organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 14 May 2009; accepted 21 May 2009; online 29 May 2009)

The title compound, C8H6FN3S, was synthesized by the reaction of 3-fluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the planes of the thia­diazole and benzene rings is 37.3 (2)°. In the structure, two crystallographically independent mol­ecules form a centrosymmetric dimer, in which two inter­molecular N—H⋯N hydrogen bonds generate an R22(8) motif.

Related literature

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For a similar structure, see: Wan et al. (2006[Wan, R., Han, F., Wu, F., Zhang, J.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o5547-o5548.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6FN3S

  • Mr = 195.23

  • Monoclinic, P 21 /c

  • a = 11.345 (2) Å

  • b = 7.3130 (15) Å

  • c = 11.269 (2) Å

  • β = 111.64 (3)°

  • V = 869.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.935, Tmax = 0.967

  • 1667 measured reflections

  • 1584 independent reflections

  • 1177 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.01

  • 1584 reflections

  • 118 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.14 2.981 (5) 165
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and have published the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006). Here we report the crystal structure, (I).

In the title molecule (I), (Fig. 1), the dihedral angle between the thiadiazole and benzene ring is 37.3 (2)°, which is bigger than the angle in the structure of 5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-ylamine (Wan et al., 2006), which is 30.1 (2)°. In the structure, two crystallographically independent molecules form a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8) (Fig. 2).

Related literature top

For general background, see: Nakagawa et al. (1996); Wang et al. (1999). For a similar structure, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

3-Fluoro-benzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 363 K for 6 h. After cooling, the crude product (I) precipitated and was filted. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were placed geometrically with C—H = 0.93 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of a dimer structure, in which two intermolecular N—H···N hydrogen bonds generate a motif R22(8).
5-(3-Fluorophenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C8H6FN3SF(000) = 400
Mr = 195.23Dx = 1.492 Mg m3
Monoclinic, P21/cMelting point: 515 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.345 (2) ÅCell parameters from 25 reflections
b = 7.3130 (15) Åθ = 10–13°
c = 11.269 (2) ŵ = 0.34 mm1
β = 111.64 (3)°T = 293 K
V = 869.0 (3) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 130
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.935, Tmax = 0.967l = 1213
1667 measured reflections3 standard reflections every 200 reflections
1584 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
1584 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.37 e Å3
13 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H6FN3SV = 869.0 (3) Å3
Mr = 195.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.345 (2) ŵ = 0.34 mm1
b = 7.3130 (15) ÅT = 293 K
c = 11.269 (2) Å0.20 × 0.10 × 0.10 mm
β = 111.64 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1177 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.935, Tmax = 0.9673 standard reflections every 200 reflections
1667 measured reflections intensity decay: 1%
1584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04713 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
1584 reflectionsΔρmin = 0.25 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.82144 (7)0.08639 (11)0.55908 (6)0.0548 (3)
F0.5162 (3)0.2428 (3)0.0198 (2)0.1125 (9)
N10.8658 (2)0.1443 (3)0.3566 (2)0.0523 (6)
C10.7322 (3)0.2918 (5)0.3984 (3)0.0713 (9)
H1B0.78040.30360.48500.086*
N20.9262 (2)0.2841 (3)0.4381 (2)0.0551 (6)
C20.6592 (4)0.4354 (5)0.3322 (4)0.0817 (11)
H2B0.65850.54430.37460.098*
N30.9606 (3)0.3931 (4)0.6429 (2)0.0733 (9)
H3A1.00430.48460.63400.088*
H3B0.94810.37870.71310.088*
C30.5871 (4)0.4202 (5)0.2040 (4)0.0822 (12)
H3C0.53780.51750.15920.099*
C40.5898 (3)0.2597 (6)0.1447 (3)0.0741 (10)
C50.6637 (3)0.1132 (4)0.2071 (3)0.0639 (9)
H5A0.66580.00660.16280.077*
C60.7338 (3)0.1272 (4)0.3350 (3)0.0516 (7)
C70.8082 (3)0.0307 (4)0.4039 (2)0.0475 (7)
C80.9121 (3)0.2733 (4)0.5476 (2)0.0499 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0686 (5)0.0626 (5)0.0402 (4)0.0130 (4)0.0282 (3)0.0002 (3)
F0.1200 (19)0.122 (2)0.0888 (16)0.0253 (16)0.0307 (14)0.0193 (15)
N10.0646 (15)0.0583 (14)0.0421 (12)0.0113 (12)0.0293 (11)0.0079 (11)
C10.070 (2)0.068 (2)0.073 (2)0.0121 (18)0.0235 (17)0.0023 (18)
N20.0753 (16)0.0580 (15)0.0433 (12)0.0172 (13)0.0353 (12)0.0097 (11)
C20.074 (2)0.060 (2)0.112 (3)0.0081 (19)0.035 (2)0.001 (2)
N30.110 (2)0.0800 (19)0.0452 (14)0.0379 (17)0.0462 (15)0.0191 (13)
C30.074 (2)0.079 (3)0.104 (3)0.020 (2)0.045 (2)0.040 (2)
C40.075 (2)0.091 (3)0.062 (2)0.024 (2)0.0319 (18)0.0344 (19)
C50.075 (2)0.068 (2)0.0514 (17)0.0144 (17)0.0271 (16)0.0140 (16)
C60.0557 (17)0.0533 (17)0.0519 (16)0.0000 (13)0.0270 (14)0.0051 (13)
C70.0541 (16)0.0513 (16)0.0421 (14)0.0000 (13)0.0236 (13)0.0013 (12)
C80.0634 (18)0.0556 (17)0.0374 (13)0.0068 (14)0.0265 (13)0.0025 (13)
Geometric parameters (Å, º) top
S—C81.744 (3)C2—H2B0.9300
S—C71.747 (3)N3—C81.338 (3)
F—C41.351 (4)N3—H3A0.8600
N1—C71.288 (3)N3—H3B0.8600
N1—N21.377 (3)C3—C41.357 (5)
C1—C21.375 (5)C3—H3C0.9300
C1—C61.403 (4)C4—C51.382 (4)
C1—H1B0.9300C5—C61.369 (4)
N2—C81.303 (3)C5—H5A0.9300
C2—C31.378 (5)C6—C71.472 (4)
C8—S—C786.76 (13)F—C4—C3118.3 (3)
C7—N1—N2114.0 (2)F—C4—C5119.0 (4)
C2—C1—C6119.8 (3)C3—C4—C5122.7 (3)
C2—C1—H1B120.1C6—C5—C4119.0 (3)
C6—C1—H1B120.1C6—C5—H5A120.5
C8—N2—N1112.5 (2)C4—C5—H5A120.5
C1—C2—C3120.9 (4)C5—C6—C1119.3 (3)
C1—C2—H2B119.6C5—C6—C7119.6 (3)
C3—C2—H2B119.6C1—C6—C7121.1 (3)
C8—N3—H3A120.0N1—C7—C6124.6 (2)
C8—N3—H3B120.0N1—C7—S113.2 (2)
H3A—N3—H3B120.0C6—C7—S122.1 (2)
C4—C3—C2118.3 (3)N2—C8—N3124.3 (3)
C4—C3—H3C120.9N2—C8—S113.5 (2)
C2—C3—H3C120.9N3—C8—S122.19 (19)
C7—N1—N2—C80.2 (4)N2—N1—C7—S0.5 (3)
C6—C1—C2—C30.1 (5)C5—C6—C7—N136.0 (4)
C1—C2—C3—C40.1 (6)C1—C6—C7—N1144.6 (3)
C2—C3—C4—F178.1 (3)C5—C6—C7—S141.4 (3)
C2—C3—C4—C51.3 (6)C1—C6—C7—S37.9 (4)
F—C4—C5—C6177.0 (3)C8—S—C7—N10.4 (2)
C3—C4—C5—C62.4 (5)C8—S—C7—C6178.2 (2)
C4—C5—C6—C12.2 (5)N1—N2—C8—N3179.5 (3)
C4—C5—C6—C7177.2 (3)N1—N2—C8—S0.1 (3)
C2—C1—C6—C51.0 (5)C7—S—C8—N20.3 (2)
C2—C1—C6—C7178.4 (3)C7—S—C8—N3179.7 (3)
N2—N1—C7—C6178.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.142.981 (5)165
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H6FN3S
Mr195.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.345 (2), 7.3130 (15), 11.269 (2)
β (°) 111.64 (3)
V3)869.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.935, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
1667, 1584, 1177
Rint0.021
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.01
No. of reflections1584
No. of parameters118
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.86002.14002.981 (5)165.00
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, R., Han, F., Wu, F., Zhang, J.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o5547–o5548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds