Download citation
Download citation
link to html
Diffraction patterns for polydisperse systems of crystalline grains of cubic materials were calculated considering some common grain shapes: sphere, cube, tetrahedron and octahedron. Analytical expressions for the Fourier transforms and corresponding column-length distributions were calculated for the various crystal shapes considering two representative examples of size-distribution functions: lognormal and Poisson. Results are illustrated by means of pattern simulations for a f.c.c. material. Line-broadening anisotropy owing to the different crystal shapes is discussed. The proposed approach is quite general and can be used for any given crystallite shape and different distribution functions; moreover, the Fourier transform formalism allows the introduction in the line-profile expression of other contributions to line broadening in a relatively easy and straightforward way.

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds