organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-N′-(2-chloro-3-pyrid­yl)thio­urea

aDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China, and bSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 9 July 2009; accepted 10 July 2009; online 18 July 2009)

The title compound, C13H10ClN3OS, was prepared by the reaction of 3-amino-2-chloropyridine with benzoyl isothio­cyanate at room temperature. The thio­urea group makes dihedral angles of 47.17 (5) and 51.88 (4)°, respectively, with the benzene and pyridyl rings, while the angle between the benzene and pyridine rings is 8.91 (3)°. Inter­molecular hydrogen-bond inter­actions link neighbouring mol­ecules into an infinite supra­molecular structure.

Related literature

For the biological activities of benzanilide and its N-substituted derivatives, see: Teoh et al. (1999[Teoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem. 580, 17-21.]); Campo et al. (2002[Campo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem. 89, 74-82.]). For the functions of related chloro­phenyl compounds, see: Saeed et al. (2008[Saeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o705.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1243.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1300.],c[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o861.]). For an isomeric compound, see: Chai et al. (2008[Chai, L.-Q., Ding, Y.-J., Yang, X.-Q., Yan, H.-B. & Dong, W.-K. (2008). Acta Cryst. E64, o1407.]). For our previous work on thio­urea and its derivatives, see: Dong et al. (2006[Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459-o3460.], 2007[Dong, W. K., Yang, X. Q., Xu, L., Wang, L., Liu, G. L. & Feng, J. H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279-280.], 2008a[Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008a). Acta Cryst. E64, o1097.],b[Dong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008b). Phosphorus Sulfur Silicon Relat. Elem. 183, 1181-1187.]). For the synthetic procedure, see: Ding et al. (2008[Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3OS

  • Mr = 291.73

  • Monoclinic, P 21 /c

  • a = 3.9443 (4) Å

  • b = 14.9250 (15) Å

  • c = 22.268 (2) Å

  • β = 93.889 (1)°

  • V = 1307.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.41 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.924

  • 6459 measured reflections

  • 2315 independent reflections

  • 1661 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.088

  • S = 1.03

  • 2315 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.94 2.633 (2) 137
N1—H1⋯S1i 0.86 2.74 3.5982 (18) 178
C12—H12⋯O1ii 0.93 2.70 3.324 (3) 125
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzanilide and its N-substituted derivatives have been considered to be a class of privileged structural compounds, which usually have excellent biological activities (Teoh et al., 1999; Campo et al., 2002). However, the literatures are full of the function of the 2-chloro-4-nitrophenyl (Saeed et al., 2008), 3,5-dichlorophenyl (Gowda et al., 2008a) and 3-chlorophenyl (Gowda et al., 2008b; Gowda et al., 2008c) and also structures of benzamide and related compounds. As an extension of our work (Dong et al., 2006; Dong et al., 2007; Dong et al., 2008a; Dong et al., 2008b) on synthesis and structural characterization of thiourea and its derivatives, here report the synthesis and structure of the title compound.

In the molecule of the title compound, N-benzoyl-N'-(2-chloro-3-pyridyl)thiourea (Fig. 1), which is isomeric compound to its observed in the structures of N-(2-chlorobenzoyl)-N'-(3-pyridyl)thiourea (Chai et al., 2008). The thiourea group makes dihedral angles of 47.17 (5)° and 51.88 (4)° with the benzene and pyridyl rings respectively, while the angle between the benzene and pyridine rings is 8.91 (3)°. The carbonyl group forms an intramolecular hydrogen bond with the N2—H2 group, which forms a six-membered ring (C2/N1/C1/N2/H2/O1) structure, the H2···O1 bond length is 1.94 Å. The CO bond length with 1.218 (3) Å is longer than the average CO bond length [1.200 Å], which is due to intramolecular hydrogen bonding. This is similar to the situation found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). The crystal structure is further stabilized by intermolecular N1—H1···S1 and C12—H12···O1 hydrogen bonds interactions (Table 1, Fig. 2), which link neighbouring molecules into an infinite supramolecular structure.

Related literature top

For the biological activities of benzanilide and its N-substituted derivatives, see: Teoh et al. (1999); Campo et al. (2002). For the functions of related chlorophenyl compounds, see: Saeed et al. (2008); Gowda et al. (2008a,b,c). For an isomeric compound, see: Chai et al. (2008). For our previous work on thiourea and its derivatives, see: Dong et al. (2006, 2007, 2008a,b). For the synthetic procedure, see: Ding et al. (2008). [Please check amended text]

Experimental top

N-Benzoyl-N'-(2-chloro-3-pyridyl)thiourea was synthesized according to an analogous method reported earlier (Ding et al., 2008). Benzoyl chloride (702.8 mg, 5.00 mmol) was reacted with ammonium thiocyanate (380.6 mg, 5.00 mmol) in acetonitrile solution (25 ml) continuring stirring for 3 h at room temperature, to give the corresponding benzoyl isothiocyanate, which was added 3-amino-2-chloropyrldine (642.8 mg, 5.00 mmol). After stirring for 20 h at room temperature, the precipitate was reduced pressure filtered, washed successively with acetonitrile and diethyl ether. The product was dried in vacuo, and obtained 599.2 mg of needle-like crystalline solid. Yield, 41.07%. m.p. 424–426 K. Colorless single crystals suitable for X-ray diffraction studies were obtained after two weeks by slow evaporation from a mixture of ethyl acetate/acetone (1:1) of N-benzoyl-N'-(2-chloro-3-pyridyl)thiourea at room temperture. Analysis calculated for C13H10ClN3OS (%): C 53.52, H 3.45, N 14.40. Found: C 53.61, H 3.51, N 14.3.

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.93 Å (CH), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. Intramolecular and intermolecular hydrogen bonds of the title compound are shown as dashed lines.
N-Benzoyl-N'-(2-chloro-3-pyridyl)thiourea top
Crystal data top
C13H10ClN3OSF(000) = 600
Mr = 291.73Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2087 reflections
a = 3.9443 (4) Åθ = 2.3–25.0°
b = 14.9250 (15) ŵ = 0.45 mm1
c = 22.268 (2) ÅT = 298 K
β = 93.889 (1)°Needle-like, colourless
V = 1307.9 (2) Å30.41 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.839, Tmax = 0.924k = 1714
6459 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2536P]
where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H10ClN3OSV = 1307.9 (2) Å3
Mr = 291.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9443 (4) ŵ = 0.45 mm1
b = 14.9250 (15) ÅT = 298 K
c = 22.268 (2) Å0.41 × 0.20 × 0.18 mm
β = 93.889 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1661 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.924Rint = 0.040
6459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2315 reflectionsΔρmin = 0.21 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45798 (17)0.45341 (4)0.58736 (2)0.0389 (2)
Cl10.4376 (2)0.65386 (5)0.77102 (3)0.0581 (2)
N10.6989 (5)0.61464 (12)0.56704 (8)0.0351 (5)
H10.66620.59860.53000.042*
N20.7371 (5)0.57099 (12)0.66633 (7)0.0380 (5)
H20.81310.62440.67270.046*
N30.5774 (6)0.49783 (16)0.81887 (9)0.0523 (6)
O10.8401 (6)0.73435 (11)0.62683 (7)0.0629 (6)
C10.6406 (6)0.54897 (14)0.60938 (9)0.0313 (5)
C20.8025 (7)0.70230 (15)0.57650 (10)0.0387 (6)
C30.8633 (6)0.75438 (14)0.52169 (10)0.0337 (6)
C41.0013 (6)0.71616 (16)0.47233 (10)0.0374 (6)
H41.05200.65530.47240.045*
C51.0642 (7)0.76769 (17)0.42297 (11)0.0475 (7)
H51.16430.74200.39050.057*
C60.9790 (7)0.85723 (18)0.42174 (12)0.0541 (8)
H61.01760.89170.38810.065*
C70.8371 (7)0.89566 (17)0.47016 (12)0.0534 (8)
H70.77600.95580.46880.064*
C80.7846 (7)0.84549 (16)0.52092 (11)0.0459 (7)
H80.69740.87230.55430.055*
C90.5921 (6)0.54468 (16)0.76902 (10)0.0386 (6)
C100.7247 (6)0.51388 (15)0.71689 (9)0.0331 (6)
C110.8605 (7)0.42887 (16)0.71795 (11)0.0415 (6)
H110.95870.40600.68440.050*
C120.8487 (7)0.37809 (17)0.76953 (11)0.0488 (7)
H120.93600.32020.77130.059*
C130.7047 (8)0.41517 (19)0.81819 (12)0.0547 (8)
H130.69550.38050.85270.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0473 (4)0.0371 (4)0.0322 (3)0.0108 (3)0.0018 (3)0.0030 (3)
Cl10.0701 (5)0.0542 (4)0.0505 (4)0.0118 (4)0.0069 (4)0.0115 (3)
N10.0486 (13)0.0312 (11)0.0250 (10)0.0073 (10)0.0004 (9)0.0021 (8)
N20.0557 (14)0.0300 (11)0.0279 (10)0.0078 (10)0.0009 (9)0.0024 (8)
N30.0615 (17)0.0609 (16)0.0348 (12)0.0110 (13)0.0049 (11)0.0027 (11)
O10.1150 (19)0.0399 (10)0.0337 (10)0.0175 (11)0.0031 (10)0.0068 (8)
C10.0322 (14)0.0317 (12)0.0301 (12)0.0023 (11)0.0040 (10)0.0022 (10)
C20.0478 (17)0.0328 (14)0.0352 (14)0.0048 (12)0.0005 (12)0.0013 (11)
C30.0360 (15)0.0304 (13)0.0339 (13)0.0053 (11)0.0040 (11)0.0005 (10)
C40.0382 (15)0.0346 (13)0.0387 (14)0.0050 (11)0.0031 (12)0.0006 (11)
C50.0510 (18)0.0526 (17)0.0391 (14)0.0094 (14)0.0046 (13)0.0014 (12)
C60.065 (2)0.0529 (18)0.0436 (16)0.0102 (15)0.0023 (14)0.0158 (13)
C70.062 (2)0.0355 (15)0.0610 (19)0.0001 (14)0.0046 (16)0.0089 (13)
C80.0536 (18)0.0362 (15)0.0479 (15)0.0007 (13)0.0037 (13)0.0032 (12)
C90.0424 (16)0.0402 (14)0.0331 (13)0.0059 (12)0.0014 (11)0.0041 (11)
C100.0360 (15)0.0332 (13)0.0294 (12)0.0059 (11)0.0029 (10)0.0006 (10)
C110.0479 (17)0.0374 (14)0.0386 (14)0.0008 (12)0.0017 (12)0.0028 (11)
C120.0556 (19)0.0400 (15)0.0492 (16)0.0053 (14)0.0078 (14)0.0067 (13)
C130.067 (2)0.0562 (18)0.0398 (16)0.0159 (16)0.0051 (14)0.0147 (14)
Geometric parameters (Å, º) top
S1—C11.657 (2)C4—H40.9300
Cl1—C91.741 (2)C5—C61.378 (3)
N1—C21.382 (3)C5—H50.9300
N1—C11.390 (3)C6—C71.374 (4)
N1—H10.8600C6—H60.9300
N2—C11.340 (3)C7—C81.383 (3)
N2—C101.416 (3)C7—H70.9300
N2—H20.8600C8—H80.9300
N3—C91.316 (3)C9—C101.384 (3)
N3—C131.332 (3)C10—C111.377 (3)
O1—C21.218 (3)C11—C121.379 (3)
C2—C31.480 (3)C11—H110.9300
C3—C41.382 (3)C12—C131.373 (4)
C3—C81.395 (3)C12—H120.9300
C4—C51.378 (3)C13—H130.9300
C2—N1—C1128.66 (18)C7—C6—H6120.0
C2—N1—H1115.7C5—C6—H6120.0
C1—N1—H1115.7C6—C7—C8120.5 (2)
C1—N2—C10125.59 (19)C6—C7—H7119.8
C1—N2—H2117.2C8—C7—H7119.8
C10—N2—H2117.2C7—C8—C3119.5 (2)
C9—N3—C13116.4 (2)C7—C8—H8120.3
N2—C1—N1114.80 (19)C3—C8—H8120.3
N2—C1—S1125.53 (17)N3—C9—C10124.9 (2)
N1—C1—S1119.66 (15)N3—C9—Cl1116.11 (19)
O1—C2—N1121.9 (2)C10—C9—Cl1119.02 (18)
O1—C2—C3122.4 (2)C11—C10—C9117.4 (2)
N1—C2—C3115.72 (19)C11—C10—N2122.3 (2)
C4—C3—C8119.5 (2)C9—C10—N2120.2 (2)
C4—C3—C2122.2 (2)C10—C11—C12119.0 (2)
C8—C3—C2118.3 (2)C10—C11—H11120.5
C5—C4—C3120.4 (2)C12—C11—H11120.5
C5—C4—H4119.8C13—C12—C11118.3 (2)
C3—C4—H4119.8C13—C12—H12120.8
C6—C5—C4120.0 (2)C11—C12—H12120.8
C6—C5—H5120.0N3—C13—C12123.9 (2)
C4—C5—H5120.0N3—C13—H13118.0
C7—C6—C5120.1 (2)C12—C13—H13118.0
C10—N2—C1—N1175.8 (2)C4—C3—C8—C71.8 (4)
C10—N2—C1—S15.3 (3)C2—C3—C8—C7179.7 (2)
C2—N1—C1—N28.8 (4)C13—N3—C9—C100.8 (4)
C2—N1—C1—S1170.2 (2)C13—N3—C9—Cl1178.04 (19)
C1—N1—C2—O13.9 (4)N3—C9—C10—C112.1 (4)
C1—N1—C2—C3176.3 (2)Cl1—C9—C10—C11176.72 (18)
O1—C2—C3—C4144.0 (3)N3—C9—C10—N2178.1 (2)
N1—C2—C3—C436.2 (3)Cl1—C9—C10—N20.7 (3)
O1—C2—C3—C834.6 (4)C1—N2—C10—C1150.7 (3)
N1—C2—C3—C8145.3 (2)C1—N2—C10—C9133.5 (2)
C8—C3—C4—C50.7 (4)C9—C10—C11—C122.0 (3)
C2—C3—C4—C5177.8 (2)N2—C10—C11—C12177.9 (2)
C3—C4—C5—C62.2 (4)C10—C11—C12—C130.8 (4)
C4—C5—C6—C71.2 (4)C9—N3—C13—C120.6 (4)
C5—C6—C7—C81.2 (4)C11—C12—C13—N30.6 (4)
C6—C7—C8—C32.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.942.633 (2)137
N1—H1···S1i0.862.743.5982 (18)178
C12—H12···O1ii0.932.703.324 (3)125
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H10ClN3OS
Mr291.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)3.9443 (4), 14.9250 (15), 22.268 (2)
β (°) 93.889 (1)
V3)1307.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.41 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.839, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
6459, 2315, 1661
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.088, 1.03
No. of reflections2315
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.942.633 (2)136.7
N1—H1···S1i0.862.743.5982 (18)178.3
C12—H12···O1ii0.932.703.324 (3)125.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University and the Natural Science Foundation of the Department of Education, An-Hui Province (grant No. KJ2009B110).

References

First citationCampo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem. 89, 74–82.  Web of Science CSD CrossRef PubMed Google Scholar
First citationChai, L.-Q., Ding, Y.-J., Yang, X.-Q., Yan, H.-B. & Dong, W.-K. (2008). Acta Cryst. E64, o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008a). Acta Cryst. E64, o1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008b). Phosphorus Sulfur Silicon Relat. Elem. 183, 1181–1187.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Yang, X. Q., Xu, L., Wang, L., Liu, G. L. & Feng, J. H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279–280.  CAS Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o1243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Hussain, S. & Flörke, U. (2008). Acta Cryst. E64, o705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTeoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds