metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) tetra­cyanidonickelate(II)

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 14 August 2009; accepted 24 August 2009; online 29 August 2009)

In the title complex, [Ni(C16H36N4)(H2O)2][Ni(CN)4], the [Ni(teta)(H2O)2]2+ cations (teta = 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca­ne) and [Ni(CN)4]2− anions are arranged in an alternating fashion through electrostatic and N—H⋯N and O—H⋯N hydrogen-bonding inter­actions, forming a two-dimensional layered structure. Adjacent layers are linked through weak van der Waals inter­actions, resulting in a three-dimensional supra­molecular network.

Related literature

For background to cyanide-bridged complexes, see: Lescouëzec et al. (2005[Lescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691-2729.]); Liu et al. (2008[Liu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152-m1153.]); Xu et al. (2009[Xu, Y., Shen, X. P., Zhou, H., Shu, H. Q., Li, W. X. & Yuan, A. H. (2009). J. Mol. Struct. 921, 341-345.]). For related structures, see: Jiang et al. (2005[Jiang, L., Lu, T. B. & Feng, X. L. (2005). Inorg. Chem. 44, 7056-7062.], 2007[Jiang, L., Feng, X. L., Su, C. Y., Chen, X. M. & Lu, T. B. (2007). Inorg. Chem. 46, 2637-2644.]); Ni et al. (2008[Ni, Z. H., Zhang, L. F., Ge, C. H., Cui, A. L., Kou, H. Z. & Jiang, J. Z. (2008). Inorg. Chem. Commun. 11, 94-96.]); Yamada & Iwasaki (1969[Yamada, S. & Iwasaki, K. (1969). Bull. Chem. Soc. Jpn, 42, 1463.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H36N4)(H2O)2][Ni(CN)4]

  • Mr = 542.02

  • Monoclinic, P 21 /c

  • a = 8.065 (8) Å

  • b = 13.255 (12) Å

  • c = 13.559 (10) Å

  • β = 116.59 (4)°

  • V = 1296 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 173 K

  • 0.58 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.888

  • 9778 measured reflections

  • 2530 independent reflections

  • 1576 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.01

  • 2530 reflections

  • 163 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.81 (3) 2.46 (3) 3.250 (4) 164 (3)
N3—H3⋯N2 0.88 (3) 2.34 (3) 3.201 (4) 167 (3)
O1—H1B⋯N2 0.830 (10) 1.964 (11) 2.789 (4) 172 (3)
O1—H1A⋯N1ii 0.835 (10) 1.939 (11) 2.775 (4) 179 (3)
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decades, there has been a continuous interest in the utilization of cyano-containing building blocks for constructing either ion-paired or cyano-bridged assemblies due to their potential applications and intriguing architectures (Lescouëzec et al., 2005; Liu et al., 2008; Xu et al., 2009). It has been found that cyano-bridged bimetallic assemblies, derived from tailored cyanometalate entities [MLp(CN)q]n- (L = polydentate ligand) and unsaturated coordinated complex [M'(L)]m+, possess extraordinarily excellent magnetic properties such as SMM (single molecular magnets) and SCM (single chain magnets). Recently, we had expected to obtain such low-dimensional system using [Cr(salen)(CN)2]- (Yamada et al., 1969; Ni et al., 2008) and [Ni(teta)]2+ as the building blocks. However, an unexpected tetracyanonickel(II)-based complex of [Ni(teta)(H2O)2][Ni(CN)4] instead of any [Cr(salen)(CN)2]--based complex was obtained. So far, Jiang et al. (Jiang et al., 2005; 2007) have reported several complexes based on the direct assembly of [Ni(CN)4]2- and [Ni(teta)]2+ building blocks, and they found that all these complexes showed cyano-bridged structures. In contrast to these reported complexes, the title complex of [Ni(teta)(H2O)2][Ni(CN)4] is ion-paired and its crystal structure is reported here.

The title complex consists of [Ni(teta)(H2O)2]2+ cation and [Ni(CN)4]2- anion (Fig. 1). In [Ni(teta)(H2O)2]2+ cation, the NiII ion assumes a distorted octahedral coordination geometry, in which the equatorial sites are occupied by four nitrogen atoms of the macrocyclic ligand teta with the Ni(2)—N bond distances of 2.067 (3) and 2.100 (3) Å, while the axial positions are occupied by two oxygen atoms of water molecules with Ni(2)—O distance of 2.183 (2) Å. As usual, [Ni(CN)4]2- anion exhibits a square planar structure, where all four cyano groups are terminal ones, with Ni(1)—C(1) and Ni(1)—C(2) distances of 1.862 (3) and 1.869 (3) Å, respectively. The Ni(1)—C—N bonds deviate slightly from linearity with the bond angles 177.2 (3) and 178.1 (3)°. [Ni(teta)(H2O)2]2+ and [Ni(CN)4]2- are arranged in an alternating fashion, forming a two-dimensional layered structure through electrostatic and hydrogen bonding interactions (Fig. 2). Furthermore, adjacent layers are linked through weak van der Waals interactions, resulting in a three-dimensional supramolecular network (Fig. 3).

Related literature top

For background to cyanide-bridged complexes, see: Lescouëzec et al. (2005); Liu et al. (2008); Xu et al. (2009). For related structures, see: Jiang et al. (2005, 2007); Ni et al. (2008); Yamada & Iwasaki (1969).

Experimental top

A solution of Ni(teta)(ClO4)2 (0.05 mmol) in DMF (10 ml) was added to a solution of K[Cr(salen)(CN)2].H2O (0.05 mmol) in MeOH/H2O (1/1(V/V),10 ml) mixture. The resulting solution was filtrated and the filtrate was left to allow slow evaporation in dark at room temperature. Pink prism crystals of the title complex were obtained after two weeks, washed with MeOH and H2O, respectively, and dried in air. Anal. Calc. for C20H40Ni2N8O2: C, 44.32; H, 7.44; N, 20.68; Ni, 21.66%. Found: C, 44.28; H, 7.49; N, 20.71; Ni, 21.52%.

Refinement top

All non-H atoms were refined anisotropically. The C(H) atoms of the teta ligands were placed incalculated position [C-H = 0.99 Å or 0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). The N(H) atoms were located from the difference Fourier maps, and refined as riding with Uiso(H) = 1.2Ueq(N). The O(H) atoms of the coordinated water molecules were located in a difference Fourier map and refined as riding [O-H = 0.84 Å], with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Projection of the title complex viewed from the a-axis, showing the two-dimensional structure. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, -y-0.5, z+0.5; (ii) -x, y+0.5, -z+0.5.
[Figure 3] Fig. 3. The three-dimensional supramolecular network of the title complex.
Diaqua(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) tetracyanidonickelate(II) top
Crystal data top
[Ni(C16H36N4)(H2O)2][Ni(CN)4]F(000) = 576
Mr = 542.02Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4392 reflections
a = 8.065 (8) Åθ = 2.3–26.0°
b = 13.255 (12) ŵ = 1.48 mm1
c = 13.559 (10) ÅT = 173 K
β = 116.59 (4)°Prism, pink
V = 1296 (2) Å30.58 × 0.16 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.808, Tmax = 0.888k = 1615
9778 measured reflectionsl = 1616
2530 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2883P]
where P = (Fo2 + 2Fc2)/3
2530 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.73 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(C16H36N4)(H2O)2][Ni(CN)4]V = 1296 (2) Å3
Mr = 542.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.065 (8) ŵ = 1.48 mm1
b = 13.255 (12) ÅT = 173 K
c = 13.559 (10) Å0.58 × 0.16 × 0.12 mm
β = 116.59 (4)°
Data collection top
Bruker SMART APEX
diffractometer
2530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1576 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.888Rint = 0.047
9778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.73 e Å3
2530 reflectionsΔρmin = 0.51 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.02563 (16)
Ni20.00000.00000.50000.02354 (15)
O10.1715 (3)0.08968 (15)0.44654 (15)0.0298 (5)
H1A0.153 (5)0.1515 (9)0.449 (3)0.045*
H1B0.146 (4)0.086 (2)0.3803 (10)0.045*
N10.1059 (5)0.2055 (2)0.0474 (2)0.0537 (8)
N20.0522 (4)0.0799 (2)0.2194 (2)0.0477 (7)
N30.1760 (3)0.02613 (18)0.33256 (18)0.0278 (6)
H30.120 (4)0.012 (2)0.303 (2)0.033*
N40.1362 (3)0.12904 (18)0.49057 (19)0.0282 (6)
H40.097 (4)0.176 (2)0.513 (2)0.034*
C10.0637 (4)0.1267 (2)0.0321 (2)0.0358 (7)
C20.0293 (4)0.0502 (2)0.1355 (2)0.0321 (7)
C30.4969 (4)0.0695 (3)0.3047 (2)0.0441 (8)
H3A0.50600.13290.26550.066*
H3B0.62120.04100.28060.066*
H3C0.44080.08230.38420.066*
C40.3767 (4)0.0051 (2)0.2793 (2)0.0368 (8)
C50.4462 (5)0.0123 (3)0.1536 (3)0.0538 (10)
H5A0.37790.06540.13710.081*
H5B0.57880.02830.11810.081*
H5C0.42610.05240.12560.081*
C60.1359 (4)0.1309 (2)0.3117 (2)0.0368 (8)
H6A0.18080.14160.23160.044*
H6B0.20090.17910.33820.044*
C70.0699 (4)0.1490 (2)0.3712 (2)0.0348 (7)
H7A0.09770.21970.36010.042*
H7B0.13440.10390.34130.042*
C80.4289 (5)0.2269 (3)0.5442 (3)0.0530 (10)
H8A0.37720.28380.56740.080*
H8B0.56340.22420.59010.080*
H8C0.40230.23550.46680.080*
C90.3411 (4)0.1285 (2)0.5574 (2)0.0348 (7)
H90.39320.07130.53190.042*
C100.3891 (4)0.1115 (2)0.6794 (2)0.0412 (8)
H10A0.30700.15580.69690.049*
H10B0.51750.13580.72380.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0380 (3)0.0219 (3)0.0229 (3)0.0001 (2)0.0188 (2)0.0007 (2)
Ni20.0290 (3)0.0228 (3)0.0216 (3)0.0012 (2)0.0138 (2)0.0004 (2)
O10.0416 (12)0.0258 (12)0.0265 (10)0.0003 (11)0.0195 (9)0.0004 (10)
N10.093 (2)0.0286 (16)0.069 (2)0.0054 (17)0.0625 (19)0.0004 (15)
N20.078 (2)0.0434 (17)0.0344 (14)0.0084 (16)0.0364 (15)0.0043 (13)
N30.0293 (14)0.0323 (15)0.0234 (12)0.0030 (11)0.0134 (11)0.0006 (10)
N40.0342 (15)0.0242 (14)0.0339 (13)0.0020 (12)0.0221 (11)0.0032 (11)
C10.052 (2)0.0330 (19)0.0348 (16)0.0011 (16)0.0302 (16)0.0012 (14)
C20.0469 (19)0.0269 (18)0.0293 (15)0.0004 (15)0.0232 (14)0.0052 (13)
C30.0329 (18)0.058 (2)0.0374 (17)0.0086 (17)0.0117 (14)0.0059 (16)
C40.0325 (17)0.046 (2)0.0281 (15)0.0030 (16)0.0100 (13)0.0061 (14)
C50.048 (2)0.076 (3)0.0265 (16)0.0072 (19)0.0068 (15)0.0096 (17)
C60.052 (2)0.0327 (19)0.0296 (15)0.0100 (16)0.0220 (15)0.0087 (14)
C70.049 (2)0.0287 (18)0.0381 (17)0.0009 (15)0.0300 (15)0.0054 (13)
C80.052 (2)0.042 (2)0.078 (3)0.0205 (17)0.040 (2)0.0140 (18)
C90.0366 (18)0.0316 (18)0.0446 (17)0.0071 (15)0.0258 (15)0.0087 (14)
C100.0329 (18)0.048 (2)0.0398 (17)0.0071 (16)0.0133 (14)0.0166 (15)
Geometric parameters (Å, º) top
Ni1—C11.863 (4)C3—H3B0.9800
Ni1—C1i1.863 (4)C3—H3C0.9800
Ni1—C2i1.867 (3)C4—C10ii1.537 (5)
Ni1—C21.867 (3)C4—C51.541 (4)
Ni2—N42.067 (3)C5—H5A0.9800
Ni2—N4ii2.067 (3)C5—H5B0.9800
Ni2—N3ii2.099 (3)C5—H5C0.9800
Ni2—N32.099 (3)C6—C71.505 (4)
Ni2—O1ii2.179 (2)C6—H6A0.9900
Ni2—O12.179 (2)C6—H6B0.9900
O1—H1A0.835 (10)C7—H7A0.9900
O1—H1B0.830 (10)C7—H7B0.9900
N1—C11.146 (4)C8—C91.532 (4)
N2—C21.137 (3)C8—H8A0.9800
N3—C61.482 (4)C8—H8B0.9800
N3—C41.505 (4)C8—H8C0.9800
N3—H30.88 (3)C9—C101.538 (4)
N4—C71.484 (4)C9—H91.0000
N4—C91.487 (4)C10—C4ii1.537 (5)
N4—H40.81 (3)C10—H10A0.9900
C3—C41.528 (4)C10—H10B0.9900
C3—H3A0.9800
C1—Ni1—C1i180.0 (2)H3B—C3—H3C109.5
C1—Ni1—C2i88.96 (13)N3—C4—C3111.6 (3)
C1i—Ni1—C2i91.04 (13)N3—C4—C10ii108.0 (2)
C1—Ni1—C291.04 (13)C3—C4—C10ii111.1 (3)
C1i—Ni1—C288.96 (13)N3—C4—C5109.2 (3)
C2i—Ni1—C2180.0 (3)C3—C4—C5109.6 (3)
N4—Ni2—N4ii180.00 (14)C10ii—C4—C5107.2 (3)
N4—Ni2—N3ii94.74 (10)C4—C5—H5A109.5
N4ii—Ni2—N3ii85.26 (10)C4—C5—H5B109.5
N4—Ni2—N385.26 (10)H5A—C5—H5B109.5
N4ii—Ni2—N394.74 (10)C4—C5—H5C109.5
N3ii—Ni2—N3180.0H5A—C5—H5C109.5
N4—Ni2—O1ii90.18 (10)H5B—C5—H5C109.5
N4ii—Ni2—O1ii89.82 (10)N3—C6—C7109.3 (2)
N3ii—Ni2—O1ii87.30 (10)N3—C6—H6A109.8
N3—Ni2—O1ii92.70 (10)C7—C6—H6A109.8
N4—Ni2—O189.82 (10)N3—C6—H6B109.8
N4ii—Ni2—O190.18 (10)C7—C6—H6B109.8
N3ii—Ni2—O192.70 (10)H6A—C6—H6B108.3
N3—Ni2—O187.30 (10)N4—C7—C6109.2 (2)
O1ii—Ni2—O1180.0N4—C7—H7A109.8
Ni2—O1—H1A112 (2)C6—C7—H7A109.8
Ni2—O1—H1B116 (2)N4—C7—H7B109.8
H1A—O1—H1B98 (3)C6—C7—H7B109.8
C6—N3—C4116.5 (2)H7A—C7—H7B108.3
C6—N3—Ni2105.14 (17)C9—C8—H8A109.5
C4—N3—Ni2122.34 (18)C9—C8—H8B109.5
C6—N3—H3105.1 (19)H8A—C8—H8B109.5
C4—N3—H3106 (2)C9—C8—H8C109.5
Ni2—N3—H399 (2)H8A—C8—H8C109.5
C7—N4—C9115.1 (2)H8B—C8—H8C109.5
C7—N4—Ni2105.86 (18)N4—C9—C8111.8 (3)
C9—N4—Ni2115.77 (19)N4—C9—C10109.4 (2)
C7—N4—H4105 (2)C8—C9—C10110.1 (3)
C9—N4—H4107 (2)N4—C9—H9108.5
Ni2—N4—H4107 (2)C8—C9—H9108.5
N1—C1—Ni1177.2 (3)C10—C9—H9108.5
N2—C2—Ni1178.0 (3)C4ii—C10—C9120.0 (2)
C4—C3—H3A109.5C4ii—C10—H10A107.3
C4—C3—H3B109.5C9—C10—H10A107.3
H3A—C3—H3B109.5C4ii—C10—H10B107.3
C4—C3—H3C109.5C9—C10—H10B107.3
H3A—C3—H3C109.5H10A—C10—H10B106.9
Symmetry codes: (i) x, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1iii0.81 (3)2.46 (3)3.250 (4)164 (3)
N3—H3···N20.88 (3)2.34 (3)3.201 (4)167 (3)
O1—H1B···N20.83 (1)1.96 (1)2.789 (4)172 (3)
O1—H1A···N1iv0.84 (1)1.94 (1)2.775 (4)179 (3)
Symmetry codes: (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C16H36N4)(H2O)2][Ni(CN)4]
Mr542.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.065 (8), 13.255 (12), 13.559 (10)
β (°) 116.59 (4)
V3)1296 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.58 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.808, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
9778, 2530, 1576
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.01
No. of reflections2530
No. of parameters163
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.51

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.81 (3)2.46 (3)3.250 (4)164 (3)
N3—H3···N20.88 (3)2.34 (3)3.201 (4)167 (3)
O1—H1B···N20.830 (10)1.964 (11)2.789 (4)172 (3)
O1—H1A···N1ii0.835 (10)1.939 (11)2.775 (4)179 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Jiangsu Province (BK2009196) and the Foundation of the State Key Laboratory of Coordination Chemistry (China) for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationJiang, L., Feng, X. L., Su, C. Y., Chen, X. M. & Lu, T. B. (2007). Inorg. Chem. 46, 2637–2644.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiang, L., Lu, T. B. & Feng, X. L. (2005). Inorg. Chem. 44, 7056–7062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLescouëzec, R., Toma, L. M., Vaissermann, J., Verdaguer, M., Delgado, F. S., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2005). Coord. Chem. Rev. 249, 2691–2729.  Google Scholar
First citationLiu, W.-Y., Zhou, H., Guo, J.-X. & Yuan, A.-H. (2008). Acta Cryst. E64, m1152–m1153.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNi, Z. H., Zhang, L. F., Ge, C. H., Cui, A. L., Kou, H. Z. & Jiang, J. Z. (2008). Inorg. Chem. Commun. 11, 94–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Shen, X. P., Zhou, H., Shu, H. Q., Li, W. X. & Yuan, A. H. (2009). J. Mol. Struct. 921, 341–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamada, S. & Iwasaki, K. (1969). Bull. Chem. Soc. Jpn, 42, 1463.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds