organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-ethyl-1H-2,1-benzo­thia­zin-4(3H)-one 2,2-dioxide

aGovernment College University, Department of Chemistry, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cUniversity of Karachi, HEJ research Institute of Chemistry, Karachi, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 19 January 2009; accepted 21 January 2009; online 28 January 2009)

In the title compound, C10H10BrNO3S, the S atom is four-coordinated in a distorted tetra­hedral configuration with nearly equal S=O bond distances; the S—C and S—N bond lengths are 1.755 (3) and 1.649 (3) Å, respectively. The heterocyclic thia­zine ring adopts a twist conformation. Adjacent mol­ecules are attached to each other through inter­molecular C—H⋯O hydrogen bonds, forming R22(8) and R22(14) ring motifs. The mol­ecules are stabilized by intra- and inter­molecular hydrogen bonds, forming a three-dimensional polymeric network.

Related literature

For previous work on benzothia­zines, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]); Shafiq, Khan et al. (2008[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.]); Shafiq, Tahir et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.]); Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For synthesis, see: Lombardino (1972[Lombardino, J. G. (1972). J. Heterocycl. Chem. 9, 315-317.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10BrNO3S

  • Mr = 304.16

  • Triclinic, [P \overline 1]

  • a = 7.7164 (2) Å

  • b = 7.9729 (3) Å

  • c = 10.4579 (3) Å

  • α = 86.767 (2)°

  • β = 75.773 (1)°

  • γ = 66.912 (2)°

  • V = 573.13 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 296 (2) K

  • 0.28 × 0.16 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.486, Tmax = 0.639

  • 12369 measured reflections

  • 2846 independent reflections

  • 1840 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.02

  • 2846 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.9300 2.4200 3.324 (4) 165.00
C3—H3⋯O2ii 0.9300 2.5900 3.418 (4) 148.00
C8—H8A⋯O3iii 0.89 (4) 2.57 (4) 3.252 (4) 134 (3)
C9—H9B⋯O3 0.93 (3) 2.29 (3) 2.850 (4) 118 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Our group is involved in synthesizing various derivatives of benzothiazine molecule (Shafiq, Khan et al., 2008; Shafiq, Tahir et al., 2008; Tahir et al., 2008; Arshad et al., 2008) and their characterization by X-ray studies. We, here, report the title compound (I), (Fig 1), in this context.

In the title compound, the bromo-substituated benzene ring A (C1–C6), is almost planar with alternate distortions at individual C atoms. The Br atom is at a distance of 0.073 (4) Å from the r.m.s. plane of ring A. The thiazine ring B (S1/N1/C1/C6–C8) is in the twisted form. The maximum puckering (Cremer & Pople, 1975) amplitude, QT, of ring A and ring B is 0.674 (2) Å. There exist an intramolecular H-bond of C—H···O type between the methylene group and the SO2 moiety. The intermolecular H-bonds [C8—H8A···.O3] and [C3—H3···.O2] (Table 1), joint the adjacent molecules forming ring motifs, (Bernstein et al., 1995), R22(8) and R22(14), respectively. The three asymmetric units joint in this way, are further linked through [C2—H2···O1] H-bonds with carbonyl moiety (Fig 2).

Related literature top

For previous work on benzothiazines, see: Arshad et al. (2008); Shafiq, Khan et al. (2008); Shafiq, Tahir et al. (2008); Tahir et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For graph-set motifs, see: Bernstein et al. (1995). For synthesis, see: Lombardino (1972). [Please check rephrasing]

Experimental top

The title compound was prepared in a three step scheme following the reported procedure (Lombardino, 1972). Starting material used was methyl-2-amino-5-bromo benzoate. It was reacted with methane sulfonyl chloride taking equimolar quantities, in dichloromethane. The pH was kept alkaline with triethylamine. The product of this step was then N-ethylated (ethyl iodide) and cyclized as reported in the above mentioned reference, to get the title compound which was recrystallized in ethanol for X-ray diffraction studies.

Refinement top

The H atoms of methylene group were located from a difference Fourier map and refined freely. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line shows the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing figure (PLATON: Spek, 2003) which shows that intermolecular H-bonds form the ring motifs.
6-Bromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide top
Crystal data top
C10H10BrNO3SZ = 2
Mr = 304.16F(000) = 304
Triclinic, P1Dx = 1.762 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7164 (2) ÅCell parameters from 2847 reflections
b = 7.9729 (3) Åθ = 2.0–28.3°
c = 10.4579 (3) ŵ = 3.76 mm1
α = 86.767 (2)°T = 296 K
β = 75.773 (1)°Needle, colourless
γ = 66.912 (2)°0.28 × 0.16 × 0.12 mm
V = 573.13 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2846 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.486, Tmax = 0.639l = 1313
12369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.3304P]
where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C10H10BrNO3Sγ = 66.912 (2)°
Mr = 304.16V = 573.13 (3) Å3
Triclinic, P1Z = 2
a = 7.7164 (2) ÅMo Kα radiation
b = 7.9729 (3) ŵ = 3.76 mm1
c = 10.4579 (3) ÅT = 296 K
α = 86.767 (2)°0.28 × 0.16 × 0.12 mm
β = 75.773 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1840 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.639Rint = 0.034
12369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.91 e Å3
2846 reflectionsΔρmin = 0.58 e Å3
158 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36240 (6)0.15247 (6)0.35948 (3)0.0686 (2)
S10.00069 (12)0.19519 (10)0.32296 (7)0.0435 (3)
O10.2170 (4)0.2056 (3)0.0770 (3)0.0705 (10)
O20.1737 (3)0.2464 (3)0.2787 (2)0.0578 (8)
O30.0156 (4)0.2267 (3)0.4583 (2)0.0668 (10)
N10.1437 (4)0.2891 (3)0.2351 (2)0.0450 (9)
C10.1999 (4)0.2535 (4)0.0977 (3)0.0358 (9)
C20.2376 (5)0.3826 (4)0.0126 (3)0.0444 (10)
C30.2876 (5)0.3511 (4)0.1214 (3)0.0471 (11)
C40.3017 (4)0.1895 (4)0.1739 (3)0.0423 (10)
C50.2710 (4)0.0580 (4)0.0934 (3)0.0416 (10)
C60.2210 (4)0.0869 (4)0.0432 (3)0.0361 (9)
C70.1935 (4)0.0623 (4)0.1248 (3)0.0427 (10)
C80.1398 (6)0.0343 (4)0.2718 (3)0.0493 (11)
C90.1564 (5)0.4465 (4)0.2950 (3)0.0465 (11)
C100.3622 (5)0.4137 (5)0.2925 (4)0.0635 (14)
H20.228720.491400.047270.0533*
H30.312140.438460.177240.0564*
H50.283420.051160.129830.0499*
H8A0.065 (5)0.092 (5)0.313 (4)0.0591*
H8B0.247 (5)0.063 (5)0.306 (3)0.0591*
H9A0.092 (5)0.550 (5)0.245 (3)0.0558*
H9B0.085 (5)0.457 (4)0.382 (3)0.0558*
H10A0.433440.411510.202850.0948*
H10B0.364030.509810.342780.0948*
H10C0.421090.298790.330100.0948*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0779 (3)0.0861 (3)0.0329 (2)0.0249 (2)0.0092 (2)0.0002 (2)
S10.0540 (5)0.0443 (4)0.0344 (4)0.0260 (4)0.0036 (3)0.0030 (3)
O10.113 (2)0.0401 (13)0.0672 (17)0.0416 (15)0.0168 (15)0.0010 (12)
O20.0464 (14)0.0583 (14)0.0673 (16)0.0232 (12)0.0074 (12)0.0063 (12)
O30.098 (2)0.0734 (16)0.0341 (13)0.0463 (15)0.0033 (12)0.0009 (11)
N10.0626 (17)0.0467 (14)0.0332 (14)0.0347 (14)0.0012 (12)0.0045 (11)
C10.0391 (16)0.0356 (15)0.0340 (16)0.0178 (13)0.0056 (12)0.0001 (12)
C20.0552 (19)0.0351 (15)0.0453 (19)0.0238 (15)0.0057 (15)0.0010 (13)
C30.051 (2)0.0462 (18)0.0429 (19)0.0212 (16)0.0075 (15)0.0110 (15)
C40.0425 (18)0.0510 (18)0.0307 (16)0.0164 (15)0.0074 (13)0.0015 (14)
C50.0439 (18)0.0377 (16)0.0418 (18)0.0139 (14)0.0098 (14)0.0056 (14)
C60.0419 (17)0.0324 (15)0.0369 (16)0.0182 (13)0.0082 (13)0.0005 (12)
C70.0487 (19)0.0354 (16)0.0491 (19)0.0198 (14)0.0158 (15)0.0050 (14)
C80.061 (2)0.0436 (18)0.047 (2)0.0254 (18)0.0137 (17)0.0121 (15)
C90.056 (2)0.0423 (17)0.0440 (19)0.0255 (17)0.0033 (16)0.0115 (15)
C100.065 (2)0.066 (2)0.071 (3)0.033 (2)0.023 (2)0.004 (2)
Geometric parameters (Å, º) top
Br1—C41.893 (3)C6—C71.477 (4)
S1—O21.421 (3)C7—C81.496 (4)
S1—O31.420 (2)C9—C101.499 (6)
S1—N11.649 (3)C2—H20.9300
S1—C81.755 (3)C3—H30.9300
O1—C71.202 (4)C5—H50.9300
N1—C11.406 (4)C8—H8A0.89 (4)
N1—C91.481 (4)C8—H8B0.92 (4)
C1—C21.393 (4)C9—H9A0.98 (4)
C1—C61.409 (4)C9—H9B0.93 (3)
C2—C31.369 (4)C10—H10A0.9600
C3—C41.383 (4)C10—H10B0.9600
C4—C51.364 (4)C10—H10C0.9600
C5—C61.393 (4)
Br1···Br1i3.5704 (5)C2···H9A2.61 (3)
Br1···H8Bii3.00 (4)C2···H10A2.8500
O1···C2iii3.324 (4)C9···H22.5500
O2···C63.254 (4)C10···H22.9400
O2···C10iv3.263 (5)H2···O1ix2.4200
O2···C3v3.418 (4)H2···C92.5500
O3···C8vi3.252 (4)H2···C102.9400
O1···H9Aiii2.84 (4)H2···H9A2.0600
O1···H2iii2.4200H2···H10A2.4300
O1···H52.4700H3···O2v2.5900
O2···H10Civ2.9000H5···O12.4700
O2···H5vii2.7400H5···O2vii2.7400
O2···H3v2.5900H8A···O3vi2.57 (4)
O3···H9B2.29 (3)H8B···Br1ii3.00 (4)
O3···H8Avi2.57 (4)H9A···O1ix2.84 (4)
O3···H9Bviii2.90 (3)H9A···C22.61 (3)
C2···O1ix3.324 (4)H9A···H22.0600
C2···C103.348 (5)H9B···O32.29 (3)
C2···C2v3.472 (5)H9B···O3viii2.90 (3)
C3···O2v3.418 (4)H9B···H9Bviii2.49 (4)
C6···O23.254 (4)H10A···C12.9900
C8···O3vi3.252 (4)H10A···C22.8500
C10···C23.348 (5)H10A···H22.4300
C10···O2x3.263 (5)H10C···O2x2.9000
C1···H10A2.9900
O2—S1—O3118.87 (16)S1—C8—C7112.1 (2)
O2—S1—N1110.91 (14)N1—C9—C10111.6 (3)
O2—S1—C8106.97 (18)C1—C2—H2120.00
O3—S1—N1107.50 (16)C3—C2—H2120.00
O3—S1—C8111.51 (15)C2—C3—H3120.00
N1—S1—C899.36 (16)C4—C3—H3120.00
S1—N1—C1117.1 (2)C4—C5—H5120.00
S1—N1—C9118.39 (19)C6—C5—H5120.00
C1—N1—C9121.6 (2)S1—C8—H8A104 (2)
N1—C1—C2120.3 (3)S1—C8—H8B104 (2)
N1—C1—C6121.0 (3)C7—C8—H8A113 (3)
C2—C1—C6118.7 (3)C7—C8—H8B112 (2)
C1—C2—C3120.7 (3)H8A—C8—H8B111 (3)
C2—C3—C4120.1 (3)N1—C9—H9A104 (2)
Br1—C4—C3119.3 (2)N1—C9—H9B105 (2)
Br1—C4—C5120.0 (2)C10—C9—H9A115 (2)
C3—C4—C5120.7 (3)C10—C9—H9B110 (3)
C4—C5—C6120.1 (3)H9A—C9—H9B111 (3)
C1—C6—C5119.6 (3)C9—C10—H10A109.00
C1—C6—C7122.9 (3)C9—C10—H10B110.00
C5—C6—C7117.4 (3)C9—C10—H10C109.00
O1—C7—C6122.2 (3)H10A—C10—H10B109.00
O1—C7—C8119.4 (3)H10A—C10—H10C109.00
C6—C7—C8118.4 (3)H10B—C10—H10C109.00
O2—S1—N1—C156.8 (3)N1—C1—C6—C5178.0 (3)
O2—S1—N1—C9104.3 (2)N1—C1—C6—C72.4 (5)
O3—S1—N1—C1171.7 (2)C2—C1—C6—C52.6 (5)
O3—S1—N1—C927.2 (3)C2—C1—C6—C7177.1 (3)
C8—S1—N1—C155.5 (3)C1—C2—C3—C40.2 (6)
C8—S1—N1—C9143.4 (3)C2—C3—C4—Br1177.9 (3)
O2—S1—C8—C761.0 (3)C2—C3—C4—C51.7 (6)
O3—S1—C8—C7167.5 (3)Br1—C4—C5—C6178.2 (3)
N1—S1—C8—C754.3 (3)C3—C4—C5—C61.3 (5)
S1—N1—C1—C2149.4 (3)C4—C5—C6—C10.8 (5)
S1—N1—C1—C631.2 (4)C4—C5—C6—C7178.8 (3)
C9—N1—C1—C211.1 (5)C1—C6—C7—O1178.0 (3)
C9—N1—C1—C6168.3 (3)C1—C6—C7—C80.4 (5)
S1—N1—C9—C10125.2 (3)C5—C6—C7—O11.7 (5)
C1—N1—C9—C1074.6 (4)C5—C6—C7—C8180.0 (3)
N1—C1—C2—C3178.3 (3)O1—C7—C8—S1150.2 (3)
C6—C1—C2—C32.2 (5)C6—C7—C8—S131.4 (5)
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x1, y, z; (v) x, y+1, z; (vi) x, y, z+1; (vii) x, y, z; (viii) x, y+1, z+1; (ix) x, y+1, z; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ix0.93002.42003.324 (4)165.00
C3—H3···O2v0.93002.59003.418 (4)148.00
C8—H8A···O3vi0.89 (4)2.57 (4)3.252 (4)134 (3)
C9—H9B···O30.93 (3)2.29 (3)2.850 (4)118 (2)
Symmetry codes: (v) x, y+1, z; (vi) x, y, z+1; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10BrNO3S
Mr304.16
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7164 (2), 7.9729 (3), 10.4579 (3)
α, β, γ (°)86.767 (2), 75.773 (1), 66.912 (2)
V3)573.13 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.28 × 0.16 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.486, 0.639
No. of measured, independent and
observed [I > 2σ(I)] reflections
12369, 2846, 1840
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.02
No. of reflections2846
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.58

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.93002.42003.324 (4)165.00
C3—H3···O2ii0.93002.59003.418 (4)148.00
C8—H8A···O3iii0.89 (4)2.57 (4)3.252 (4)134 (3)
C9—H9B···O30.93 (3)2.29 (3)2.850 (4)118 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

M. Shafiq gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Programme (PIN 042-120567-PS2-276).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLombardino, J. G. (1972). J. Heterocycl. Chem. 9, 315–317.  CrossRef CAS Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds