Download citation
Download citation
link to html
4,6-Dimethoxy-3-methyl-1,3,5-triazine-2(3H)-thione crystallizes in two polymorphic forms, needles and plates. In the needle-shaped crystals (9a) the molecules occupy the crystallographic mirror plane, thus the layers are stacked along the b axis. The molecules of the other polymorph [plate-shape crystals, (9b)] are packed in a herringbone packing mode. Upon heating, (9b) undergoes a phase transition to form (9a). At 378 K the needles undergo O → S topochemically controlled methyl transfer in the solid state to produce 1-methyl-4-methoxy-6-methylthio-1,3,5-triazine-2(1H)-one in 75% yield. The enthalpy of the rearrangement is estimated to be −39.1 kJ mol−1. 1-Methyl-6-methoxy-4-methylthio-1,3,5-triazine-2(1H)-thione crystallizes in space group P21 with two crystallographically independent molecules in the asymmetric unit. Compound (9b) undergoes O → S methyl transfer in the solid state at 373 K. The rearrangement is topochemically assisted and the product, 1-methyl-2,4-bismethylthio-1,3,5-triazine-6(1H)-one, is obtained in quantitative yield. The enthalpy of the rearrangement is estimated to be −58.8 kJ mol−1. The crystal structures of the compounds as well as their DSC thermographs are described and discussed. Energy calculation by ab initio methods shows that the driving force for the reactions is the difference between the molecular energies of the pre-rearranged compounds and their products, 54.2 and 59.3 kJ mol−1 in the two cases, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768101005171/av0037sup1.cif
Contains datablocks 9a, 9b, 11, 12, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101005171/av00379asup2.hkl
Contains datablock 9a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101005171/av00379bsup3.hkl
Contains datablock 9b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101005171/av003711sup4.hkl
Contains datablock 11

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101005171/av003712sup5.hkl
Contains datablock 12

CCDC references: 166530; 166531; 166532; 166533

Comment top

See the attached manuscript

Computing details top

Data collection: Philips PW 1100/20 (Philips, 1973) for (9a), (12); Philips PW 110/20 (Philips, 1973) for (9b); SMART V.4.209 (Siemens, 1995) for (11). Cell refinement: Philips PW 1100/20 (Philips, 1973) for (9a), (12); Philips PW 110/20 (Philips, 1973) for (9b); SAINT V.4.050 (Siemens, 1995) for (11). Data reduction: Philips PW 1100/20 (Philips, 1973) for (9a), (12); Philips PW 110/20 (Philips, 1973) for (9b); SAINT V.4.050 (Siemens, 1995) for (11). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (9a); SHELXS97 (Sheldrick, 1997) for (9b), (11), (12). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) for (9a), (9b), (11).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
(9a) 4,6-Dimethoxy-3-methyl-1,3,5-triazine-2(3H)-thione top
Crystal data top
C6H9N3O2SF(000) = 392
Mr = 187.22Dx = 1.396 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2nCell parameters from 20 reflections
a = 15.231 (5) Åθ = 7.2–19.5°
b = 6.778 (3) ŵ = 0.33 mm1
c = 8.626 (3) ÅT = 293 K
V = 890.5 (6) Å3Needle, light yellow
Z = 40.33 × 0.27 × 0.19 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.055
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 418
ω/2θ scansk = 08
981 measured reflectionsl = 410
857 independent reflections3 standard reflections every 120 min. min
560 reflections with I > 2σ(I) intensity decay: 4.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2249P]
where P = (Fo2 + 2Fc2)/3
857 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H9N3O2SV = 890.5 (6) Å3
Mr = 187.22Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.231 (5) ŵ = 0.33 mm1
b = 6.778 (3) ÅT = 293 K
c = 8.626 (3) Å0.33 × 0.27 × 0.19 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.055
981 measured reflections3 standard reflections every 120 min. min
857 independent reflections intensity decay: 4.2%
560 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0616 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.20 e Å3
857 reflectionsΔρmin = 0.36 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56102 (10)0.25000.63092 (18)0.0695 (6)
O10.2548 (2)0.25000.4603 (4)0.0762 (13)
O20.4658 (3)0.25000.0876 (4)0.0762 (13)
N10.3977 (3)0.25000.5394 (4)0.0484 (11)
N20.3543 (3)0.25000.2733 (4)0.0581 (12)
N30.5038 (3)0.25000.3413 (5)0.0514 (11)
C10.4835 (3)0.25000.5007 (6)0.0452 (12)
C20.3408 (3)0.25000.4282 (6)0.0533 (14)
C30.4376 (4)0.25000.2391 (6)0.0583 (14)
C40.2304 (5)0.25000.6214 (8)0.092 (2)
C50.3937 (7)0.25000.0280 (7)0.110 (3)
C60.5966 (4)0.25000.2931 (8)0.082 (2)
H4A0.253 (3)0.134 (8)0.672 (6)0.138*
H4B0.1681 (14)0.25000.626 (9)0.138*
H5A0.427 (3)0.25000.124 (3)0.165*
H5B0.363 (3)0.372 (5)0.011 (4)0.165*
H6A0.61680.11650.28300.124*0.50
H6B0.63120.31720.36960.124*0.50
H6C0.60220.31630.19520.124*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0659 (10)0.0652 (10)0.0774 (11)0.0000.0211 (9)0.000
O10.044 (2)0.121 (4)0.064 (2)0.0000.001 (2)0.000
O20.120 (4)0.071 (3)0.0378 (19)0.0000.012 (2)0.000
N10.051 (3)0.054 (3)0.040 (2)0.0000.001 (2)0.000
N20.069 (3)0.068 (3)0.038 (2)0.0000.004 (2)0.000
N30.055 (3)0.047 (3)0.052 (3)0.0000.016 (2)0.000
C10.043 (3)0.038 (3)0.054 (3)0.0000.002 (2)0.000
C20.061 (4)0.057 (3)0.042 (3)0.0000.008 (3)0.000
C30.088 (4)0.049 (3)0.037 (3)0.0000.009 (3)0.000
C40.058 (4)0.141 (7)0.075 (4)0.0000.025 (4)0.000
C50.178 (9)0.117 (7)0.035 (3)0.0000.008 (4)0.000
C60.069 (4)0.081 (4)0.097 (5)0.0000.039 (4)0.000
Geometric parameters (Å, º) top
S1—C11.630 (5)N3—C11.409 (6)
O1—C21.338 (6)N3—C61.474 (7)
O1—C41.439 (8)C4—H4A0.96 (5)
O2—C31.376 (6)C4—H4B0.95 (2)
O2—C51.484 (9)C5—H5A0.973 (19)
N1—C21.293 (6)C5—H5B0.963 (18)
N1—C11.349 (6)C6—H6A0.9600
N2—C31.303 (7)C6—H6B0.9600
N2—C21.352 (6)C6—H6C0.9600
N3—C31.339 (7)
C2—O1—C4116.9 (5)N2—C3—O2121.3 (5)
C3—O2—C5114.0 (5)N3—C3—O2113.0 (5)
C2—N1—C1117.7 (4)O1—C4—H4A110 (3)
C3—N2—C2111.9 (4)O1—C4—H4B108 (5)
C3—N3—C1118.5 (4)H4A—C4—H4B110 (4)
C3—N3—C6122.4 (5)O2—C5—H5A100 (3)
C1—N3—C6119.1 (5)O2—C5—H5B105 (3)
N1—C1—N3117.0 (4)H5A—C5—H5B113 (3)
N1—C1—S1122.1 (4)N3—C6—H6A109.5
N3—C1—S1120.9 (4)N3—C6—H6B109.5
N1—C2—O1120.2 (4)H6A—C6—H6B109.5
N1—C2—N2129.2 (5)N3—C6—H6C109.5
O1—C2—N2110.7 (5)H6A—C6—H6C109.5
N2—C3—N3125.7 (4)H6B—C6—H6C109.5
C2—N1—C1—N30.0C3—N2—C2—N10.0
C2—N1—C1—S1180.0C3—N2—C2—O1180.0
C3—N3—C1—N10.0C2—N2—C3—N30.0
C6—N3—C1—N1180.0C2—N2—C3—O2180.0
C3—N3—C1—S1180.0C1—N3—C3—N20.0
C6—N3—C1—S10.0C6—N3—C3—N2180.0
C1—N1—C2—O1180.0C1—N3—C3—O2180.0
C1—N1—C2—N20.0C6—N3—C3—O20.0
C4—O1—C2—N10.0C5—O2—C3—N20.0
C4—O1—C2—N2180.0C5—O2—C3—N3180.0
(9b) 4,6-Dimethoxy-3-methyl-1,3,5-triazine-2(3H)-thion top
Crystal data top
C6H9N3O2SF(000) = 392
Mr = 187.22Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.657 (3) ÅCell parameters from 25 reflections
b = 14.361 (7) Åθ = 2.9–12.7°
c = 8.433 (4) ŵ = 0.34 mm1
β = 110.99 (3)°T = 293 K
V = 865.8 (7) Å3Plates, light yellow
Z = 40.45 × 0.38 × 0.24 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.091
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.8°
Graphite monochromatorh = 99
ω/2θ scansk = 016
1730 measured reflectionsl = 109
1520 independent reflections3 standard reflections every 120 min min
902 reflections with I > 2σ(I) intensity decay: 4.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0325P)2 + 2.0096P]
where P = (Fo2 + 2Fc2)/3
1520 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H9N3O2SV = 865.8 (7) Å3
Mr = 187.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.657 (3) ŵ = 0.34 mm1
b = 14.361 (7) ÅT = 293 K
c = 8.433 (4) Å0.45 × 0.38 × 0.24 mm
β = 110.99 (3)°
Data collection top
Philips PW 1100
diffractometer
Rint = 0.091
1730 measured reflections3 standard reflections every 120 min min
1520 independent reflections intensity decay: 4.0%
902 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.37 e Å3
1520 reflectionsΔρmin = 0.36 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.65350 (18)0.12203 (8)0.20454 (15)0.0449 (4)
O10.9234 (5)0.17846 (19)0.1274 (4)0.0416 (8)
O20.7225 (4)0.0157 (2)0.3240 (3)0.0417 (8)
N10.7932 (5)0.0396 (2)0.1616 (4)0.0323 (8)
N20.8312 (5)0.0847 (2)0.0980 (4)0.0343 (8)
N30.6989 (5)0.0607 (2)0.0761 (4)0.0334 (8)
C10.7182 (6)0.0433 (3)0.0925 (5)0.0304 (9)
C20.8461 (6)0.0965 (3)0.0652 (5)0.0334 (10)
C30.7529 (6)0.0061 (3)0.1635 (5)0.0332 (10)
C40.9514 (7)0.1985 (3)0.3029 (5)0.0464 (12)
C50.7756 (8)0.0555 (4)0.4234 (6)0.0521 (13)
C60.6206 (7)0.1495 (3)0.1590 (6)0.0444 (12)
H4A1.02390.14960.37390.070*
H4B1.01660.25660.33500.070*
H4C0.83230.20260.31620.070*
H5A0.90580.07030.36890.078*
H5B0.75390.03220.53550.078*
H5C0.70200.11050.43070.078*
H6A0.61700.14910.27400.067*
H6B0.69770.20000.09830.067*
H6C0.49620.15710.15870.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0576 (8)0.0325 (6)0.0474 (7)0.0010 (6)0.0220 (6)0.0064 (5)
C10.029 (2)0.030 (2)0.030 (2)0.0070 (17)0.0084 (18)0.0033 (17)
C20.035 (2)0.033 (2)0.031 (2)0.0013 (18)0.0095 (19)0.0051 (17)
C30.036 (2)0.031 (2)0.029 (2)0.0038 (19)0.0066 (18)0.0037 (17)
C40.066 (3)0.038 (2)0.035 (3)0.012 (2)0.018 (2)0.012 (2)
C50.068 (4)0.062 (3)0.025 (2)0.004 (3)0.015 (2)0.001 (2)
C60.055 (3)0.029 (2)0.045 (3)0.004 (2)0.013 (2)0.0090 (19)
N10.039 (2)0.0274 (18)0.0293 (18)0.0008 (15)0.0103 (16)0.0015 (14)
N20.043 (2)0.0300 (17)0.0287 (18)0.0010 (16)0.0109 (16)0.0010 (15)
N30.037 (2)0.0246 (17)0.036 (2)0.0015 (15)0.0104 (16)0.0039 (14)
O10.061 (2)0.0325 (16)0.0316 (16)0.0079 (14)0.0164 (15)0.0058 (13)
O20.0493 (19)0.0486 (18)0.0267 (16)0.0000 (15)0.0130 (14)0.0038 (13)
Geometric parameters (Å, º) top
S—C11.659 (4)C6—N31.474 (5)
C1—N11.360 (5)C4—H4A0.9600
C1—N31.398 (5)C4—H4B0.9600
C2—N11.315 (5)C4—H4C0.9600
C2—O11.338 (5)C5—H5A0.9600
C2—N21.350 (5)C5—H5B0.9600
C3—N21.305 (5)C5—H5C0.9600
C3—O21.326 (5)C6—H6A0.9600
C3—N31.362 (5)C6—H6B0.9600
C4—O11.446 (5)C6—H6C0.9600
C5—O21.469 (5)
N1—C1—N3117.8 (4)O1—C4—H4B109.5
N1—C1—S121.3 (3)H4A—C4—H4B109.5
N3—C1—S120.9 (3)O1—C4—H4C109.5
N1—C2—O1119.7 (3)H4A—C4—H4C109.5
N1—C2—N2128.4 (4)H4B—C4—H4C109.5
O1—C2—N2112.0 (4)O2—C5—H5A109.5
N2—C3—O2121.6 (4)O2—C5—H5B109.5
N2—C3—N3124.3 (4)H5A—C5—H5B109.5
O2—C3—N3114.1 (3)O2—C5—H5C109.5
C2—N1—C1117.1 (3)H5A—C5—H5C109.5
C3—N2—C2113.5 (4)H5B—C5—H5C109.5
C3—N3—C1118.9 (3)N3—C6—H6A109.5
C3—N3—C6120.3 (3)N3—C6—H6B109.5
C1—N3—C6120.9 (3)H6A—C6—H6B109.5
C2—O1—C4117.3 (3)N3—C6—H6C109.5
C3—O2—C5115.7 (3)H6A—C6—H6C109.5
O1—C4—H4A109.5H6B—C6—H6C109.5
O1—C2—N1—C1179.0 (4)N2—C3—N3—C6176.7 (4)
N2—C2—N1—C12.0 (6)O2—C3—N3—C62.0 (6)
N3—C1—N1—C21.6 (5)N1—C1—N3—C31.0 (5)
S—C1—N1—C2177.8 (3)S—C1—N3—C3179.6 (3)
O2—C3—N2—C2178.1 (4)N1—C1—N3—C6179.4 (4)
N3—C3—N2—C23.2 (6)S—C1—N3—C60.0 (5)
N1—C2—N2—C30.3 (6)N1—C2—O1—C42.4 (6)
O1—C2—N2—C3178.8 (4)N2—C2—O1—C4178.5 (4)
N2—C3—N3—C13.6 (6)N2—C3—O2—C52.3 (6)
O2—C3—N3—C1177.6 (3)N3—C3—O2—C5178.8 (4)
(11) 1-Methyl-6-methoxy-4-methlthio-1,3,5-triazine-2(1H)-thione top
Crystal data top
C6H9N3OS2F(000) = 424
Mr = 203.28Dx = 1.454 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.7771 (8) ÅCell parameters from 2592 reflections
b = 7.9991 (7) Åθ = 3.9–24.4°
c = 14.9762 (16) ŵ = 0.53 mm1
β = 94.629 (1)°T = 300 K
V = 928.63 (16) Å3Plate, light yellow
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Siemens SMART
diffractometer
2629 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.3°, θmin = 3.6°
ω scansh = 1010
10006 measured reflectionsk = 56
3203 independent reflectionsl = 1913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3203 reflectionsΔρmax = 0.64 e Å3
217 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (9)
Crystal data top
C6H9N3OS2V = 928.63 (16) Å3
Mr = 203.28Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.7771 (8) ŵ = 0.53 mm1
b = 7.9991 (7) ÅT = 300 K
c = 14.9762 (16) Å0.40 × 0.30 × 0.25 mm
β = 94.629 (1)°
Data collection top
Siemens SMART
diffractometer
2629 reflections with I > 2σ(I)
10006 measured reflectionsRint = 0.025
3203 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120Δρmax = 0.64 e Å3
S = 1.05Δρmin = 0.23 e Å3
3203 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
217 parametersAbsolute structure parameter: 0.12 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A1.07894 (10)0.20171 (15)0.77050 (6)0.0617 (3)
S2A0.56969 (12)0.52285 (17)0.91255 (5)0.0729 (4)
O1A0.5677 (3)0.3946 (4)0.59231 (13)0.0652 (9)
N1A0.5821 (3)0.4572 (4)0.73866 (16)0.0507 (9)
N2A0.8181 (3)0.3675 (5)0.83596 (16)0.0544 (9)
N3A0.8066 (3)0.3066 (4)0.67956 (16)0.0541 (9)
C1A0.6589 (4)0.3820 (6)0.67047 (19)0.0511 (10)
C2A0.6628 (4)0.4452 (5)0.8254 (2)0.0522 (11)
C3A0.8805 (4)0.3044 (5)0.7640 (2)0.0469 (9)
C4A0.6371 (5)0.3030 (8)0.5186 (2)0.0875 (17)
C5A0.4123 (4)0.5381 (6)0.7206 (2)0.0682 (13)
C6A1.1547 (5)0.2236 (7)0.8857 (2)0.0765 (13)
H4AA0.74790.34790.50750.131*
H4AB0.55990.31410.46560.131*
H4AC0.64910.18700.53420.131*
H5AA0.40470.58670.66180.102*
H5AB0.39880.62400.76430.102*
H5AC0.32280.45620.72400.102*
H6AA1.08160.30010.91440.115*
H6AB1.27060.26590.88990.115*
H6AC1.15280.11670.91470.115*
S1B0.02702 (12)0.19521 (18)0.41605 (6)0.0737 (4)
S2B0.54698 (11)0.51916 (16)0.28721 (6)0.0691 (4)
O1B0.0399 (3)0.3255 (4)0.09984 (13)0.0643 (9)
N1B0.2701 (3)0.4066 (4)0.18966 (15)0.0497 (8)
N2B0.2820 (3)0.3578 (4)0.34536 (16)0.0526 (9)
N3B0.0444 (3)0.2588 (4)0.24900 (16)0.0538 (10)
C1B0.1145 (4)0.3264 (5)0.1825 (2)0.0519 (10)
C2B0.3568 (3)0.4227 (6)0.2736 (2)0.0504 (10)
C3B0.1331 (4)0.2806 (5)0.32915 (19)0.0490 (10)
C4B0.1303 (5)0.2442 (8)0.0893 (3)0.0926 (17)
C5B0.3435 (4)0.4727 (6)0.1089 (2)0.0629 (12)
C6B0.1622 (6)0.2506 (9)0.5140 (2)0.0941 (18)
H4BA0.11550.12520.08590.139*
H4BB0.19250.28330.03530.139*
H4BC0.19400.27090.13970.139*
H5BA0.44300.40810.09680.094*
H5BB0.37640.58730.11860.094*
H5BC0.25880.46560.05870.094*
H6BA0.26410.18240.51770.141*
H6BB0.10070.23300.56630.141*
H6BC0.19430.36610.51060.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0464 (3)0.0776 (10)0.0609 (4)0.0053 (5)0.0024 (3)0.0046 (5)
S2A0.0706 (5)0.0934 (12)0.0558 (4)0.0065 (6)0.0122 (4)0.0109 (5)
O1A0.0566 (12)0.090 (3)0.0485 (11)0.0080 (13)0.0007 (10)0.0004 (13)
N1A0.0455 (11)0.057 (3)0.0501 (13)0.0041 (13)0.0031 (10)0.0030 (13)
N2A0.0493 (12)0.068 (3)0.0457 (12)0.0047 (13)0.0033 (10)0.0060 (13)
N3A0.0473 (12)0.065 (3)0.0497 (13)0.0001 (15)0.0054 (10)0.0031 (14)
C1A0.0472 (14)0.062 (4)0.0443 (14)0.0045 (16)0.0045 (12)0.0001 (15)
C2A0.0540 (15)0.054 (4)0.0495 (15)0.0052 (16)0.0087 (12)0.0037 (16)
C3A0.0462 (14)0.041 (3)0.0537 (15)0.0059 (15)0.0052 (12)0.0022 (15)
C4A0.075 (2)0.141 (6)0.0458 (16)0.017 (3)0.0017 (15)0.009 (2)
C5A0.0492 (16)0.087 (4)0.0678 (19)0.010 (2)0.0046 (15)0.004 (2)
C6A0.0622 (18)0.093 (4)0.071 (2)0.009 (2)0.0128 (16)0.009 (2)
S1B0.0642 (5)0.1000 (11)0.0587 (4)0.0073 (6)0.0165 (4)0.0094 (6)
S2B0.0525 (4)0.0867 (12)0.0674 (5)0.0141 (5)0.0002 (4)0.0006 (6)
O1B0.0631 (13)0.079 (3)0.0488 (11)0.0116 (13)0.0059 (10)0.0030 (12)
N1B0.0474 (12)0.056 (3)0.0455 (12)0.0012 (14)0.0047 (10)0.0012 (13)
N2B0.0464 (12)0.065 (3)0.0466 (12)0.0008 (13)0.0044 (10)0.0027 (13)
N3B0.0532 (13)0.058 (3)0.0508 (13)0.0024 (13)0.0059 (11)0.0003 (14)
C1B0.0485 (14)0.052 (4)0.0542 (16)0.0052 (16)0.0014 (12)0.0050 (17)
C2B0.0432 (13)0.057 (3)0.0513 (15)0.0026 (16)0.0035 (12)0.0027 (17)
C3B0.0503 (15)0.050 (3)0.0480 (14)0.0081 (15)0.0108 (12)0.0003 (15)
C4B0.078 (2)0.117 (5)0.078 (2)0.026 (3)0.025 (2)0.007 (3)
C5B0.0651 (18)0.075 (4)0.0499 (16)0.0078 (19)0.0113 (14)0.0021 (17)
C6B0.097 (3)0.137 (6)0.0485 (18)0.001 (3)0.0064 (18)0.009 (2)
Geometric parameters (Å, º) top
S1A—C3A1.744 (3)S1B—C3B1.736 (3)
S1A—C6A1.786 (3)S1B—C6B1.790 (4)
S2A—C2A1.663 (3)S2B—C2B1.666 (3)
O1A—C1A1.323 (3)O1B—C1B1.324 (3)
O1A—C4A1.465 (5)O1B—C4B1.472 (5)
N1A—C1A1.364 (4)N1B—C1B1.366 (4)
N1A—C2A1.399 (4)N1B—C2B1.383 (4)
N1A—C5A1.476 (4)N1B—C5B1.477 (4)
N2A—C3A1.317 (4)N2B—C3B1.318 (4)
N2A—C2A1.356 (4)N2B—C2B1.366 (4)
N3A—C1A1.295 (4)N3B—C1B1.292 (4)
N3A—C3A1.347 (4)N3B—C3B1.347 (4)
C4A—H4AA0.9600C4B—H4BA0.9600
C4A—H4AB0.9600C4B—H4BB0.9600
C4A—H4AC0.9600C4B—H4BC0.9600
C5A—H5AA0.9600C5B—H5BA0.9600
C5A—H5AB0.9600C5B—H5BB0.9600
C5A—H5AC0.9600C5B—H5BC0.9600
C6A—H6AA0.9600C6B—H6BA0.9600
C6A—H6AB0.9600C6B—H6BB0.9600
C6A—H6AC0.9600C6B—H6BC0.9600
C3A—S1A—C6A103.24 (18)C3B—S1B—C6B103.5 (2)
C1A—O1A—C4A115.2 (3)C1B—O1B—C4B115.2 (3)
C1A—N1A—C2A118.3 (3)C1B—N1B—C2B118.6 (3)
C1A—N1A—C5A119.7 (3)C1B—N1B—C5B120.2 (3)
C2A—N1A—C5A121.9 (3)C2B—N1B—C5B121.2 (3)
C3A—N2A—C2A117.6 (3)C3B—N2B—C2B117.2 (3)
C1A—N3A—C3A114.4 (3)C1B—N3B—C3B114.5 (3)
N3A—C1A—O1A122.4 (3)N3B—C1B—O1B122.6 (3)
N3A—C1A—N1A124.4 (3)N3B—C1B—N1B124.2 (3)
O1A—C1A—N1A113.1 (3)O1B—C1B—N1B113.2 (3)
N2A—C2A—N1A117.9 (3)N2B—C2B—N1B118.2 (3)
N2A—C2A—S2A121.3 (2)N2B—C2B—S2B120.7 (2)
N1A—C2A—S2A120.8 (2)N1B—C2B—S2B121.2 (2)
N2A—C3A—N3A127.3 (3)N2B—C3B—N3B127.2 (3)
N2A—C3A—S1A121.2 (2)N2B—C3B—S1B120.7 (2)
N3A—C3A—S1A111.5 (2)N3B—C3B—S1B112.1 (2)
O1A—C4A—H4AA109.4O1B—C4B—H4BA109.5
O1A—C4A—H4AB109.5O1B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
O1A—C4A—H4AC109.5O1B—C4B—H4BC109.4
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
N1A—C5A—H5AA109.5N1B—C5B—H5BA109.4
N1A—C5A—H5AB109.5N1B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
N1A—C5A—H5AC109.4N1B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
S1A—C6A—H6AA109.5S1B—C6B—H6BA109.5
S1A—C6A—H6AB109.5S1B—C6B—H6BB109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BB109.5
S1A—C6A—H6AC109.5S1B—C6B—H6BC109.4
H6AA—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AB—C6A—H6AC109.5H6BB—C6B—H6BC109.5
C3A—N3A—C1A—O1A179.4 (3)C3B—N3B—C1B—O1B176.0 (3)
C3A—N3A—C1A—N1A1.3 (6)C3B—N3B—C1B—N1B3.4 (5)
C4A—O1A—C1A—N3A5.9 (6)C4B—O1B—C1B—N3B0.9 (5)
C4A—O1A—C1A—N1A174.7 (4)C4B—O1B—C1B—N1B178.5 (4)
C2A—N1A—C1A—N3A3.6 (6)C2B—N1B—C1B—N3B2.5 (6)
C5A—N1A—C1A—N3A179.4 (4)C5B—N1B—C1B—N3B177.0 (3)
C2A—N1A—C1A—O1A177.1 (3)C2B—N1B—C1B—O1B177.0 (3)
C5A—N1A—C1A—O1A1.2 (5)C5B—N1B—C1B—O1B3.6 (5)
C3A—N2A—C2A—N1A1.8 (6)C3B—N2B—C2B—N1B1.5 (5)
C3A—N2A—C2A—S2A177.8 (3)C3B—N2B—C2B—S2B178.8 (3)
C1A—N1A—C2A—N2A3.7 (5)C1B—N1B—C2B—N2B0.2 (5)
C5A—N1A—C2A—N2A179.5 (4)C5B—N1B—C2B—N2B179.6 (3)
C1A—N1A—C2A—S2A175.9 (3)C1B—N1B—C2B—S2B180.0 (3)
C5A—N1A—C2A—S2A0.1 (5)C5B—N1B—C2B—S2B0.6 (5)
C2A—N2A—C3A—N3A0.6 (6)C2B—N2B—C3B—N3B0.4 (6)
C2A—N2A—C3A—S1A179.9 (3)C2B—N2B—C3B—S1B179.5 (3)
C1A—N3A—C3A—N2A0.9 (6)C1B—N3B—C3B—N2B2.0 (5)
C1A—N3A—C3A—S1A179.7 (3)C1B—N3B—C3B—S1B177.2 (3)
C6A—S1A—C3A—N2A3.3 (4)C6B—S1B—C3B—N2B2.5 (4)
C6A—S1A—C3A—N3A177.3 (3)C6B—S1B—C3B—N3B176.7 (3)
(12) 1-methyl-2,4-bismethylthio-1,3,5-triazine-6(1H)-one top
Crystal data top
C6H9N3OS2Dx = 1.463 Mg m3
Mr = 203.28Melting point: 150 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 15.712 (7) Åθ = 2.6–18.5°
b = 6.730 (3) ŵ = 0.53 mm1
c = 8.731 (4) ÅT = 293 K
V = 923.2 (6) Å3Prism, colourless
Z = 40.30 × 0.22 × 0.17 mm
F(000) = 424
Data collection top
Philips PW 1100
diffractometer
Rint = 0.032
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 418
ω/2θ scansk = 08
934 measured reflectionsl = 310
891 independent reflections3 standard reflections every 120 min. min
639 reflections with I > 2σ(I) intensity decay: 3.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
891 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N3OS2V = 923.2 (6) Å3
Mr = 203.28Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.712 (7) ŵ = 0.53 mm1
b = 6.730 (3) ÅT = 293 K
c = 8.731 (4) Å0.30 × 0.22 × 0.17 mm
Data collection top
Philips PW 1100
diffractometer
Rint = 0.032
934 measured reflections3 standard reflections every 120 min. min
891 independent reflections intensity decay: 3.0%
639 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
891 reflectionsΔρmin = 0.24 e Å3
76 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.24212 (6)1.25000.02198 (15)0.0581 (4)
S20.49776 (7)1.25000.40352 (14)0.0570 (4)
O10.54068 (17)1.25000.1553 (4)0.0646 (10)
N10.51564 (19)1.25000.1017 (4)0.0397 (8)
N20.3752 (2)1.25000.1942 (4)0.0426 (9)
N30.40189 (19)1.25000.0767 (4)0.0428 (9)
C10.4884 (3)1.25000.0516 (5)0.0428 (10)
C20.4580 (3)1.25000.2169 (5)0.0415 (11)
C30.3523 (3)1.25000.0437 (5)0.0399 (10)
C40.4016 (3)1.25000.5127 (5)0.0637 (14)
C50.6080 (2)1.25000.1339 (6)0.0560 (13)
C60.2289 (3)1.25000.1816 (6)0.0687 (15)
H4A0.37511.12180.50590.096*0.50
H4B0.36361.34920.47300.096*0.50
H4C0.41441.27910.61790.096*0.50
H5A0.62521.11990.16660.084*0.50
H5B0.62021.34450.21320.084*0.50
H5C0.63851.28560.04270.084*0.50
H6A0.17171.21210.20640.103*0.50
H6B0.26801.15720.22670.103*0.50
H6C0.24001.38070.22080.103*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0319 (6)0.0957 (10)0.0468 (7)0.0000.0004 (5)0.000
S20.0582 (8)0.0771 (9)0.0357 (7)0.0000.0124 (5)0.000
O10.0417 (16)0.108 (3)0.0435 (19)0.0000.0106 (16)0.000
N10.0338 (16)0.049 (2)0.0361 (19)0.0000.0019 (16)0.000
N20.0408 (18)0.058 (2)0.029 (2)0.0000.0001 (15)0.000
N30.0340 (17)0.064 (2)0.0302 (19)0.0000.0011 (15)0.000
C10.040 (2)0.049 (2)0.039 (2)0.0000.001 (2)0.000
C20.046 (2)0.042 (2)0.037 (2)0.0000.008 (2)0.000
C30.038 (2)0.047 (2)0.035 (2)0.0000.0009 (19)0.000
C40.075 (4)0.086 (4)0.030 (3)0.0000.001 (2)0.000
C50.034 (2)0.072 (3)0.062 (3)0.0000.004 (2)0.000
C60.046 (2)0.106 (4)0.054 (3)0.0000.017 (3)0.000
Geometric parameters (Å, º) top
S1—C31.742 (4)N3—C11.377 (5)
S1—C61.789 (5)C4—H4A0.9600
S2—C21.745 (4)C4—H4B0.9600
S2—C41.787 (5)C4—H4C0.9600
O1—C11.222 (5)C5—H5A0.9600
N1—C21.353 (5)C5—H5B0.9600
N1—C11.406 (5)C5—H5C0.9600
N1—C51.478 (5)C6—H6A0.9600
N2—C21.315 (5)C6—H6B0.9600
N2—C31.362 (5)C6—H6C0.9600
N3—C31.308 (5)
C3—S1—C6102.9 (2)S2—C4—H4B109.5
C2—S2—C4101.3 (2)H4A—C4—H4B109.5
C2—N1—C1120.2 (3)S2—C4—H4C109.5
C2—N1—C5121.1 (3)H4A—C4—H4C109.5
C1—N1—C5118.7 (3)H4B—C4—H4C109.5
C2—N2—C3114.0 (4)N1—C5—H5A109.5
C3—N3—C1117.4 (4)N1—C5—H5B109.5
O1—C1—N3123.1 (4)H5A—C5—H5B109.5
O1—C1—N1120.1 (4)N1—C5—H5C109.5
N3—C1—N1116.9 (4)H5A—C5—H5C109.5
N2—C2—N1123.4 (4)H5B—C5—H5C109.5
N2—C2—S2119.7 (3)S1—C6—H6A109.5
N1—C2—S2117.0 (3)S1—C6—H6B109.5
N3—C3—N2128.1 (4)H6A—C6—H6B109.5
N3—C3—S1120.3 (3)S1—C6—H6C109.5
N2—C3—S1111.6 (3)H6A—C6—H6C109.5
S2—C4—H4A109.5H6B—C6—H6C109.5
C3—N3—C1—O1180.0C1—N1—C2—S2180.0
C3—N3—C1—N10.000 (1)C5—N1—C2—S20.0
C2—N1—C1—O1180.000 (1)C4—S2—C2—N20.0
C5—N1—C1—O10.0C4—S2—C2—N1180.000 (1)
C2—N1—C1—N30.0C1—N3—C3—N20.000 (2)
C5—N1—C1—N3180.0C1—N3—C3—S1180.0
C3—N2—C2—N10.0C2—N2—C3—N30.000 (2)
C3—N2—C2—S2180.0C2—N2—C3—S1180.0
C1—N1—C2—N20.0C6—S1—C3—N30.0
C5—N1—C2—N2180.0C6—S1—C3—N2180.000 (1)

Experimental details

(9a)(9b)(11)(12)
Crystal data
Chemical formulaC6H9N3O2SC6H9N3O2SC6H9N3OS2C6H9N3OS2
Mr187.22187.22203.28203.28
Crystal system, space groupOrthorhombic, PnmaMonoclinic, P21/cMonoclinic, P21Orthorhombic, Pnma
Temperature (K)293293300293
a, b, c (Å)15.231 (5), 6.778 (3), 8.626 (3)7.657 (3), 14.361 (7), 8.433 (4)7.7771 (8), 7.9991 (7), 14.9762 (16)15.712 (7), 6.730 (3), 8.731 (4)
α, β, γ (°)90, 90, 9090, 110.99 (3), 9090, 94.629 (1), 9090, 90, 90
V3)890.5 (6)865.8 (7)928.63 (16)923.2 (6)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.330.340.530.53
Crystal size (mm)0.33 × 0.27 × 0.190.45 × 0.38 × 0.240.40 × 0.30 × 0.250.30 × 0.22 × 0.17
Data collection
DiffractometerPhilips PW 1100
diffractometer
Philips PW 1100
diffractometer
Siemens SMART
diffractometer
Philips PW 1100
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
981, 857, 560 1730, 1520, 902 10006, 3203, 2629 934, 891, 639
Rint0.0550.0910.0250.032
(sin θ/λ)max1)0.5950.5950.6670.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.154, 1.10 0.053, 0.159, 1.08 0.050, 0.120, 1.05 0.049, 0.117, 1.08
No. of reflections85715203203891
No. of parameters8411221776
No. of restraints6010
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.360.37, 0.360.64, 0.230.28, 0.24
Absolute structure??Flack H D (1983), Acta Cryst. A39, 876-881?
Absolute structure parameter??0.12 (9)?

Computer programs: Philips PW 1100/20 (Philips, 1973), Philips PW 110/20 (Philips, 1973), SMART V.4.209 (Siemens, 1995), SAINT V.4.050 (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds