metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1071-m1072

Poly[bis­­(di­methyl­ammonium) [bis­­(di­methyl­amine-κN)tris­­(μ2-terephthalato-κ2O1:O4)dizinc(II)] N,N-di­methyl­formamide disolvate hexa­hydrate]

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 5 July 2009; accepted 29 July 2009; online 15 August 2009)

The title compound, {(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2O}n, consists of two-dimensional non-inter­penetrated sheets with 63 topology, which are stacked together in an …ABAB… packing mode along the c axis. The distance between adjacent A and B sheets is ca 7.3 Å. In the structure, the ZnII center is coordinated by three O atoms from three terephthalate groups and one N atom from one dimethyl­amine ligand, adopting a distorted tetra­hedral geometry. All solvent water mol­ecules are disordered. In the structure, N—H⋯O and O—H⋯O hydrogen bonds are observed.

Related literature

For background to metal-organic frameworks, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Rowsell et al. (2004[Rowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666-5667.]); Tranchemontagne et al. (2008[Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. (2008). Tetrahedron, 64, 8553-8557.]); Wang et al. (2008[Wang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 10, 1211-1215.]); Hawxwell et al. (2006[Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808-814.]). For related structures, see: Wang et al. (2007[Wang, X. W., Chen, J. Z. & Liu, J. H. (2007). Cryst. Growth Des. 7, 1227-1229.]); Go et al.(2007[Go, Y. B., Wang, X. Q. & Jacobson, A. J. (2007). Inorg. Chem. 46, 6594-6600.]); Dai et al. (2004[Dai, J. C., Wu, X. T., Hu, S. M., Fu, Z. Y., Zhang, J. J., Du, W. X., Zhang, H. H. & Sun, R. Q. (2004). Eur. J. Inorg. Chem. pp. 2096-2106.]); Guo et al. (2009[Guo, H. D., Guo, X. M., Batten, S. R., Song, J. F., Song, S. Y., Dang, S., Zheng, G. L., Tang, J. K. & Zhang, H. J. (2009). Cryst. Growth Des. 9, 1394-1401.]); He et al. (2005[He, X., Lu, C. Z., Yuan, D. Q., Chen, L. J., Zhang, Q. Z. & Wu, C. D. (2005). Eur. J. Inorg. Chem. pp. 4598-4606.]); Zhu et al. (2007[Zhu, L.-N., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m2987-m2988.]); Clausen et al. (2005[Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M. A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342-3351.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32-33.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Rowsell & Yaghi (2004[Rowsell, J. L. C. & Yaghi, O. M. (2004). Micropor. Mesopor. Mater. 73, 3-14.]); Suh et al. (2008[Suh, M. P., Cheon, Y. E. & Lee, E. Y. (2008). Coord. Chem. Rev. 252, 1007-1026.]); Wu et al. (2005[Wu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940-8941.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2O

  • Mr = 1059.72

  • Orthorhombic, P n m a

  • a = 18.421 (6) Å

  • b = 30.906 (11) Å

  • c = 11.346 (4) Å

  • V = 6459 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 291 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.81, Tmax = 0.85

  • 49068 measured reflections

  • 6463 independent reflections

  • 3985 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.106

  • S = 1.04

  • 6463 reflections

  • 358 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.91 2.27 3.109 (3) 152
N1—H1A⋯O2 0.91 2.54 3.040 (3) 115
N2—H2A⋯O4ii 0.91 1.93 2.770 (3) 153
N2—H2B⋯O15 0.89 2.64 3.241 (7) 127
O8—H8X⋯O12iii 0.85 2.09 2.519 (9) 111
O8—H8X⋯N3ii 0.85 2.59 3.329 (5) 147
O9—H9X⋯O9iv 0.85 1.61 2.063 (11) 110
O10—H10X⋯O7 0.85 1.95 2.524 (7) 124
O11—H11Y⋯O9 0.85 2.47 2.927 (9) 115
O11—H11X⋯O15iii 0.85 1.73 2.552 (10) 161
O12—H12X⋯O8v 0.85 2.04 2.519 (9) 115
O13—H13F⋯O13iv 0.85 1.77 2.460 (14) 137
O13—H13F⋯O14 0.85 2.08 2.650 (10) 124
O15—H15X⋯O11v 0.85 2.13 2.552 (10) 110
O16—H16X⋯O12 0.85 2.22 2.709 (9) 116
O16—H16X⋯O13 0.85 2.37 3.131 (9) 150
O16—H16Y⋯O10 0.85 2.62 3.079 (9) 116
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z]; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of one-, two- or three-dimensional metal-organic frameworks (MOFs) has attracted much attention in the past decade due to not only their various intriguing framework topologies (Kitagawa et al., 2004; Rowsell & Yaghi 2004; Robin et al., 2006; Suh et al., 2008) but also for their potential applications in gas storage (Rowsell et al., 2004), separation (Dybtsev et al., 2004) and catalysis (Wu et al., 2005) etc. Particular attention has been attracted to the isolation and characterization of two-dimensional topologies that comprise just one kind of regular polygon based upon hexagons, squares and triangles corresponding to the 63, 44, 36 topology, respectively. In the construction of hybrid frameworks, aromatic polycarboxylates, for example, terephalate (1,4-benzenedicarboxylate) are commonly used as bridging ligands (Wang et al., 2008; Hawxwell et al., 2006; Clausen et al., 2005; Tranchemontagne et al., 2008) because they can adopt monodentate or chelating coordination modes.

Here we employ terephalate as the bridging ligands to obtain the two-dimensional honeycomb networks (Go et al., 2007; Wang et al., 2007; He et al., 2005) because of the availability of three-coordinated vertices. It is well known that metal-organic framework structures possessing large voids tend to form interpenetrated topologies. Some examples of honeycomb compounds which form interpenetrated networks have been reported (Dai et al., 2004; Guo et al., 2009). In contrast, the title compound is an unusual example of two-dimensional noninterpenetrated sheets with the 63 topology.

The Zn center is coordinated by three O atoms from three terephalate groups and one N atom from dimethylamine ligand, adopting a tetrahedral geometry (Fig. 1). The bond lengths of Zn—O range from 1.956 Å to 1.984 Å, while the Zn—N bond distance is 2.063 Å (Table 1). The Zn centers are linked by terephalate ligands, resulting in two-dimensional corrugated sheets stacking along the c axis (Fig. 2 and 3). These two-dimensional sheets are stacked together in an ABAB packing mode along the c axis. The distance between the adjacent A and B sheets is ca 7.3 Å (Zn···Zn distance). The offset distance between the adjacent sheets is ca. 12.3 Å along the a axis in the ab plane. Under hydrothermal conditions, it is worthy to note that the DMF solvent is decomposed into dimethylamine, which coordinates to Zn center in the structure. The similar examples can be found in other metal-organic frameworks (Zhu et al., 2007). In the structure, it is observed N—H···O and O—H···O hydrogen bonds (Table 2).

Related literature top

For background to metal-organic frameworks, see: Kitagawa et al. (2004); Rowsell et al. (2004); Tranchemontagne et al. (2008); Wang et al. (2008); Hawxwell et al. (2006). For related structures, see: Wang et al. (2007); Go et al.(2007); Dai et al. (2004); Guo et al. (2009); He et al. (2005); Zhu et al. (2007); Clausen et al. (2005); Dybtsev et al. (2004); Robin & Fromm (2006); Rowsell & Yaghi (2004); Suh et al. (2008); Wu et al. (2005).

Experimental top

A mixture of Zn(NO3)2.6H2O (29.7 mg, 0.1 mmol) and terephthalic acid (16.6 mg, 0.1 mmol) in a molar ratio of 1:1 combined with 6 ml DMF was stirred for 20 min at room temperature. Then the solution was heated hydrothermally in a 25 ml Teflon-lined stainless-steel vessel at 443 K for three days under autogenous pressure. Slow cooling of the resulting solution to room temperature at the rate of 10 °C.h-1 afforded colourless block crystals suitable for single-crystal X-ray structure analysis. Yield: 27%. These crystals were separated, washed thoroughly with DMF, and dried. Analysis calculated for C19H33N3O10Zn: C 43.15; H 6.29; N 7.95%. Found: C 43.12; H 6.26; N 7.99%.

Refinement top

The C(H) atoms of terephthalic acid ligands, dimethylamine ligands, DMF molecules and the N(H) atoms were all placed in calculated position (C—H = 0.93 Å or 0.96 Å, and N—H = 0.91 Å) and refined using a riding model, with Uĩso(H) = 1.2Ueq(C, N) or Uĩso(H) = 1.5Ueq(C). All solvent water molecules are disordered, and the O(H) atoms were located in a difference Fourier map and refined as riding (O—H = 0.85 Å), with Uĩso(H) = 1.2 or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound. Displacement ellipsoids are drawn at the 30% probablity level. Hydrogen atoms, solvent dimethylamine, DMF, and water molecules are omitted for clarity.
[Figure 2] Fig. 2. The stacking without interpenetration of sheets viewed from the c axis for the title compound.
[Figure 3] Fig. 3. The two-dimensional corrugated sheets packing along the c axis of the title compound.
Poly[bis(dimethylammonium)[bis(dimethylamine-κN)tris(µ2- terephthalato-κ2O1:O4)dizinc(II)] N,N-dimethylformamide disolvate hexahydrate] top
Crystal data top
(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2OF(000) = 2232
Mr = 1059.72Dx = 1.090 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6858 reflections
a = 18.421 (6) Åθ = 2.2–23.6°
b = 30.906 (11) ŵ = 0.80 mm1
c = 11.346 (4) ÅT = 291 K
V = 6459 (4) Å3Block, colourless
Z = 40.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6463 independent reflections
Radiation source: sealed tube3985 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.81, Tmax = 0.85k = 3538
49068 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
6463 reflections(Δ/σ)max < 0.001
358 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2OV = 6459 (4) Å3
Mr = 1059.72Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 18.421 (6) ŵ = 0.80 mm1
b = 30.906 (11) ÅT = 291 K
c = 11.346 (4) Å0.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6463 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3985 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.85Rint = 0.090
49068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
6463 reflectionsΔρmin = 0.44 e Å3
358 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.748174 (18)0.574369 (10)0.82017 (3)0.03184 (10)
O10.65833 (10)0.56316 (7)0.90871 (16)0.0365 (5)
O20.66892 (11)0.49777 (6)0.82720 (15)0.0346 (4)
O30.84206 (11)0.54729 (7)0.85243 (16)0.0379 (5)
O40.80801 (10)0.52970 (7)1.03599 (16)0.0396 (5)
O50.75628 (10)0.63783 (6)0.79740 (15)0.0330 (4)
O60.78004 (10)0.63646 (6)0.98921 (16)0.0346 (4)
N10.73121 (13)0.55959 (8)0.6450 (2)0.0358 (6)
H1A0.72000.53100.64000.043*
C10.63617 (15)0.52421 (10)0.8892 (2)0.0358 (7)
C20.56500 (15)0.51227 (9)0.9466 (2)0.0343 (6)
C30.52584 (15)0.54188 (9)1.0140 (2)0.0349 (6)
H30.54310.56991.02410.042*
C40.53859 (14)0.47065 (9)0.9343 (2)0.0338 (6)
H40.56480.45070.89020.041*
C50.85371 (15)0.53206 (9)0.9570 (2)0.0303 (6)
C60.92994 (15)0.51533 (9)0.9779 (2)0.0348 (6)
C70.97830 (16)0.50915 (9)0.8842 (2)0.0347 (6)
H70.96370.51520.80760.042*
C80.95059 (16)0.50634 (9)1.0942 (2)0.0375 (7)
H80.91820.51051.15610.045*
C90.76932 (16)0.65657 (10)0.8979 (3)0.0390 (7)
C100.76968 (16)0.70493 (10)0.8943 (3)0.0388 (7)
C110.77888 (16)0.72718 (9)0.9980 (2)0.0368 (7)
H110.78510.71211.06830.044*
C120.75900 (15)0.72744 (10)0.7922 (3)0.0399 (7)
H120.75170.71250.72200.048*
C130.79857 (15)0.56728 (10)0.5745 (2)0.0361 (7)
H13A0.79850.54880.50650.054*
H13B0.84040.56100.62200.054*
H13C0.80010.59700.54970.054*
C140.66929 (16)0.58483 (10)0.5948 (3)0.0384 (7)
H14A0.68320.61460.58670.058*
H14B0.62820.58280.64660.058*
H14C0.65660.57330.51900.058*
N20.71822 (14)0.58391 (7)0.1646 (2)0.0354 (6)
H2A0.74330.57210.10390.043*
H2B0.68980.60510.14000.043*
C150.76977 (15)0.60535 (9)0.2428 (3)0.0367 (7)
H15A0.76300.59500.32190.055*
H15B0.76180.63600.24050.055*
H15C0.81840.59910.21750.055*
C160.67670 (15)0.54833 (9)0.2260 (3)0.0368 (7)
H16A0.70520.53710.28990.055*
H16B0.66660.52550.17090.055*
H16C0.63190.55970.25610.055*
N30.99518 (13)0.65769 (8)0.7182 (2)0.0429 (6)
O70.94026 (11)0.70680 (7)0.62427 (17)0.0433 (5)
C171.07238 (16)0.66164 (10)0.6734 (3)0.0437 (7)
H17A1.07830.68890.63380.066*
H17B1.08230.63850.61940.066*
H17C1.10550.66010.73870.066*
C180.97423 (16)0.61309 (10)0.7612 (3)0.0399 (7)
H18A0.99700.60760.83590.060*
H18B0.98990.59180.70510.060*
H18C0.92250.61150.77000.060*
C190.94719 (16)0.69498 (10)0.7315 (3)0.0422 (8)
H190.92720.70690.79950.051*
O80.9438 (3)0.67157 (17)0.0031 (4)0.0440 (13)0.40
H8X0.97460.66890.05840.053*0.40
H8Y0.96370.66520.06220.053*0.40
O90.8541 (3)0.71662 (18)0.2652 (5)0.0474 (13)0.40
H9X0.88350.73540.23840.057*0.40
H9Y0.81090.72580.25770.057*0.40
O100.8853 (4)0.6581 (2)0.4696 (6)0.0503 (18)0.30
H10X0.92000.67600.47800.060*0.30
H10Y0.89860.63330.49380.060*0.30
O110.9212 (4)0.6362 (2)0.3470 (6)0.0475 (18)0.30
H11X0.96600.62960.34750.057*0.30
H11Y0.90330.64260.28020.057*0.30
O120.5802 (4)0.6679 (2)0.4913 (6)0.0494 (18)0.30
H12X0.54680.66160.44250.059*0.30
H12Y0.57610.69370.51660.059*0.30
O130.6421 (4)0.7102 (2)0.3095 (6)0.0480 (18)0.30
H13E0.61650.70060.25280.072*0.30
H13F0.62470.73420.33310.072*0.30
O140.5498 (4)0.7708 (2)0.2396 (6)0.0467 (17)0.30
H14E0.52080.76140.18730.056*0.30
H14F0.53160.79310.27220.056*0.30
O150.5532 (4)0.6179 (2)0.2001 (6)0.0437 (17)0.30
H15X0.52130.62890.24520.052*0.30
H15Y0.59330.63110.20890.052*0.30
O160.7248 (3)0.67473 (17)0.5303 (5)0.0454 (13)0.40
H16X0.69950.67400.46770.055*0.40
H16Y0.75970.69250.52200.055*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03285 (19)0.02973 (17)0.03293 (17)0.00038 (15)0.00052 (13)0.00070 (13)
O10.0329 (11)0.0421 (12)0.0345 (10)0.0038 (9)0.0018 (8)0.0003 (9)
O20.0368 (11)0.0372 (11)0.0297 (9)0.0015 (9)0.0077 (8)0.0008 (8)
O30.0346 (11)0.0463 (12)0.0327 (10)0.0112 (10)0.0048 (8)0.0049 (9)
O40.0354 (12)0.0464 (13)0.0370 (10)0.0076 (9)0.0040 (9)0.0066 (9)
O50.0330 (11)0.0335 (10)0.0326 (10)0.0033 (9)0.0025 (8)0.0010 (8)
O60.0371 (11)0.0300 (10)0.0367 (10)0.0031 (9)0.0023 (8)0.0054 (8)
N10.0339 (14)0.0394 (14)0.0340 (12)0.0024 (10)0.0009 (9)0.0002 (11)
C10.0351 (17)0.0433 (18)0.0291 (14)0.0044 (13)0.0054 (12)0.0048 (13)
C20.0320 (16)0.0354 (16)0.0356 (14)0.0002 (13)0.0018 (12)0.0039 (12)
C30.0307 (16)0.0355 (16)0.0386 (14)0.0028 (13)0.0045 (12)0.0043 (12)
C40.0273 (16)0.0383 (16)0.0357 (14)0.0078 (12)0.0012 (11)0.0057 (12)
C50.0290 (16)0.0275 (14)0.0342 (15)0.0017 (11)0.0044 (12)0.0034 (12)
C60.0333 (16)0.0373 (16)0.0339 (14)0.0013 (13)0.0062 (12)0.0002 (12)
C70.0338 (16)0.0372 (16)0.0330 (14)0.0048 (13)0.0015 (12)0.0067 (12)
C80.0285 (15)0.0458 (18)0.0381 (14)0.0021 (13)0.0027 (12)0.0015 (13)
C90.0422 (18)0.0308 (16)0.0440 (16)0.0016 (13)0.0018 (13)0.0051 (14)
C100.0435 (18)0.0312 (15)0.0418 (15)0.0020 (13)0.0039 (13)0.0024 (13)
C110.0390 (16)0.0367 (15)0.0347 (15)0.0005 (13)0.0066 (12)0.0017 (12)
C120.0430 (18)0.0376 (16)0.0393 (16)0.0082 (14)0.0040 (13)0.0076 (12)
C130.0384 (17)0.0369 (17)0.0331 (14)0.0002 (13)0.0042 (12)0.0084 (12)
C140.0385 (17)0.0413 (18)0.0356 (15)0.0044 (13)0.0035 (13)0.0107 (12)
N20.0398 (14)0.0327 (14)0.0337 (12)0.0028 (11)0.0066 (10)0.0004 (10)
C150.0370 (17)0.0334 (15)0.0397 (15)0.0177 (13)0.0012 (12)0.0102 (12)
C160.0316 (16)0.0323 (16)0.0465 (16)0.0011 (12)0.0123 (13)0.0159 (12)
N30.0420 (16)0.0411 (15)0.0455 (14)0.0119 (12)0.0147 (12)0.0146 (11)
O70.0435 (13)0.0435 (12)0.0428 (11)0.0153 (10)0.0121 (9)0.0114 (9)
C170.0383 (18)0.0393 (18)0.0534 (18)0.0045 (14)0.0091 (14)0.0137 (15)
C180.0336 (16)0.0411 (17)0.0451 (16)0.0150 (13)0.0167 (13)0.0163 (14)
C190.0383 (18)0.0489 (19)0.0393 (16)0.0136 (15)0.0184 (13)0.0106 (14)
O80.053 (3)0.046 (3)0.033 (2)0.006 (3)0.016 (2)0.013 (2)
O90.036 (3)0.059 (4)0.047 (3)0.001 (3)0.004 (2)0.004 (3)
O100.050 (5)0.050 (5)0.050 (4)0.001 (4)0.019 (4)0.007 (3)
O110.048 (4)0.054 (5)0.040 (4)0.017 (4)0.014 (3)0.011 (3)
O120.050 (5)0.054 (5)0.044 (4)0.002 (4)0.002 (3)0.003 (3)
O130.054 (5)0.039 (4)0.051 (4)0.002 (3)0.003 (3)0.011 (3)
O140.041 (4)0.055 (4)0.044 (4)0.001 (3)0.005 (3)0.017 (3)
O150.038 (4)0.042 (4)0.051 (4)0.020 (3)0.006 (3)0.017 (3)
O160.047 (3)0.047 (3)0.042 (3)0.022 (3)0.003 (2)0.010 (2)
Geometric parameters (Å, º) top
Zn1—O31.956 (2)N2—C161.509 (3)
Zn1—O11.967 (2)N2—H2A0.9063
Zn1—O51.984 (2)N2—H2B0.8851
Zn1—N12.063 (2)C15—H15A0.9600
O1—C11.290 (4)C15—H15B0.9600
O2—C11.236 (3)C15—H15C0.9600
O3—C51.295 (3)C16—H16A0.9600
O4—C51.231 (3)C16—H16B0.9600
O5—C91.301 (3)C16—H16C0.9600
O6—C91.224 (3)N3—C191.460 (4)
N1—C141.494 (4)N3—C181.512 (4)
N1—C131.495 (4)N3—C171.515 (4)
N1—H1A0.9100O7—C191.277 (3)
C1—C21.510 (4)C17—H17A0.9600
C2—C41.382 (4)C17—H17B0.9600
C2—C31.394 (4)C17—H17C0.9600
C3—C4i1.379 (4)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C3i1.379 (4)C18—H18C0.9600
C4—H40.9300C19—H190.9300
C5—C61.515 (4)O8—H8X0.8500
C6—C71.400 (4)O8—H8Y0.8501
C6—C81.402 (4)O9—H9X0.8500
C7—C8ii1.416 (4)O9—H9Y0.8499
C7—H70.9300O10—O111.682 (9)
C8—C7ii1.416 (4)O10—H10X0.8500
C8—H80.9300O10—H10Y0.8501
C9—C101.495 (4)O11—H11X0.8501
C10—C121.366 (4)O11—H11Y0.8501
C10—C111.373 (4)O12—H12X0.8500
C11—C11iii1.411 (6)O12—H12Y0.8499
C11—H110.9300O13—H13E0.8499
C12—C12iii1.394 (6)O13—H13F0.8501
C12—H120.9300O14—O14iii1.287 (14)
C13—H13A0.9600O14—H14E0.8501
C13—H13B0.9600O14—H14F0.8501
C13—H13C0.9600O15—H15X0.8499
C14—H14A0.9600O15—H15Y0.8500
C14—H14B0.9600O16—H16X0.8500
C14—H14C0.9600O16—H16Y0.8499
N2—C151.459 (3)
O3—Zn1—O1124.97 (9)N1—C14—H14A109.5
O3—Zn1—O5112.39 (8)N1—C14—H14B109.5
O1—Zn1—O5107.69 (8)H14A—C14—H14B109.5
O3—Zn1—N1102.68 (9)N1—C14—H14C109.5
O1—Zn1—N1109.00 (9)H14A—C14—H14C109.5
O5—Zn1—N196.02 (9)H14B—C14—H14C109.5
C1—O1—Zn1110.06 (17)C15—N2—C16112.4 (2)
C5—O3—Zn1118.27 (18)C15—N2—H2A108.3
C9—O5—Zn1109.86 (18)C16—N2—H2A108.4
C14—N1—C13110.3 (2)C15—N2—H2B104.0
C14—N1—Zn1111.51 (17)C16—N2—H2B112.7
C13—N1—Zn1110.75 (17)H2A—N2—H2B111.0
C14—N1—H1A108.1N2—C15—H15A109.5
C13—N1—H1A108.1N2—C15—H15B109.5
Zn1—N1—H1A108.1H15A—C15—H15B109.5
O2—C1—O1124.1 (3)N2—C15—H15C109.5
O2—C1—C2120.5 (3)H15A—C15—H15C109.5
O1—C1—C2115.4 (2)H15B—C15—H15C109.5
C4—C2—C3119.0 (3)N2—C16—H16A109.5
C4—C2—C1119.3 (3)N2—C16—H16B109.5
C3—C2—C1121.7 (3)H16A—C16—H16B109.5
C4i—C3—C2119.6 (3)N2—C16—H16C109.5
C4i—C3—H3120.2H16A—C16—H16C109.5
C2—C3—H3120.2H16B—C16—H16C109.5
C3i—C4—C2121.4 (3)C19—N3—C18122.1 (2)
C3i—C4—H4119.3C19—N3—C17122.6 (2)
C2—C4—H4119.3C18—N3—C17114.9 (2)
O4—C5—O3125.1 (3)N3—C17—H17A109.5
O4—C5—C6120.0 (2)N3—C17—H17B109.5
O3—C5—C6114.9 (2)H17A—C17—H17B109.5
C7—C6—C8121.0 (3)N3—C17—H17C109.5
C7—C6—C5121.2 (2)H17A—C17—H17C109.5
C8—C6—C5117.8 (2)H17B—C17—H17C109.5
C6—C7—C8ii120.3 (3)N3—C18—H18A109.5
C6—C7—H7119.9N3—C18—H18B109.5
C8ii—C7—H7119.9H18A—C18—H18B109.5
C6—C8—C7ii118.7 (3)N3—C18—H18C109.5
C6—C8—H8120.6H18A—C18—H18C109.5
C7ii—C8—H8120.6H18B—C18—H18C109.5
O6—C9—O5123.1 (3)O7—C19—N3100.8 (2)
O6—C9—C10122.0 (3)O7—C19—H19129.6
O5—C9—C10115.0 (3)N3—C19—H19129.6
C12—C10—C11119.3 (3)H8X—O8—H8Y109.5
C12—C10—C9122.1 (3)H9X—O9—H9Y109.5
C11—C10—C9118.6 (3)O11—O10—H10X93.4
C10—C11—C11iii120.06 (17)O11—O10—H10Y78.0
C10—C11—H11120.0H10X—O10—H10Y109.5
C11iii—C11—H11120.0O10—O11—H11X118.2
C10—C12—C12iii120.63 (19)O10—O11—H11Y119.4
C10—C12—H12119.7H11X—O11—H11Y116.1
C12iii—C12—H12119.7H12X—O12—H12Y111.8
N1—C13—H13A109.5H13E—O13—H13F109.5
N1—C13—H13B109.5O14iii—O14—H14E70.0
H13A—C13—H13B109.5O14iii—O14—H14F144.0
N1—C13—H13C109.5H14E—O14—H14F109.5
H13A—C13—H13C109.5H15X—O15—H15Y109.8
H13B—C13—H13C109.5H16X—O16—H16Y109.8
O3—Zn1—O1—C168.3 (2)C1—C2—C4—C3i179.4 (2)
O5—Zn1—O1—C1156.34 (17)Zn1—O3—C5—O46.8 (4)
N1—Zn1—O1—C153.3 (2)Zn1—O3—C5—C6174.73 (17)
O1—Zn1—O3—C523.0 (2)O4—C5—C6—C7166.5 (3)
O5—Zn1—O3—C5110.6 (2)O3—C5—C6—C712.1 (4)
N1—Zn1—O3—C5147.4 (2)O4—C5—C6—C813.7 (4)
O3—Zn1—O5—C972.17 (19)O3—C5—C6—C8167.7 (2)
O1—Zn1—O5—C969.27 (19)C8—C6—C7—C8ii0.1 (5)
N1—Zn1—O5—C9178.56 (18)C5—C6—C7—C8ii179.7 (3)
O3—Zn1—N1—C14168.38 (18)C7—C6—C8—C7ii0.1 (5)
O1—Zn1—N1—C1457.3 (2)C5—C6—C8—C7ii179.7 (3)
O5—Zn1—N1—C1453.78 (19)Zn1—O5—C9—O65.0 (4)
O3—Zn1—N1—C1345.2 (2)Zn1—O5—C9—C10174.5 (2)
O1—Zn1—N1—C13179.48 (17)O6—C9—C10—C12178.8 (3)
O5—Zn1—N1—C1369.45 (19)O5—C9—C10—C121.7 (4)
Zn1—O1—C1—O22.5 (3)O6—C9—C10—C113.2 (5)
Zn1—O1—C1—C2176.58 (18)O5—C9—C10—C11176.3 (3)
O2—C1—C2—C43.4 (4)C12—C10—C11—C11iii1.4 (3)
O1—C1—C2—C4177.5 (2)C9—C10—C11—C11iii179.46 (18)
O2—C1—C2—C3178.0 (3)C11—C10—C12—C12iii1.4 (4)
O1—C1—C2—C31.1 (4)C9—C10—C12—C12iii179.40 (19)
C4—C2—C3—C4i0.8 (4)C18—N3—C19—O7122.2 (3)
C1—C2—C3—C4i179.4 (2)C17—N3—C19—O765.0 (3)
C3—C2—C4—C3i0.8 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+2; (iii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iv0.912.273.109 (3)152
N1—H1A···O20.912.543.040 (3)115
N2—H2A···O4v0.911.932.770 (3)153
N2—H2B···O150.892.643.241 (7)127
O8—H8X···O12vi0.852.092.519 (9)111
O8—H8X···N3v0.852.593.329 (5)147
O9—H9X···O9iii0.851.612.063 (11)110
O10—H10X···O70.851.952.524 (7)124
O11—H11Y···O90.852.472.927 (9)115
O11—H11X···O15vi0.851.732.552 (10)161
O12—H12X···O8vii0.852.042.519 (9)115
O13—H13F···O13iii0.851.772.460 (14)137
O13—H13F···O140.852.082.650 (10)124
O15—H15X···O11vii0.852.132.552 (10)110
O16—H16X···O120.852.222.709 (9)116
O16—H16X···O130.852.373.131 (9)150
O16—H16Y···O100.852.623.079 (9)116
Symmetry codes: (iii) x, y+3/2, z; (iv) x+3/2, y+1, z1/2; (v) x, y, z1; (vi) x+1/2, y, z+1/2; (vii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C2H8N)2[Zn2(C8H4O4)3(C2H7N)2]·2C3H7NO·6H2O
Mr1059.72
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)291
a, b, c (Å)18.421 (6), 30.906 (11), 11.346 (4)
V3)6459 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.81, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
49068, 6463, 3985
Rint0.090
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 1.04
No. of reflections6463
No. of parameters358
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.44

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.912.273.109 (3)152.3
N1—H1A···O20.912.543.040 (3)115.1
N2—H2A···O4ii0.911.932.770 (3)152.9
N2—H2B···O150.892.643.241 (7)126.5
O8—H8X···O12iii0.852.092.519 (9)110.7
O8—H8X···N3ii0.852.593.329 (5)146.5
O9—H9X···O9iv0.851.612.063 (11)110.2
O10—H10X···O70.851.952.524 (7)123.9
O11—H11Y···O90.852.472.927 (9)114.8
O11—H11X···O15iii0.851.732.552 (10)161.4
O12—H12X···O8v0.852.042.519 (9)114.7
O13—H13F···O13iv0.851.772.460 (14)136.9
O13—H13F···O140.852.082.650 (10)124.4
O15—H15X···O11v0.852.132.552 (10)110.1
O16—H16X···O120.852.222.709 (9)116.4
O16—H16X···O130.852.373.131 (9)150.2
O16—H16Y···O100.852.623.079 (9)115.5
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x, y, z1; (iii) x+1/2, y, z+1/2; (iv) x, y+3/2, z; (v) x1/2, y, z+1/2.
 

Acknowledgements

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

References

First citationBruker (2004). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M. A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342–3351.  Web of Science CSD CrossRef CAS Google Scholar
First citationDai, J. C., Wu, X. T., Hu, S. M., Fu, Z. Y., Zhang, J. J., Du, W. X., Zhang, H. H. & Sun, R. Q. (2004). Eur. J. Inorg. Chem. pp. 2096–2106.  Web of Science CSD CrossRef Google Scholar
First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGo, Y. B., Wang, X. Q. & Jacobson, A. J. (2007). Inorg. Chem. 46, 6594–6600.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGuo, H. D., Guo, X. M., Batten, S. R., Song, J. F., Song, S. Y., Dang, S., Zheng, G. L., Tang, J. K. & Zhang, H. J. (2009). Cryst. Growth Des. 9, 1394–1401.  Web of Science CSD CrossRef CAS Google Scholar
First citationHawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, X., Lu, C. Z., Yuan, D. Q., Chen, L. J., Zhang, Q. Z. & Wu, C. D. (2005). Eur. J. Inorg. Chem. pp. 4598–4606.  Web of Science CSD CrossRef Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationRowsell, J. L. C., Millward, A. R., Park, K. S. & Yaghi, O. M. (2004). J. Am. Chem. Soc. 126, 5666–5667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2004). Micropor. Mesopor. Mater. 73, 3–14.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P., Cheon, Y. E. & Lee, E. Y. (2008). Coord. Chem. Rev. 252, 1007–1026.  Web of Science CrossRef CAS Google Scholar
First citationTranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. (2008). Tetrahedron, 64, 8553–8557.  Web of Science CrossRef CAS Google Scholar
First citationWang, X. W., Chen, J. Z. & Liu, J. H. (2007). Cryst. Growth Des. 7, 1227–1229.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 10, 1211–1215.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940–8941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, L.-N., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m2987–m2988.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1071-m1072
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds