Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C10H15N1O2, the cyclo­hexane ring adopts a chair conformation and the piperidine ring adopts an envelope conformation. In the crystal structure, hydrogen-bonded dimers are formed via N—H...O inter­actions, and the mol­ecular packing is stabilized by van der Waals inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041590/at6067sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041590/at6067Isup2.hkl
Contains datablock I

CCDC reference: 296517

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.038
  • wR factor = 0.087
  • Data-to-parameter ratio = 18.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

As an efficient intermediate in the preparation of gabapentin, the title compound, (I), plays an important role in the organic synthesis (Ferrari et al., 2004). Bond lengths and angles in (I) show normal values (Allen et al., 1987). The cyclohexane ring has the expected chair conformation, atoms C3 and C8 having deviations of 0.648 (2) and −0.654 (2) Å, respectively, from the least-squares plane through the other four atoms. The piperidine ring adopts an envelope conformation, with atom C3 deviating by 0.654 (2) Å from the mean plane through the other five atoms. In the crystal structure, centrosymmetric R22(8) dimers (Etter, 1990) are formed through hydrogen-bonding interactions [N···O = 2.889 (1) Å] between the NH and carbonyl groups (Fig. 2). The molecular packing is further stabilized by van der Waals interactions.

Experimental top

A mixture of acetic anhydride (66.5 g, 0.65 mol), ammonium acetate (66.5 g, 0.86 mol) and 1,1-cyclohexane diacetic acid (100 g, 0.53 mol) was heated to 433–443 K for 8 h, eliminating by distillation the acetic acid that has formed. Water (200 ml) and secondary butyl alcohol (100 g) were added when the mixture was cooled to 363–383 K. The solution was neutralized to pH 9 using 30% of aqueous ammonia and the precipitate was collected, washed with water and recrystallized from methanol (300 ml) to give 84.2 g (yield 93.1%) of dry 3-azaspiro[5.5]undecane-2,4-dione (Ferrari et al., 2004). This was recrystallized from the mixed solvent of ethanol and acetone (4:1 v/v), giving colorless crystals of (I) suitable for X-ray diffraction.

Refinement top

The H atoms of the amino group were located from difference Fourier maps and included in the refinement based on the as-found N—H bond lengths, but their isotropic displacement paramenters were refined and fixed in the final stage. All other H atoms were placed in calculated positions, with C—H = 0.97 Å, and included in the refinement in riding model, with Uiso(H) = 1.2Ueq(carrier atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 40% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial packing digram for (I), showing the hydrogen-bonded (dashed line) dimer [symmetry code: (i) 1 − x, 2 − y, −z].
3-Azaspiro[5.5]undecane-2,4-dione top
Crystal data top
C10H15NO2F(000) = 392.00
Mr = 181.23Dx = 1.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 7272 reflections
a = 11.402 (7) Åθ = 3.1–27.5°
b = 6.231 (3) ŵ = 0.09 mm1
c = 13.942 (5) ÅT = 296 K
β = 107.324 (18)°Block, colorless
V = 945.6 (8) Å30.32 × 0.28 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1530 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.042
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.968, Tmax = 0.986k = 87
8782 measured reflectionsl = 1818
2152 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0002Fo2 + σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.087Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.25 e Å3
2152 reflectionsExtinction correction: Larson (1970)
119 parametersExtinction coefficient: 76 (18)
H-atom parameters constrained
Crystal data top
C10H15NO2V = 945.6 (8) Å3
Mr = 181.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.402 (7) ŵ = 0.09 mm1
b = 6.231 (3) ÅT = 296 K
c = 13.942 (5) Å0.32 × 0.28 × 0.16 mm
β = 107.324 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2152 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1530 reflections with F2 > 2σ(F2)
Tmin = 0.968, Tmax = 0.986Rint = 0.042
8782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039119 parameters
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
2152 reflectionsΔρmin = 0.25 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47845 (9)0.97923 (13)0.11873 (5)0.0374 (2)
O20.33514 (10)0.52046 (13)0.13779 (6)0.0445 (2)
N30.40478 (10)0.74579 (16)0.00749 (6)0.0303 (2)
C10.42409 (12)0.81117 (19)0.09022 (8)0.0274 (3)
C20.37696 (12)0.66930 (19)0.15674 (8)0.0283 (3)
C30.26047 (12)0.54603 (18)0.10060 (8)0.0267 (3)
C40.28801 (13)0.42831 (19)0.01324 (9)0.0340 (3)
C50.34224 (12)0.56370 (19)0.05126 (8)0.0309 (3)
C60.15126 (12)0.6996 (2)0.06179 (9)0.0325 (3)
C70.10608 (13)0.7963 (2)0.14477 (10)0.0401 (3)
C80.07698 (13)0.6234 (2)0.21151 (10)0.0412 (4)
C90.18587 (13)0.4760 (2)0.25314 (9)0.0358 (3)
C100.22866 (12)0.37762 (19)0.16956 (9)0.0330 (3)
H210.35880.75770.20780.034*
H220.44060.56660.18860.034*
H410.21160.36840.02920.042*
H420.34520.31300.04100.041*
H620.08370.62100.01670.038*
H610.17610.81470.02520.038*
H720.03320.88190.11510.049*
H710.17050.88720.18620.049*
H810.00850.53880.17130.051*
H820.05450.69010.26640.051*
H1010.30130.29150.19930.040*
H1020.16350.28660.12930.040*
H3010.43160.82350.04550.037*
H910.16320.36250.29180.044*
H920.25270.55920.29650.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0432 (6)0.0406 (5)0.0289 (4)0.0172 (4)0.0117 (3)0.0036 (3)
O20.0642 (7)0.0424 (5)0.0291 (4)0.0079 (5)0.0173 (4)0.0060 (4)
N30.0343 (6)0.0340 (5)0.0240 (4)0.0074 (4)0.0106 (4)0.0026 (4)
C10.0231 (7)0.0327 (6)0.0251 (5)0.0014 (5)0.0053 (4)0.0028 (5)
C20.0267 (7)0.0337 (6)0.0239 (5)0.0026 (5)0.0066 (4)0.0033 (4)
C30.0278 (7)0.0245 (5)0.0281 (5)0.0033 (5)0.0088 (4)0.0034 (4)
C40.0389 (8)0.0281 (6)0.0363 (6)0.0052 (5)0.0130 (5)0.0015 (5)
C50.0340 (8)0.0298 (6)0.0290 (5)0.0011 (5)0.0096 (5)0.0001 (5)
C60.0280 (7)0.0320 (6)0.0352 (6)0.0036 (5)0.0060 (5)0.0077 (5)
C70.0364 (9)0.0353 (6)0.0513 (7)0.0071 (6)0.0172 (6)0.0083 (6)
C80.0382 (9)0.0425 (7)0.0488 (7)0.0004 (6)0.0219 (6)0.0043 (6)
C90.0385 (8)0.0360 (6)0.0363 (6)0.0058 (6)0.0164 (5)0.0077 (5)
C100.0340 (8)0.0267 (5)0.0397 (6)0.0026 (5)0.0131 (5)0.0068 (5)
Geometric parameters (Å, º) top
O1—C11.2215 (14)C2—H210.970
O2—C51.2151 (14)C2—H220.970
N3—C11.3754 (14)C4—H410.970
N3—C51.3817 (15)C4—H420.970
C1—C21.4924 (18)C6—H620.970
C2—C31.5322 (16)C6—H610.970
C3—C41.5323 (18)C7—H720.970
C3—C61.5356 (17)C7—H710.970
C3—C101.5378 (18)C8—H810.970
C4—C51.495 (2)C8—H820.970
C6—C71.524 (2)C9—H910.970
C7—C81.523 (2)C9—H920.970
C8—C91.5142 (19)C10—H1010.970
C9—C101.520 (2)C10—H1020.970
N3—H3010.840
C1—N3—C5126.16 (10)C5—C4—H41107.9
O1—C1—N3119.49 (11)C5—C4—H42108.0
O1—C1—C2123.18 (10)H41—C4—H42109.5
N3—C1—C2117.33 (10)C3—C6—H62108.5
C1—C2—C3113.41 (8)C3—C6—H61108.2
C2—C3—C4107.12 (11)C7—C6—H62108.0
C2—C3—C6110.86 (9)C7—C6—H61109.0
C2—C3—C10110.65 (8)H62—C6—H61109.5
C4—C3—C6110.79 (9)C6—C7—H72109.5
C4—C3—C10108.22 (9)C6—C7—H71108.4
C6—C3—C10109.16 (11)C8—C7—H72109.5
C3—C4—C5115.31 (9)C8—C7—H71108.3
O2—C5—N3119.58 (12)H72—C7—H71109.5
O2—C5—C4123.71 (11)C7—C8—H81108.4
N3—C5—C4116.70 (9)C7—C8—H82109.6
C3—C6—C7113.63 (9)C9—C8—H81108.6
C6—C7—C8111.62 (11)C9—C8—H82109.6
C7—C8—C9111.12 (13)H81—C8—H82109.5
C8—C9—C10111.38 (10)C8—C9—H91109.4
C3—C10—C9113.16 (10)C8—C9—H92108.5
C1—N3—H301118.2C10—C9—H91109.4
C5—N3—H301115.6C10—C9—H92108.7
C1—C2—H21108.3H91—C9—H92109.5
C1—C2—H22108.4C3—C10—H101108.3
C3—C2—H21108.5C3—C10—H102108.7
C3—C2—H22108.6C9—C10—H101108.9
H21—C2—H22109.5C9—C10—H102108.3
C3—C4—H41108.0H101—C10—H102109.5
C3—C4—H42108.0
C1—N3—C5—O2177.59 (12)C4—C3—C6—C7171.10 (11)
C1—N3—C5—C41.58 (18)C6—C3—C4—C570.78 (14)
C5—N3—C1—O1178.11 (12)C4—C3—C10—C9173.70 (10)
C5—N3—C1—C22.17 (18)C10—C3—C4—C5169.58 (10)
O1—C1—C2—C3148.84 (12)C6—C3—C10—C953.05 (12)
N3—C1—C2—C331.44 (16)C10—C3—C6—C752.03 (13)
C1—C2—C3—C453.29 (12)C3—C4—C5—O2156.43 (12)
C1—C2—C3—C667.70 (14)C3—C4—C5—N324.43 (16)
C1—C2—C3—C10171.04 (10)C3—C6—C7—C853.84 (14)
C2—C3—C4—C550.25 (13)C6—C7—C8—C954.34 (13)
C2—C3—C6—C770.11 (14)C7—C8—C9—C1055.47 (14)
C2—C3—C10—C969.22 (14)C8—C9—C10—C356.07 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H301···O1i0.842.062.8885 (14)171
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H15NO2
Mr181.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.402 (7), 6.231 (3), 13.942 (5)
β (°) 107.324 (18)
V3)945.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.28 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.968, 0.986
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
8782, 2152, 1530
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.04
No. of reflections2152
No. of parameters119
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997), CrystalStructure.

Selected bond lengths (Å) top
O1—C11.2215 (14)N3—C11.3754 (14)
O2—C51.2151 (14)N3—C51.3817 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H301···O1i0.8402.0572.8885 (14)171
Symmetry code: (i) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds