organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl­idenenorde­hydro­abietylamine

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 11 June 2009; accepted 15 June 2009; online 20 June 2009)

The title compound [systematic name: (1R,4aS,10aR,E)-N-benzyl­idene-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthren-1-amine], C26H33N, has been synthesized from nor-dehydro­abietylamine and benzaldehyde. The two cyclo­hexane rings form a trans ring junction with classic chair and half-chair conformations, respectively, the two methyl groups are on the same side of tricyclic hydro­phenanthrene structure. The dihedral angle between two benzene rings is 44.2 (4)°. The C=N bond is in an E configuration.

Related literature

For the biological activity of dehydro­abietiylamine derivatives, see: Rao et al. (2006[Rao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450-o3451.]); Rao, Song & He (2008[Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.]); Rao, Song, He & Jia (2008[Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575-1578.]); Wilkerson et al. (1993[Wilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett. 3, 2087-2092.]).

[Scheme 1]

Experimental

Crystal data
  • C26H33N

  • Mr = 359.53

  • Monoclinic, P 21

  • a = 12.285 (3) Å

  • b = 5.8940 (12) Å

  • c = 14.994 (3) Å

  • β = 95.90 (3)°

  • V = 1079.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.975, Tmax = 0.981

  • 2435 measured reflections

  • 2324 independent reflections

  • 1761 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.199

  • S = 1.04

  • 2324 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dehydroabietiylamine derivatives exhibit wide range of biological activities, such as antifungal and antitumor activity (Wilkerson et al., 1993 and Rao et al., 2006). Nor-dehydroabietylamine is a new derivative of dehydoabietylamine, which the amine group directly attached to the tricyclic hydrophenthranene structure (Rao et al., 2006). Although much attention has been paid to the bioactivity of dehydroabietylamine derivatives, the crystal structure of the title compound has not yet been reported. In this work, we describe the crystal structure of the title compound.

As shown in Fig. 1, the title compound contains four rings, the two cyclohexane rings form a trans ring junction with classic chair and half-chair conformation, respectively, the two methyl groups are in the axis position of the cyclohexane ring. The two benzene rings are almost planar, the dihedral angle between them is 44.2 °. The bond lengths and bond angles in the molecule are in normal ranges. The title structure is compared with previously found structure 4-chloro-2-((E)-(((1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl- 1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl) methylimino)methyl)phenol (Rao et al.,2006). They exhibited almost the same configurations except that the imine group directly attached to the hydrophenanthrene structure of the title structure.

Related literature top

For the biological activity of dehydroabietiylamine derivatives, see: Rao et al. (2006); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Wilkerson et al. (1993).

Experimental top

A mixture of nor-dehydroabietylamine (1 mmol), benzaldehyde (1 mmol) and ethanol (20 ml) was stirred at 353 K for 4 h, then the solvent was distilled off. Upon recrystallization from acetone, white crystals of the title compound were obtained. Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.937–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.
(1R,4aS,10aR,E)-N-benzylidene-7-isopropyl- 1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-amine top
Crystal data top
C26H33NF(000) = 392
Mr = 359.53Dx = 1.106 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.285 (3) Åθ = 10–13°
b = 5.8940 (12) ŵ = 0.06 mm1
c = 14.994 (3) ÅT = 293 K
β = 95.90 (3)°Block, white
V = 1079.9 (4) Å30.40 × 0.30 × 0.30 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 26.0°, θmin = 1.4°
ω/2θ scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 07
Tmin = 0.975, Tmax = 0.981l = 018
2435 measured reflections3 standard reflections every 200 reflections
2324 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.03P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
2324 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C26H33NV = 1079.9 (4) Å3
Mr = 359.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.285 (3) ŵ = 0.06 mm1
b = 5.8940 (12) ÅT = 293 K
c = 14.994 (3) Å0.40 × 0.30 × 0.30 mm
β = 95.90 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1761 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.044
Tmin = 0.975, Tmax = 0.9813 standard reflections every 200 reflections
2435 measured reflections intensity decay: none
2324 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0742 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
2324 reflectionsΔρmin = 0.36 e Å3
244 parameters
Special details top

Experimental. Although the absolute configuration could not be determined in this case, it has been determined in our previous article which indicated the chiral centers exhibited R,S and R configurations, respectively.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.5943 (4)0.1064 (10)0.6722 (3)0.0555 (15)
C10.9610 (7)0.212 (2)0.6297 (5)0.083 (3)
H1A1.02490.29590.62870.100*
C20.8832 (7)0.2846 (18)0.6812 (5)0.080 (2)
H2A0.89330.41800.71420.096*
C30.7893 (7)0.1591 (15)0.6841 (4)0.067 (2)
H3A0.73580.20590.71970.080*
C40.7749 (5)0.0366 (14)0.6340 (4)0.061 (2)
C50.8544 (7)0.1063 (16)0.5820 (5)0.072 (2)
H5A0.84540.23850.54820.087*
C60.9483 (7)0.024 (2)0.5807 (6)0.091 (3)
H6A1.00270.02100.54550.109*
C70.6712 (5)0.1704 (15)0.6342 (4)0.065 (2)
H7A0.66560.30830.60400.078*
C80.4875 (7)0.2395 (12)0.6683 (4)0.0573 (19)
C90.4313 (5)0.1432 (11)0.7462 (3)0.0460 (15)
H9A0.43700.02180.74010.055*
C100.3056 (5)0.1900 (11)0.7458 (4)0.0436 (14)
C110.2496 (5)0.1195 (14)0.6530 (4)0.0552 (17)
H11A0.17320.16390.64860.066*
H11B0.25240.04430.64760.066*
C120.3039 (6)0.2281 (15)0.5748 (4)0.068 (2)
H12A0.26700.17660.51810.082*
H12B0.29700.39190.57740.082*
C130.4198 (5)0.1662 (15)0.5803 (4)0.0613 (19)
H13A0.45170.23470.53020.074*
H13B0.42540.00290.57430.074*
C140.4894 (5)0.1957 (14)0.8384 (4)0.0567 (17)
H14A0.56800.18400.83680.068*
H14B0.47260.34940.85560.068*
C150.4526 (5)0.0303 (16)0.9058 (4)0.061 (2)
H15A0.47190.09130.96540.073*
H15B0.49280.11020.90150.073*
C160.3317 (4)0.0234 (11)0.8955 (3)0.0389 (13)
C170.2618 (5)0.0468 (10)0.8206 (3)0.0412 (14)
C180.2886 (5)0.1458 (12)0.9632 (4)0.0501 (16)
H18A0.33490.18581.01370.060*
C190.1794 (5)0.2108 (11)0.9587 (4)0.0452 (14)
C200.1139 (5)0.1380 (13)0.8849 (4)0.0527 (17)
H20A0.04000.17550.88000.063*
C210.1526 (5)0.0118 (13)0.8179 (4)0.0544 (17)
H21A0.10430.03520.76970.065*
C220.5043 (8)0.4935 (13)0.6724 (5)0.079 (3)
H22A0.43450.56800.66890.118*
H22B0.54280.54090.62310.118*
H22C0.54620.53280.72790.118*
C230.2709 (7)0.4386 (12)0.7645 (5)0.068 (2)
H23A0.19260.44680.76270.103*
H23B0.29520.53730.71960.103*
H23C0.30340.48480.82260.103*
C240.1371 (6)0.3531 (14)1.0319 (4)0.0597 (19)
H24A0.06030.38651.01220.072*
C250.1949 (7)0.5788 (13)1.0437 (6)0.080 (3)
H25A0.16570.66261.09080.120*
H25B0.27170.55411.05920.120*
H25C0.18390.66330.98880.120*
C260.1383 (7)0.2230 (16)1.1198 (4)0.082 (3)
H26A0.11220.31941.16460.123*
H26B0.09190.09221.11110.123*
H26C0.21170.17551.13920.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.066 (3)0.048 (3)0.056 (3)0.002 (3)0.022 (3)0.004 (3)
C10.070 (5)0.115 (9)0.063 (5)0.016 (6)0.002 (4)0.023 (6)
C20.100 (6)0.076 (6)0.063 (4)0.008 (6)0.004 (4)0.004 (5)
C30.087 (5)0.065 (5)0.048 (4)0.012 (5)0.006 (4)0.012 (4)
C40.067 (4)0.070 (5)0.044 (3)0.018 (4)0.001 (3)0.007 (4)
C50.088 (5)0.068 (6)0.062 (4)0.010 (5)0.011 (4)0.007 (4)
C60.075 (6)0.127 (10)0.069 (5)0.022 (7)0.003 (4)0.000 (7)
C70.070 (4)0.073 (5)0.055 (4)0.017 (4)0.020 (3)0.004 (4)
C80.095 (5)0.036 (4)0.041 (3)0.001 (4)0.008 (3)0.003 (3)
C90.076 (4)0.030 (3)0.031 (3)0.013 (3)0.000 (3)0.001 (3)
C100.061 (4)0.033 (3)0.036 (3)0.011 (3)0.002 (2)0.004 (3)
C110.062 (4)0.063 (5)0.040 (3)0.005 (4)0.002 (3)0.006 (3)
C120.096 (5)0.066 (5)0.040 (3)0.002 (5)0.000 (3)0.013 (4)
C130.078 (4)0.073 (5)0.034 (3)0.012 (5)0.012 (3)0.004 (4)
C140.067 (4)0.056 (4)0.044 (3)0.014 (4)0.005 (3)0.001 (3)
C150.054 (4)0.091 (6)0.038 (3)0.022 (4)0.000 (3)0.005 (4)
C160.044 (3)0.038 (3)0.035 (3)0.000 (3)0.005 (2)0.003 (3)
C170.059 (4)0.035 (3)0.031 (3)0.001 (3)0.008 (2)0.002 (3)
C180.060 (4)0.051 (4)0.037 (3)0.003 (3)0.006 (3)0.005 (3)
C190.057 (3)0.040 (4)0.041 (3)0.002 (3)0.012 (3)0.007 (3)
C200.046 (3)0.063 (5)0.048 (3)0.004 (4)0.003 (3)0.008 (4)
C210.063 (4)0.058 (5)0.041 (3)0.013 (4)0.004 (3)0.004 (3)
C220.134 (8)0.036 (4)0.069 (5)0.022 (5)0.022 (5)0.004 (4)
C230.105 (6)0.037 (4)0.068 (4)0.019 (4)0.030 (4)0.001 (4)
C240.062 (4)0.067 (5)0.052 (3)0.015 (4)0.015 (3)0.006 (4)
C250.109 (6)0.038 (4)0.099 (6)0.006 (5)0.031 (5)0.010 (4)
C260.135 (7)0.069 (6)0.045 (4)0.015 (6)0.024 (4)0.005 (4)
Geometric parameters (Å, º) top
N—C71.212 (7)C14—C151.508 (9)
N—C81.524 (9)C14—H14A0.9700
C1—C61.331 (14)C14—H14B0.9700
C1—C21.359 (11)C15—C161.510 (8)
C1—H1A0.9300C15—H15A0.9700
C2—C31.375 (11)C15—H15B0.9700
C2—H2A0.9300C16—C181.393 (8)
C3—C41.378 (11)C16—C171.405 (7)
C3—H3A0.9300C17—C211.381 (8)
C4—C51.374 (9)C18—C191.389 (8)
C4—C71.499 (7)C18—H18A0.9300
C5—C61.387 (12)C19—C201.368 (8)
C5—H5A0.9300C19—C241.515 (9)
C6—H6A0.9300C20—C211.374 (9)
C7—H7A0.9300C20—H20A0.9300
C8—C221.512 (10)C21—H21A0.9300
C8—C91.525 (9)C22—H22A0.9600
C8—C131.547 (9)C22—H22B0.9600
C9—C141.522 (7)C22—H22C0.9600
C9—C101.568 (8)C23—H23A0.9600
C9—H9A0.9800C23—H23B0.9600
C10—C171.544 (8)C23—H23C0.9600
C10—C111.545 (8)C24—C251.509 (11)
C10—C231.559 (9)C24—C261.524 (10)
C11—C121.546 (9)C24—H24A0.9800
C11—H11A0.9700C25—H25A0.9600
C11—H11B0.9700C25—H25B0.9600
C12—C131.464 (9)C25—H25C0.9600
C12—H12A0.9700C26—H26A0.9600
C12—H12B0.9700C26—H26B0.9600
C13—H13A0.9700C26—H26C0.9600
C13—H13B0.9700
C7—N—C8122.1 (7)C15—C14—H14A109.8
C6—C1—C2121.9 (10)C9—C14—H14A109.8
C6—C1—H1A119.1C15—C14—H14B109.8
C2—C1—H1A119.1C9—C14—H14B109.8
C1—C2—C3119.3 (10)H14A—C14—H14B108.2
C1—C2—H2A120.4C14—C15—C16115.3 (5)
C3—C2—H2A120.4C14—C15—H15A108.5
C2—C3—C4119.7 (8)C16—C15—H15A108.5
C2—C3—H3A120.2C14—C15—H15B108.5
C4—C3—H3A120.2C16—C15—H15B108.5
C5—C4—C3120.0 (7)H15A—C15—H15B107.5
C5—C4—C7119.9 (7)C18—C16—C17119.2 (5)
C3—C4—C7120.1 (7)C18—C16—C15118.5 (5)
C4—C5—C6119.0 (8)C17—C16—C15122.3 (5)
C4—C5—H5A120.5C21—C17—C16117.5 (5)
C6—C5—H5A120.5C21—C17—C10121.7 (5)
C1—C6—C5120.2 (9)C16—C17—C10120.8 (5)
C1—C6—H6A119.9C19—C18—C16123.0 (5)
C5—C6—H6A119.9C19—C18—H18A118.5
N—C7—C4122.8 (8)C16—C18—H18A118.5
N—C7—H7A118.6C20—C19—C18115.9 (6)
C4—C7—H7A118.6C20—C19—C24122.8 (6)
C22—C8—N113.3 (7)C18—C19—C24121.3 (6)
C22—C8—C9114.1 (6)C19—C20—C21122.8 (6)
N—C8—C9103.6 (5)C19—C20—H20A118.6
C22—C8—C13111.7 (7)C21—C20—H20A118.6
N—C8—C13105.9 (5)C20—C21—C17121.5 (6)
C9—C8—C13107.6 (6)C20—C21—H21A119.3
C14—C9—C8114.3 (5)C17—C21—H21A119.3
C14—C9—C10109.7 (5)C8—C22—H22A109.5
C8—C9—C10117.1 (5)C8—C22—H22B109.5
C14—C9—H9A104.8H22A—C22—H22B109.5
C8—C9—H9A104.8C8—C22—H22C109.5
C10—C9—H9A104.8H22A—C22—H22C109.5
C17—C10—C11110.6 (5)H22B—C22—H22C109.5
C17—C10—C23105.2 (5)C10—C23—H23A109.5
C11—C10—C23108.1 (6)C10—C23—H23B109.5
C17—C10—C9108.5 (5)H23A—C23—H23B109.5
C11—C10—C9107.6 (5)C10—C23—H23C109.5
C23—C10—C9116.9 (6)H23A—C23—H23C109.5
C10—C11—C12112.6 (6)H23B—C23—H23C109.5
C10—C11—H11A109.1C25—C24—C19112.4 (6)
C12—C11—H11A109.1C25—C24—C26112.2 (7)
C10—C11—H11B109.1C19—C24—C26112.0 (6)
C12—C11—H11B109.1C25—C24—H24A106.6
H11A—C11—H11B107.8C19—C24—H24A106.6
C13—C12—C11110.3 (6)C26—C24—H24A106.6
C13—C12—H12A109.6C24—C25—H25A109.5
C11—C12—H12A109.6C24—C25—H25B109.5
C13—C12—H12B109.6H25A—C25—H25B109.5
C11—C12—H12B109.6C24—C25—H25C109.5
H12A—C12—H12B108.1H25A—C25—H25C109.5
C12—C13—C8114.4 (6)H25B—C25—H25C109.5
C12—C13—H13A108.7C24—C26—H26A109.5
C8—C13—H13A108.7C24—C26—H26B109.5
C12—C13—H13B108.7H26A—C26—H26B109.5
C8—C13—H13B108.7C24—C26—H26C109.5
H13A—C13—H13B107.6H26A—C26—H26C109.5
C15—C14—C9109.4 (5)H26B—C26—H26C109.5
C6—C1—C2—C31.0 (13)C22—C8—C13—C1271.4 (9)
C1—C2—C3—C40.9 (12)N—C8—C13—C12164.8 (7)
C2—C3—C4—C50.5 (10)C9—C8—C13—C1254.6 (9)
C2—C3—C4—C7177.9 (7)C8—C9—C14—C15160.1 (6)
C3—C4—C5—C60.3 (11)C10—C9—C14—C1566.1 (7)
C7—C4—C5—C6178.2 (7)C9—C14—C15—C1641.1 (8)
C2—C1—C6—C50.8 (14)C14—C15—C16—C18170.0 (6)
C4—C5—C6—C10.4 (13)C14—C15—C16—C179.6 (9)
C8—N—C7—C4177.2 (6)C18—C16—C17—C210.4 (9)
C5—C4—C7—N173.2 (7)C15—C16—C17—C21179.9 (6)
C3—C4—C7—N5.3 (11)C18—C16—C17—C10177.8 (6)
C7—N—C8—C2238.6 (9)C15—C16—C17—C101.9 (9)
C7—N—C8—C9162.7 (6)C11—C10—C17—C2139.0 (8)
C7—N—C8—C1384.1 (8)C23—C10—C17—C2177.4 (8)
C22—C8—C9—C1456.7 (9)C9—C10—C17—C21156.8 (6)
N—C8—C9—C1466.8 (7)C11—C10—C17—C16142.8 (6)
C13—C8—C9—C14178.7 (6)C23—C10—C17—C16100.8 (7)
C22—C8—C9—C1073.6 (9)C9—C10—C17—C1625.0 (7)
N—C8—C9—C10162.9 (5)C17—C16—C18—C192.7 (10)
C13—C8—C9—C1051.0 (7)C15—C16—C18—C19177.6 (7)
C14—C9—C10—C1756.7 (7)C16—C18—C19—C203.0 (10)
C8—C9—C10—C17170.8 (5)C16—C18—C19—C24177.1 (7)
C14—C9—C10—C11176.4 (6)C18—C19—C20—C211.2 (10)
C8—C9—C10—C1151.2 (7)C24—C19—C20—C21179.0 (7)
C14—C9—C10—C2361.9 (7)C19—C20—C21—C171.0 (11)
C8—C9—C10—C2370.5 (7)C16—C17—C21—C201.3 (10)
C17—C10—C11—C12170.3 (6)C10—C17—C21—C20179.5 (6)
C23—C10—C11—C1275.1 (7)C20—C19—C24—C25120.6 (7)
C9—C10—C11—C1251.9 (7)C18—C19—C24—C2559.6 (9)
C10—C11—C12—C1358.1 (9)C20—C19—C24—C26112.0 (8)
C11—C12—C13—C859.1 (9)C18—C19—C24—C2667.9 (8)

Experimental details

Crystal data
Chemical formulaC26H33N
Mr359.53
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.285 (3), 5.8940 (12), 14.994 (3)
β (°) 95.90 (3)
V3)1079.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
2435, 2324, 1761
Rint0.044
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.199, 1.04
No. of reflections2324
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported financially by grants from the Forestry Commonwealth Industry Special Foundation of China (No. 200704008) and the National Natural Science Foundation of China (No. 30771690).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationRao, X.-P., Song, Z.-Q., Gong, Y., Yao, X.-J. & Shang, S.-B. (2006). Acta Cryst. E62, o3450–o3451.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512–516.  Web of Science CrossRef CAS Google Scholar
First citationRao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56, 1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, W. W., Galbraith, W. & Delucca, I. (1993). Bioorg. Med. Chem. Lett. 3, 2087–2092.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds