11—C116.81 (10)Cl24—Te21—S21—C2197.48 (10)
Cl14—Te11—S11—C1196.26 (10)Cl22—Te21—S21—C218.17 (10)
Cl11—Te11—S11—C1182.23 (10)Cl21—Te21—S21—C2181.18 (10)
Cl13—Te11—S11—C11173.31 (10)Cl23—Te21—S21—C21171.63 (10)
S12—Te11—S11—C11109.58 (18)S22—Te21—S21—C21110.52 (15)
Cl12—Te11—S12—C1684.49 (10)Cl24—Te21—S22—C26175.63 (11)
Cl14—Te11—S12—C16173.51 (10)Cl22—Te21—S22—C2686.80 (11)
Cl11—Te11—S12—C164.64 (10)Cl21—Te21—S22—C262.63 (11)
Cl13—Te11—S12—C1696.43 (10)Cl23—Te21—S22—C2694.26 (11)
S11—Te11—S12—C16172.89 (17)S21—Te21—S22—C26171.03 (15)
Te11—S11—C11—N1191.2 (3)Te21—S21—C21—N2189.7 (2)
Te11—S11—C11—N1289.0 (3)Te21—S21—C21—N2291.0 (2)
N12—C11—N11—C14174.5 (3)N22—C21—N21—C24171.0 (3)
S11—C11—N11—C145.3 (5)S21—C21—N21—C249.7 (4)
N12—C11—N11—C121.6 (3)N22—C21—N21—C228.8 (3)
S11—C11—N11—C12178.2 (2)S21—C21—N21—C22171.8 (2)
N11—C11—N12—C15169.5 (3)N21—C21—N22—C25174.6 (3)
S11—C11—N12—C1510.6 (4)S21—C21—N22—C254.8 (4)
N11—C11—N12—C139.3 (3)N21—C21—N22—C230.9 (3)
S11—C11—N12—C13170.9 (2)S21—C21—N22—C23178.5 (2)
C11—N11—C12—C1311.1 (3)C21—N21—C22—C2314.0 (3)
C14—N11—C12—C13175.6 (3)C24—N21—C22—C23177.4 (3)
C11—N12—C13—C1215.5 (3)C21—N22—C23—C229.5 (3)
C15—N12—C13—C12177.1 (3)C25—N22—C23—C22176.4 (3)
N11—C12—C13—N1215.1 (3)N21—C22—C23—N2213.4 (3)
C20—N14—C16—N13175.5 (3)C29—N23—C26—N24179.0 (3)
C18—N14—C16—N132.1 (3)C27—N23—C26—N242.5 (4)
C20—N14—C16—S124.8 (4)C29—N23—C26—S222.3 (4)
C18—N14—C16—S12178.1 (2)C27—N23—C26—S22178.8 (2)
C19—N13—C16—N14171.4 (3)C30—N24—C26—N23176.4 (3)
C17—N13—C16—N142.9 (3)C28—N24—C26—N232.6 (3)
C19—N13—C16—S128.3 (4)C30—N24—C26—S222.3 (4)
C17—N13—C16—S12177.4 (2)C28—N24—C26—S22178.7 (2)
Te11—S12—C16—N1488.4 (2)Te21—S22—C26—N2388.2 (2)
Te11—S12—C16—N1391.8 (2)Te21—S22—C26—N2493.3 (2)
C16—N13—C17—C182.3 (3)C26—N23—C27—C281.4 (3)
C19—N13—C17—C18172.4 (3)C29—N23—C27—C28178.1 (3)
C16—N14—C18—C170.5 (3)C26—N24—C28—C271.6 (3)
C20—N14—C18—C17174.4 (3)C30—N24—C28—C27177.5 (3)
N13—C17—C18—N141.0 (3)N23—C27—C28—N240.1 (3)

Experimental details

Crystal data
Chemical formula[TeCl4(C5H10N2S)2]
Mr529.82
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)14.2386 (9), 9.4823 (7), 28.063 (2)
V3)3788.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.35 × 0.17 × 0.08
Data collection
DiffractometerBruker SMART 2K CCD
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick 1997)
Tmin, Tmax0.493, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
62390, 12745, 12135
Rint0.033
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 1.18
No. of reflections12745
No. of parameters388
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.70
Absolute structureFlack (1983)
Absolute structure parameter0.296 (10)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Te11—Cl112.5392 (7)Te21—Cl212.5453 (7)
Te11—Cl122.5270 (7)Te21—Cl222.5256 (7)
Te11—Cl132.5589 (7)Te21—Cl232.5589 (7)
Te11—Cl142.5276 (7)Te21—Cl242.5236 (7)
Te11—S112.8557 (8)Te21—S212.8165 (8)
Te11—S122.5686 (7)Te21—S222.5859 (7)
S11—C111.718 (3)S21—C211.730 (3)
S12—C161.747 (3)S22—C261.750 (3)
C11—N111.337 (4)C21—N211.335 (4)
C11—N121.341 (4)C21—N221.337 (4)
N13—C161.331 (4)N23—C261.325 (4)
N14—C161.328 (4)N24—C261.328 (4)
Cl11—Te11—Cl1391.66 (2)Cl21—Te21—Cl2391.41 (2)
Cl12—Te11—Cl1189.06 (2)Cl22—Te21—Cl2189.33 (2)
Cl12—Te11—Cl13174.40 (2)Cl22—Te21—Cl23173.05 (2)
Cl12—Te11—Cl1489.45 (2)Cl24—Te21—Cl2289.31 (2)
Cl14—Te11—Cl11169.94 (2)Cl24—Te21—Cl21170.01 (2)
Cl14—Te11—Cl1390.80 (2)Cl24—Te21—Cl2391.13 (2)
Cl11—Te11—S1196.12 (2)Cl21—Te21—S2197.84 (2)
Cl12—Te11—S1189.91 (2)Cl22—Te21—S2190.16 (2)
Cl13—Te11—S1184.49 (2)Cl23—Te21—S2182.89 (2)
Cl14—Te11—S1193.83 (2)Cl24—Te21—S2192.06 (2)
Cl11—Te11—S1292.15 (2)Cl21—Te21—S2292.57 (2)
Cl12—Te11—S1291.95 (2)Cl22—Te21—S2292.10 (2)
Cl13—Te11—S1293.57 (2)Cl23—Te21—S2294.77 (2)
Cl14—Te11—S1277.96 (2)Cl24—Te21—S2277.59 (2)
S12—Te11—S11171.55 (2)S22—Te21—S21169.38 (2)
C11—S11—Te1199.41 (10)C21—S21—Te2199.59 (9)
C16—S12—Te11102.41 (9)C26—S22—Te21102.25 (9)
N11—C11—S11124.5 (2)N21—C21—S21125.7 (2)
N11—C11—N12110.0 (3)N21—C21—N22110.6 (2)
N12—C11—S11125.5 (2)N22—C21—S21123.7 (2)
N13—C16—S12123.6 (2)N23—C26—S22123.8 (2)
N14—C16—S12124.2 (2)N24—C26—S22123.6 (2)
N14—C16—N13112.2 (2)N23—C26—N24112.6 (3)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds