organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,4-Di­chloro­phen­oxy­meth­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 17 June 2009; accepted 30 June 2009; online 4 July 2009)

The title compound, C9H7Cl2N3OS, was synthesized by the reaction of 2,4-dichloro­phenoxy­acetic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and benzene rings is 21.5 (2)°. In the crystal, inter­molecular N—H⋯N hydrogen bonding links the mol­ecules into chains along the b axis.

Related literature

For general background to the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7Cl2N3OS

  • Mr = 276.14

  • Monoclinic, P 21 /c

  • a = 16.012 (3) Å

  • b = 6.5840 (13) Å

  • c = 11.225 (2) Å

  • β = 105.65 (3)°

  • V = 1139.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.867, Tmax = 0.964

  • 2142 measured reflections

  • 2065 independent reflections

  • 1472 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.145

  • S = 1.01

  • 2065 reflections

  • 145 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.14 2.983 (5) 166
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang et al., 1999). The structure of the title compound, (I), is shown in Fig. 1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The dihedral angle between the thiadiazole and benzene ring is 21.5 (2)°. There is intermolecular N—H···N hydrogen bond (Table 1, Fig. 2), forming chains along the b axis.

Related literature top

For general background to the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

2,4-Dichloro phenoxyacetic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically with C—H = 0.93–0.97 Å, N—H = 0.86 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bond.
5-(2,4-Dichlorophenoxymethyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C9H7Cl2N3OSF(000) = 560
Mr = 276.14Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.012 (3) Åθ = 9–12°
b = 6.5840 (13) ŵ = 0.73 mm1
c = 11.225 (2) ÅT = 293 K
β = 105.65 (3)°Block, colourless
V = 1139.5 (4) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1472 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.3°, θmin = 1.3°
ω/2θ scansh = 190
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.867, Tmax = 0.964l = 1213
2142 measured reflections3 standard reflections every 200 reflections
2065 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.07P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
2065 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.37 e Å3
13 restraintsΔρmin = 0.34 e Å3
Crystal data top
C9H7Cl2N3OSV = 1139.5 (4) Å3
Mr = 276.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.012 (3) ŵ = 0.73 mm1
b = 6.5840 (13) ÅT = 293 K
c = 11.225 (2) Å0.20 × 0.10 × 0.05 mm
β = 105.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1472 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.044
Tmin = 0.867, Tmax = 0.9643 standard reflections every 200 reflections
2142 measured reflections intensity decay: 1%
2065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05513 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
2065 reflectionsΔρmin = 0.34 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.63610 (7)0.07359 (17)0.41374 (9)0.0408 (3)
Cl10.95777 (9)0.98076 (19)0.66498 (12)0.0600 (4)
Cl20.85657 (8)0.29796 (18)0.40088 (10)0.0477 (3)
N10.5928 (2)0.1009 (5)0.6153 (3)0.0348 (8)
N20.5586 (2)0.2734 (5)0.5485 (3)0.0352 (8)
N30.5498 (3)0.4294 (6)0.3589 (3)0.0559 (12)
H3A0.52070.52970.37640.067*
H3B0.56230.42610.28910.067*
O0.7388 (2)0.2539 (5)0.5496 (3)0.0479 (8)
C10.8892 (3)0.7718 (6)0.6285 (4)0.0366 (10)
C20.8284 (3)0.7396 (6)0.6931 (4)0.0400 (10)
H2B0.82240.83140.75320.048*
C30.7761 (3)0.5675 (7)0.6670 (4)0.0417 (10)
H3C0.73460.54480.70970.050*
C40.7852 (3)0.4306 (6)0.5786 (3)0.0313 (9)
C50.8461 (3)0.4680 (6)0.5143 (4)0.0326 (9)
C60.8981 (3)0.6391 (7)0.5372 (4)0.0378 (10)
H6A0.93810.66420.49240.045*
C70.6719 (3)0.2139 (6)0.6069 (4)0.0358 (10)
H7A0.69520.20710.69600.043*
H7B0.62830.32000.58730.043*
C80.6334 (2)0.0139 (6)0.5571 (4)0.0324 (9)
C90.5755 (3)0.2781 (6)0.4406 (4)0.0359 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0456 (7)0.0430 (6)0.0397 (6)0.0169 (5)0.0214 (5)0.0012 (5)
Cl10.0573 (8)0.0422 (7)0.0793 (9)0.0218 (6)0.0166 (7)0.0150 (6)
Cl20.0500 (7)0.0449 (7)0.0540 (7)0.0090 (5)0.0240 (5)0.0130 (5)
N10.037 (2)0.0338 (19)0.0363 (18)0.0077 (16)0.0141 (15)0.0023 (15)
N20.037 (2)0.0342 (19)0.0387 (18)0.0093 (16)0.0177 (15)0.0007 (15)
N30.079 (3)0.057 (3)0.043 (2)0.037 (2)0.035 (2)0.0209 (19)
O0.0479 (19)0.0354 (17)0.072 (2)0.0200 (15)0.0357 (16)0.0153 (15)
C10.034 (2)0.025 (2)0.044 (2)0.0048 (18)0.0003 (19)0.0016 (18)
C20.042 (3)0.031 (2)0.046 (2)0.001 (2)0.012 (2)0.0081 (19)
C30.035 (2)0.041 (2)0.054 (2)0.002 (2)0.021 (2)0.000 (2)
C40.033 (2)0.0232 (19)0.038 (2)0.0048 (17)0.0101 (17)0.0009 (16)
C50.030 (2)0.028 (2)0.042 (2)0.0012 (17)0.0128 (18)0.0059 (17)
C60.027 (2)0.038 (2)0.047 (2)0.0055 (19)0.0083 (18)0.0035 (19)
C70.034 (2)0.036 (2)0.041 (2)0.0033 (19)0.0159 (18)0.0004 (18)
C80.023 (2)0.033 (2)0.041 (2)0.0002 (17)0.0097 (17)0.0042 (18)
C90.032 (2)0.039 (2)0.038 (2)0.0086 (19)0.0117 (17)0.0003 (19)
Geometric parameters (Å, º) top
S—C81.721 (4)C1—C21.378 (6)
S—C91.733 (4)C1—C61.383 (6)
Cl1—C11.739 (4)C2—C31.393 (6)
Cl2—C51.737 (4)C2—H2B0.9300
N1—C81.284 (5)C3—C41.377 (6)
N1—N21.389 (5)C3—H3C0.9300
N2—C91.311 (5)C4—C51.382 (5)
N3—C91.341 (5)C5—C61.383 (6)
N3—H3A0.8600C6—H6A0.9300
N3—H3B0.8600C7—C81.497 (6)
O—C41.372 (5)C7—H7A0.9700
O—C71.414 (5)C7—H7B0.9700
C8—S—C986.61 (19)C4—C5—C6121.5 (4)
C8—N1—N2112.8 (3)C4—C5—Cl2119.3 (3)
C9—N2—N1111.6 (3)C6—C5—Cl2119.3 (3)
C9—N3—H3A120.0C1—C6—C5118.4 (4)
C9—N3—H3B120.0C1—C6—H6A120.8
H3A—N3—H3B120.0C5—C6—H6A120.8
C4—O—C7118.6 (3)O—C7—C8106.3 (3)
C2—C1—C6121.4 (4)O—C7—H7A110.5
C2—C1—Cl1119.3 (3)C8—C7—H7A110.5
C6—C1—Cl1119.3 (3)O—C7—H7B110.5
C1—C2—C3119.0 (4)C8—C7—H7B110.5
C1—C2—H2B120.5H7A—C7—H7B108.7
C3—C2—H2B120.5N1—C8—C7122.8 (4)
C4—C3—C2120.6 (4)N1—C8—S115.0 (3)
C4—C3—H3C119.7C7—C8—S122.1 (3)
C2—C3—H3C119.7N2—C9—N3123.2 (4)
O—C4—C3124.7 (4)N2—C9—S114.0 (3)
O—C4—C5116.1 (3)N3—C9—S122.8 (3)
C3—C4—C5119.1 (4)
C8—N1—N2—C90.4 (5)C4—C5—C6—C11.3 (6)
C6—C1—C2—C31.1 (6)Cl2—C5—C6—C1179.6 (3)
Cl1—C1—C2—C3177.4 (3)C4—O—C7—C8179.7 (3)
C1—C2—C3—C40.4 (6)N2—N1—C8—C7176.7 (3)
C7—O—C4—C35.1 (6)N2—N1—C8—S0.4 (4)
C7—O—C4—C5176.1 (4)O—C7—C8—N1156.2 (4)
C2—C3—C4—O177.7 (4)O—C7—C8—S26.9 (5)
C2—C3—C4—C51.1 (6)C9—S—C8—N10.8 (3)
O—C4—C5—C6178.6 (4)C9—S—C8—C7176.3 (4)
C3—C4—C5—C60.2 (6)N1—N2—C9—N3179.7 (4)
O—C4—C5—Cl22.2 (5)N1—N2—C9—S1.1 (5)
C3—C4—C5—Cl2178.9 (3)C8—S—C9—N21.1 (3)
C2—C1—C6—C51.9 (6)C8—S—C9—N3179.8 (4)
Cl1—C1—C6—C5176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.983 (5)166
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H7Cl2N3OS
Mr276.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.012 (3), 6.5840 (13), 11.225 (2)
β (°) 105.65 (3)
V3)1139.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.867, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
2142, 2065, 1472
Rint0.044
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.145, 1.01
No. of reflections2065
No. of parameters145
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.86002.14002.983 (5)166.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds